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FOREWORD
These volumes have been prepared with a two-fold purpose,

—

to honor the memory of J. Willard Gibbs, and to meet what is

believed to be a real need. They are designed to aid and sup-

plement a careful study of the original text of Gibbs' writings

and not, in any sense, to make such a study unnecessary.

The writing and printing of this commentary have been

carried out under the auspices of Yale University, and have

been financed in part from University funds and in part by

generous contributions received from Professor Irving Fisher

of Yale, to whom credit is also due for having conceived and

initiated the movement for a memorial to Willard Gibbs of

which this commentary is the direct and, thus far, the principal

result.

In January, 1927, an informal meeting was held of members

of the Yale faculty interested in the creation of such a memorial.

The proposal to publish a commentary on Gibbs' writings met

with favor, and a committee was appointed to study the matter.

After an extended investigation, in the course of which per-

sonal opinions were obtained from a large number of authori-

ties, both in this country and abroad, on the desirability of such

a commentary and on various questions of policy, the committee

reported favorably, and was thereupon instructed to carry

the plan into effect. Definite arrangements were completed

in February, 1929, and work began during that year, but it

was not until four years later that the manuscript of both

volumes was ready for the press.

Each of the two volumes deals with the portion of Gibbs'

writings contained in the like-numbered volume of The Col-

lected Works of J. Willard Gibbs. Volume I, "Thermody-

namics" is essentially interpretative and explanatory, but in-

cludes a discussion of recent developments concerning Gibbs'

thermodynamic principles and many examples, drawn from the

modem literature, of their application to concrete problems.
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Volume II, "Theoretical Physics", contains an analysis, appre-

ciation and interpretation of Gibbs' work in this field, espe-

cially his statistical mechanics, and, in addition, a discussion

of the relation of Gibbs' statistics to the modern quantum statis-

tics. The volumes are separately indexed and except for a few

cross-references are entirely independent of each other.

May this commentary, the product of devoted and conscien-

tious labors on the part of its authors and editors, prove truly

helpful to those who wish to follow the paths opened up by

Willard Gibbs, and promote a better and more widespread

appreciation of the value of his services to science.

The Committee on the Gihhs Commentary

John Johnston
Herbert S. Harned
Leigh Page
William F. G. Swann
Ralph G. Van Name, Chairman

Yale University

May, 1936



PREFACE TO VOLUME I
''^;..

The present Volume of the Commentary deals with Gibbs'

thermodynamical papers, and principally with the famous

paper on The Equilibrium of Heterogeneous Substances. In this

immortal work, Gibbs, building on the sure foundations laid by

Carnot, Mayer, Joule, Clausius and Kelvin, brought the science

of generalised thermodynamics to the same degree of perfect

and comprehensive generality that Lagrange and Hamilton had

in an earHer era brought the science of generaUsed dynamics.

The originality, power and beauty of Gibbs' work in the do-

main of thermodynamics have never been surpassed. The gen-

erahty and abstract nature of the reasoning have, however,

made the understanding of his methods and results a difficult

task for many students of science. This has been particularly

true of students of chemistry, who in general are deficient in

mathematical training and are not as a rule familiar with the

methods and results of generafised classical dynamics—a very

necessary mathematical precursor to the study of generafised

thermodynamics. This state of affairs has been very unfor-

tunate in the past, since the work of Gibbs contained a complete

and perfect system of chemical thermodynamics, i.e., a system

of thermodynamics peculiarly well adapted to the most general

and complete application to chemical problems. What, for ex-

ample, could exceed, in simplicity and generality, Gibbs' expres-

sions, in terms of his chemical potentials, for chemical equilibrium

in a homogeneous phase or the distribution equilibrium of inde-

pendent components throughout a system of coexistent phases?

Although the physicist will undoubtedly find much of the

greatest interest and value in the present volume, this Com-
mentary is intended for the use of students of physical chemistry

as well as physics. The Articles contained in it are not there-

fore merely running comments on and illustrations of Gibbs'

equations, but constitute in each case a thoroughgoing discus-

sion of the corresponding part of Gibbs' work, the object of

which is so to smooth the path for the reader of the original
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papers that the methods and results of Gibbs will be intelligible

to and available for the use of all serious students of both chem-

istry and physics. The only exception to this mode of treat-

ment will be found in the interesting Article C of the present

volume, where our distinguished collaborator, Professor E. B,

Wilson, considered it more advantageous to give an outline of

Gibbs' own lectures on thermodynamics than a detailed discus-

sion of Papers I and II of Volume I of The Collected Works

of J. Willard Gibbs. Readers who have followed the reasoning

given by Gibbs in his lectures will find no difficulty in under-

standing the graphical developments of Papers I and II.

In order further to lighten the work of the mathematically

inexpert reader, the present volume contains a short Article (B)

deahng with certain mathematical methods. In this connec-

tion reference may be also made to Chapter II of the Special Com-
mentary on Gibbs' Statistical Mechanics by A. Haas, dealing

with the algebra of determinants and contained in Volume II of

the Commentary. One of the objects of Article F of the pres-

ent Volume is to famifiarise students with certain mathematical

difficulties, e.g. the difference between Gibbs' use of the opera-

tors 8 and A.

Some points of detail may now be considered. In the Table

of Contents and in the titles of the Articles of the present

Volume, the expression "Gibbs, I, pp." refers to the relevant

part of Volume I of The Collected Works of J. Willard Gibbs (two

volumes), Longmans, Green, and Co., 1928, or to the like-

numbered volume and page of The Scientific Papers of J.

Willard Gibbs, Longmans, Green, and Co., 1906.* This ap-

plies also to occasional references in the text. In each Article

the current numbers referring to the particular author's

equations are given between curved parentheses, whereas

the numbers referring to the equations as given by Gibbs in the

original paper are enclosed between rectangular brackets. When

* The Collected Works is a reprint of the Scientific Papers, with iden-

tical pagination and contents except that it includes (in Volume II)

Gibbs' Elementary Principles in Statistical Mechanics, which was not

printed in the Scientific Papers. References to this particular portion,

however, occur in this Commentary only in Volume II and in Article

J of Volume I.
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coincidence occurs, as is very frequently the case, the necessary

double numbering is given, e.g. Equation (a) [g]. Here

a is the author's number, g is Gibbs' number. The same

method is followed in the reference numbers of equations given

in the text.

The notation employed by Gibbs for the principal thermo-

dynamic quantities has been retained in general, the few devia-

tions from this procedure being indicated at the appropriate

places in the text. In order to facilitate comparison with the

usage of a number of other writers on thermodynamics, a

comparison Table of Symbols is given (Article A). This

Article also contains a comparison Table of the names as-

signed to the principal thermodynamic quantities by Gibbs

and a number of other writers.

Of the Articles contained in this Volume, all, with the excep-

tion of A and C, refer to Paper III of Volume I of the Collected

Works, i.e., the paper on The Equilibrium of Heterogeneous Sub-

stances, and Papers (Sections) V, VII, VIII, and IX. Article

D deals with the general thermodynamic system of Gibbs, as

expounded in Gibbs, I, pp. 55-144; 419^24. Special parts of

this section of Paper III are further discussed and illustrated in

Articles E, F, G, and H, whilst Articles I, J, K, L and M deal

with the remaining portions of Paper III (and Sections V, VII,

VIII and IX) of Volume I of the Collected Works.

Readers of this Volume will find in Volume II of the Com-
mentary a general survey of Gibbs' thermodynamical methods

and results (by A. Haas), as well as an account of certain sub-

sequent work (by P. S. Epstein).

In the present Volume we have not dealt with such later

developments as the Nernst Heat Theorem and related topics,

since a proper understanding of the present state of this subject

requires a considerable knowledge of Statistical Mechanics.

These matters are dealt with by P. S. Epstein in Volume II of

the Commentary.

Besides the condensed survey of Gibbs' thermodynamical

methods and results contained in Volume II of the Commentary,

students will find an excellent account in the book of E. A.

Guggenheim, entitled Modern Thermodynamics by the Methods

of Willard Gibbs (Methuen & Co., London, 1933).
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The thermodynamical writings of Gibbs have proved a golden

source of knowledge and inspiration to later workers. This

mine is by no means exhausted. It is the confident belief of the

Editors that those who are led by the present book to a study of

the relevant parts of Gibbs' work will find therein much that is

as yet imperfectly understood and experimentally undeveloped.

Gibbs was no mere generaliser of the work of others, but a pro-

found and original investigator who opened new domains of

knowledge to the mind of man.

As is well known, Gibbs himself endeavored to obtain a

rational foundation for thermodynamics in his splendid develop-

ment of the science of Statistical Mechanics, founded by Clerk

Maxwell and Boltzmann (see Volume II of the Commentary).

Nowadays, by means of the quantum concept and the newer

methods of theoretical physics, the older Statistical Mechanics

has been transformed into a new science of Quantum Statistics

and Quantum Mechanics. Although without doubt this won-

derful new development penetrates much more deeply into the

analysis of the phenomenal world than the older science of

thermodynamics, there is no reason to deny the term rational

to the earher method. It deals with the phenomenal world in

a different manner, but it remains, within its rightful domain,

an enduring and powerful weapon of the human mind. More-

over, the modern development of physical theory tends more

and more to revert to the essential method of thermodynamics,

which abstains from "mechanical" pictures of individuahsed

entities interacting in space and time, and describes phenomena

by means of a generafised functional analysis. Thermo-

dynamics was indeed the essential precursor of the modern

method. It will ever be the imperishable achievement of Gibbs

to have developed this earlier scientific method to the fullest

extent of its power.

Modern physical chemistry utihses in constantly increasing

measure the newer developments of theoretical physics. Never-

theless, thermodynamics is one of the principal foundations on

which the structure of "classical" physical chemistry rests.

Every well-trained student of pure or applied chemistry must

therefore possess a thorough working knowledge of its principles
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and methods. In this essential task he will j5nd no surer or

better guide than the original papers of J. Willard Gibbs.

In the work of producing this Commentary we have been

fortunate in enlisting the cooperation of a number of very able

collaborators, to each of whom has been entrusted a special

section of the Volume. To all these collaborators we desire to

express our very high appreciation of the work which they have

accomphshed.

Our work as Editors has been greatly lightened by the extreme

care which the members of the Gibbs Committee have bestowed

on the correction of the proofs and on many other matters of

importance. For this valuable help we are extremely grateful.

Last, but not least, we wish to express, on behalf of ourselves

and our collaborators, our deep sense of the honor which the

Gibbs Committee has conferred upon us all. Should our joint

labors succeed in liberating the beautiful work of Gibbs from

the abstract tour d'ivoire in which it has been for so long con-

cealed from many students of science, then great will be our

reward.

London and Vienna, F. G. DoNNAN
January, 1936 Arthur Haas
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NOTE ON SYMBOLS AND NOMENCLATURE

F. G. DONNAN

In the following Commentary on the thermodynamic writings

of J. Willard Gibbs the symbols used by him for the principal

thermodynamic quantities have been retained in general. Since

the majority of authors have employed symbols which differ con-

siderably from those of Gibbs, and the notation employed varies

in some respects from author to author, a short comparison

Table is given below. There has also existed, and indeed still

exists, a very considerable variation of usage as regards the

names assigned to some of the quantities. It has therefore been

thought desirable to give a correlated list of the principal names
which are, or have been, employed. We shall denote six im-

portant thermodynamic quantities by the numerals 1, 2, 3, 4, 5,

6. The symbols assigned to these six quantities by Gibbs and

TABLE 1

Comparison of Symbols

Author
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various authors are shown in Table 1, whilst the corresponding

names are given in Table 2.

TABLE 2

Names of Quantities

Quantity

2

3

4

Names employed

Absolute Temperature. Temperature on the Kelvin (ther-

modynamic) scale.

Energy. Total internal Energy.

Entropy.

Total Heat (term used by engineers). Heat Function for

constant pressure (Gibbs).

Heat Function (Partington; Sackur; Milne).

Heat Content (Lewis and Randall; Noyes and Sherrill).

Enthalpy (Kamerlingh Onnes).

Available Energy (Clerk Maxwell).

Free Energy (Helmholtz). Isothermal Potential (Helm-

holtz). Internal Thermodynamic Potential (Duhem).

Free Energy (Planck; Lorentz; Sackur; Partington; Schott-

ky, Ulich and Wagner; most European authors since Helm-
holtz).

Work Content (Noyes and Sherrill). Work Function (Milne).

Helmholtzian Free Energy (Guggenheim).

Thermodynamic Potential at constant Pressure (Duhem).

Free Energy (Lewis and Randall; Noyes and Sherrill; many
authors, American and European, following the lead of the

American School of chemical thermodynamics created by
Noyes and Lewis).

Thermodynamic Potential (Lorentz; Sackur; Partington).

Gibbs' Thermodynamic Potential (Schottky, Ulich and

Wagner)

.

Gibbs' Free Energy (Guggenheim).

Notes to Tables

(a) Gibbs, using i^ to denote 5, called —\p the "Force Function for

Constant Temperature."

(b) Massieu called his functions i/' and \p' the "Characteristic Func-

tions" of the system.

(c) It will be noted that Planck's function * is identical with Mas-

sieu's function \J/'.

(d) As regards nomenclature used at the present time, it is to be

noted that both the quantities 5 and 6 are called Free Energy. This is a

source of confusion to students of thermodynamics. Similar remarks

apply to the use of the symbol F, which may denote either 5 or 6.
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MATHEMATICAL NOTE

JAMES RICE

1. The Method of Variations Used for Determining the Condi-

tions under Which a Function of Several Variables Has aMaximum
or Minimum Value. In the discussion of the conditions for

equihbrium of a system and of the criteria of stabihty of a state

of equihbrium, the following mathematical problem is presented

:

To determine the values of the variables Xi, Xi, . . . . Xn for

which a given function of these variables, f(xi, X2, .... Xn) has a

maximum or minimum value, the variables themselves being

subject to a condition such as

<i>iXly X2, Xn) = 0,

where
(f> is another given functional form.

Considering a definite set of values for the variables, say Xi = qi,

X2 = q2, . . . . Xn = Qn wc compare the value of the function

for this set with the value for any neighbouring set, such as

Xi = qi -\- Sqi, a-2 = ?2 + Sq^, x„ = g„ + 5g„, where 5gi, 5^2,

.... 5g„ are infinitesimal quantities. These infinitesimal quan-

tities are not completely arbitrary in their ratios to one another;

for we have to choose them to satisfy the conditions

<t>(qi, qz, qn) = 0,

<f>{qi + 8qi, q2 + 5^2, qn + 8qn) = 0.

It is convenient to write for 8qi, 8q2, . . . . 5g„ the symbols ^^i,

^^2, . . . . d^n where 6 is an infinitesimal positive magnitude whose

value can be reduced without limit and ^i, ^2, .... ^n are finite

quantities. The difference between the value of the function /
for the set of values (xr = qr) and the value for the set

(Xr = ?r + 8qr) IS
*

fiqi + bqi, qi + bq2, ?„ + 8q^ - f(qi, q2, qn).

* The enclosing bracket in (xr = (/r) or (g,) indicates that we mean
Xi = qi, Xi = q2, . . . . Xn = Qn, orqi, qz, . . . qn.
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By Taylor's theorem this is equal to

ART. B

^X'"^^'^^r = 1 s = 1
d^rbg.

hqrhq^ + etc.

where we write f{q) briefly for fiqi, q^, .... g„).

This difference we now write in the form

+
2! ss mq) 1

:, . . ^.^a[4-etc. (2)

As is reduced in value, the numerical magnitude of the term

in preponderates more and more over the terms in 6'^, 9^, ....

(apart from discontinuities arising in the differential coefficients,

a state of affairs which we cannot discuss here). The sign of

this term will therefore determine whether f(q + dq) is greater

or less than/(5). If /(g + 5g) is greater than /(g) for any values

of {qr + 8qr) consistent with the condition imposed, it is neces-

sary that

^ 5/(g)

^qr
r = 1

^r (3)

for apy possible sets of values of (Ir)^ since if the expression on

the left-hand side of (3) were positive for a set of values of (|r),

it would be negative for the set with opposite signs, and so

f(q + 8q) would not be greater than f(q) for all possible sets of

(qr + 8qr). If the quantities (^r) were perfectly arbitrary this

would necessitate the n conditions, c>f(q)/dqr = 0. However,

they are not arbitrary; for by (1) they satisfy the condition

S c>4>(q),
,

e ss c)V(g)

.=1 ^Qr
""

2!(^^jfr<bg.dg.

For very small values of 6, this becomes

^r ?s + etc. = 0.

yA 5</>(g)

^1 ^^r
^r = 0. (4)



MATHEMATICAL NOTE

Suppose we multiply (3) by d</)(g)/dgi, (4) by df(q)/dqi and sub-

tract (4) from (3) we obtain

r = 2
dgi dgr ^qi ciqr

^r = 0. (5)

Now we can certainly choose the n — 1 quantities ^2, ?3, . . • • ^n

in an arbitrary fashion, since on choosing a set we can adjust

the value of ^1 to satisfy (4). It follows that in order to satisfy

(5) for any values of ^2, ^3, . . ^n the following relations must
be true :

—

bf(q) /d4>(q) bf(q) Idcj^iq)

bqi J bqi bq2 / ^^2

bf(q) jdckiq)

bqn
I

bqn
(6)

since they make all the coefficients of ^2, ^3, . • • • ^n in (5) indi-

vidually zero.

Exactly the same argument shows that if the function

f{xi,X2, .... a;„) has aminimum value for the set of values (xr = qr)

the same conditions (6) hold. It follows therefore that in

order to determine the sets of values of the variables for which

the function f(x) is maximum or minimum in value, subject to

the condition, (f>{x) = 0, we have to solve the n equations

bXi bxi

<t>(x) = 0,

bf(x) jb4>{x) ^
bX2 I bX2

bfix) \bct>{x)

dXn dXn

(7)

Any solution of these equations yields a set of values for "max-
min" conditions.

A special case of this result, which is the one actually required

for the considerations arising in Gibbs' Equilibrium of Hetero-

geneous Substances * concerns the situation in which the condi-

tion imposed on the variables is that their sum should be a

constant, i.e.

Xl + X2 + Xn — C = 0.

See Gibbs, I, pp. 65 and 223.
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In this case all the d(l)(x)/dxr are unity and equations (7) take

the form

<f>{x) = 0,

dxi dxo ' ' '

'

dxn
(8)

n n

r = 1 s = 1
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ail C^12 .... CLln

Oil a^l .... CLin

9

flfil dni .... Ctr

Now consider:

(1) All the leading constituents an, 022, 033, .... a„„;

(2) All the minor determinants obtained by selecting any two

rows and the two corresponding columns, for instance

CItt dra

(3) All the minor determinants obtained by selecting any three

rows and the three corresponding columns, for example

Or

a.

a„

Or

a.

Or

ttrn

a.

ttr,

and so on;

(r) All the minor determinants obtained by selecting any r rows

and the r corresponding columns

;

and so on;

(n) The determinant itself.

If the quadratic expression is a "positive definite form," i.e.

positive in value for all values of (^r), then all the determinants

in (1), (2), (3), .... (n) must be positive in value.

If on the other hand the set of values qi, q2, . . qn for the

variables xi, X2, . . . . Xn yield a maximum, then the quadratic

expression in (^r) must be a "negative definite form," i.e. nega-

tive in value for all values of (^r). The conditions are that the

determinants in (1), (3), (5), (7) etc. are all negative in value,

while those in (2), (4), (6), (8), etc., are all positive.

If neither of these conditions holds, then the set of values

a;i = Qi, X2 = q2, . . . . Xn = qn does not yield a true maximum or
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minimum condition and the consideration of the problem goes

beyond the Hmits of possible discussion here.

For the proof of these results see any text of modern algebra,

for example Bocher's Introduction to Higher Algebra, Chapters

IX-XII.

For reference to these conditions in the Collected Works,

see Gibbs, I, pp. 111,112,242.

2. Curvature of Surfaces. The average curvature of a plane

curve between two points A and B is defined as the quotient of

the external angle between the tangents at A and B by the length

of the arc AB. From a kinematic point of view it is the average

rate of rotation of the tangent per unit length travelled by the

point of contact. If the point B approaches indefinitely near

to A, the limiting value of the average curvature is defined to be

the curvature at the point A. In the case of a circle this is

obviously the reciprocal of the radius at all points. For any

curve at any point the curvature has the dimension of a recipro-

cal length, and so, on dividing the value of the curvature at a

point on a curve into unity, we obtain a definite length which is

then referred to as the "radius of curvature" at that point.

Clearly where the curvature is relatively large the radius of

curvature is relatively small; thus the extremities of the major

axis of an ellipse are the points on it at which curvature is great-

est but radius of curvature least ; at the extremities of the minor

axis, curvature is least, radius of curvature greatest.

The measurement of curvature at a point on a surface is based

on this simple idea for a curve. Thus we conceive the tangent

plane and the normal line to be drawn at a point P on the sur-

face, and we then consider any line through P lying in this plane.

An infinite number of planes can be drawn cutting the tangent

plane in this hue. These planes will cut the surface in an in-

finite number of curves, and we w'ill readily recognise that suffi-

cient information concerning the curvature of these curves at

the point P will give us all the vital information concerning the

curvature of the surface at P. Two obvious details in the con-

struction of one such curve can be varied at will; we can alter

the angle between the tangent plane at P and the plane drawn

through the line in the tangent plane (the tangent line as we
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may call it) and we can alter the direction in the tangent plane

of the tangent line.

In the first place a well-known theorem, known as Meunier's

theorem, connects the radii of curvature of different sections

through the same tangent line: the radius of curvature of an
oblique section through a tangent line at P is equal to R cos (/>

where R is the radius of curvature at P of the normal section,

(i.e. the section containing the normal line at P as well as the

tangent line) and (j> is the angle between the normal section and
the oblique section. Thus if we know the radius of curvature of

the normal section through the chosen tangent line at P we im-

plicitly know the radius of curvature of any given oblique section

through it.

In the second place if we now vary the direction of the tangent

line the radius of curvature of the normal section varies in a

manner which is well known and quite simply described. Call-

ing the curvature of the normal section c (where c is of course

equal to i2~0 it is known that c varies continuously in value be-

tween a maximum limit and a minimum as the tangent line is

rotated. It attains its maximum value twice in a complete

rotation of the line, the two directions corresponding to this

maximum being directly opposite to one another. The mini-

mum is attained for the two opposite directions at right angles to

the former. Taking the two lines thus marked out on the tan-

gent plane as axial lines PXi, PX^ in the plane, we can indicate

the direction of any other line in the tangent plane by the angle

6 which it makes with PXi, say. It is known that c, the curva-

ture at P of the normal section through this line, is given by

c = Ci cos^ 6 -{- C2 sin^ d,

where C: and c^ are the curvatures at P of the normal sections

through PXi and PX2. The values Ci and C2 are known as the

"principal curvatures" of the surface at the point P. In this

way we see that our complete knowledge concerning the curva-

ture of a surface at a point P is summarized in a knowledge of

the two principal curvatures at that point. One simple result

of some importance follows very easily from the equation just

written: if c and c' are the curvatures of two normal sections at
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a point which are at right angles to one another then c + c' is a

constant quantity at the point and is equal to Ci + C2.

On page 229 of Vol. I Gibbs uses an important theorem
concerning the increase in size of a small portion of a surface

produced by an elementary displacement of each element of the

Fig. 1

surface by an amount BN in the direction of its normal. Let the

element of surface heABEF (Fig. 1) bounded by normal sections

which are at right angles to one another. Let C be the "center

of curvature" of the element AB of one of the sections, i.e., the

position in the limit where the normals in the plane to the curve

at the points A and B meet.* Let C be the center of curvature

* The reader unacquainted with the geometry of surfaces is warned

that for the sake of simplicity we have neglected a detail which is of no
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of the arc ^F in the other plane at A which is at right angles to

the plane at ABC. Let the element of area be displaced to the

position XYZW where AX = BY = EZ = FW = 8N. If the

elementary angles Z ACB and Z AC'F are denoted by a and

/3 then the area of the element of surface ABEF is equal to the

product oi AB and AF, i.e., it is Ra X R'0. If we denote this by
s and the area of XYZW by s + 5s we see that

s = RR'a^,

s + 8s = (R-\- 8N) (R' + 8N) a^.

Therefore, neglecting products of the variations, we obtain the

result

8s = (R -\- R') 8N a|3

= s{c + c') 8N.

But since c + c' = Ci + C2 it follows that

8s = (ci + cz) s 8N,

a result used by Gibbs in obtaining equation [500]. It is used

again on page 280 in the lines immediately succeeding equation

[609] (where J'a 8Ds is replaced by y*o-(ci + C2)8NDs) and also

on page 316.

If the equation of a surface in Cartesian coordinates is given

in the form

2 = fix, y)

importance for our purpose. But in order to avoid producing a wrong
impression the writer must point out that if a plane section is drawn con-

taining the normal to the surface at A, it is in general not true that the

normal in this plane to the curveAB at B is also the normal to the surface at

B. In our example where we are considering elementary arcs and areas

of small size, this feature may be ignored without detriment to the

argument.
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the sum of the principal curvatures at a point x',y' z' on the

surface can be calculated as follows: Let p and q represent the

values of the differential coefficients bf/dx and df/dy when the

values x', y' are substituted for x, y, and let r, s, t be the values

of the second differential coefficients d^f/dx^, d^f/dxby, d^f/dy"^

with the same substitutions; then

, _ (1 + 9^) r + (1 + p^) ^ - 2 pqs
"'^''~

(1 + P^ + 3^)i

This formula is used in obtaining equation [620] on page 283.

Its proof will be found in any text of analytical solid geometry.

On page 293 of Gibbs, Vol. I, there is a reference to the total

curvatures of the sides of a plane curvilinear triangle. The

total curvature of an arc of a plane curve is equal to the external

angle between the tangents at its extremities and must be care-

fully distinguished from the average curvature of the arc which is

the quotient of its total curvature by its length. The angles of

the curviHnear triangle abc (Fig. 2) are YaZ, ZhX, XcY. Their

sum exceeds the sum of the angles of the plane triangle ahc by

Z Xbc-\- Z Xch -]- ZYca-\- Z Yac+ Z Zah + Z Z6a which is

equal to the sum of the external angles at X,Y, Z between

the tangents. This result is cited on page 293 of Gibbs, I.

In conclusion it should be realised that Ci and C2 for a surface

may have different signs so that the expression Ci + d may
sometimes actually denote the numerical difference of the prin-

cipal curvatures of a surface at a point. This occurs when the

two principal sections produce curves which are convex to dif-

ferent parts. For example if one considers a mountain pass at

its top lying between hills on each side, a vertical section of the

surface of the mountain at the top of the pass made right across

the traveller's path is concave upwards, while one made at right

angles to this following the direction of traveller's path is con-

cave downwards. The principal centres of curvature are on

opposite sides of the surface in such a case and the principal

radii of curvature are directed to opposite parts. The radii

have opposite signs and the principal curvatures likewise. A
surface is said to be "anticlastic" at such a point (as opposed to

"synclastic," when the centres of curvatures are on one side and
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Ci and C2 have the same sign) . The surface of a saddle is another

example. This will show the reader that a reference, as on page

318, to a surface for which ci + C2 = does not of necessity

imply that the surface is plane. Quite a number of interesting

investigations have been made by geometers on the family of

surfaces which have the general property Ci + C2 = 0. An
interesting example of a surface of "zero curvature" may be

visualised thus. Imagine a string hanging from two points of

support, in the curve known as a "catenary," and a horizontal

line so far below it that the weight of a similar string stretching

from the lowest point of the catenary to this line would be equal

to the tension of the string at its lowest point. If one conceives

Fig. 2

the catenary curve to be rotated around this horizontal line,

the resulting surface of revolution is an anticlastic surface such

that its principal radii of curvature at each point are equal in

magnitude but oppositely directed.

8. Quadric Surface* The equation of a quadric surface, that

is ellipsoid or hyperboloid, is

ax2 + by^ + cz^ + 2 fyz -{- 2 gzx -\- 2 hxy = k

* To be read in conjunction with pp. 404, 410 of Article K of this

Volume.
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when the origin of the axes is at the centre of the surface. It

can be proved that the equation of the plane which is tangent to

the surface at the point Xi, y\, Zi on the surface is

(axi + %i -\-gZi) X + (/ixi + hyi + fzi) y

+ (gxi 4- fyi + czi) z = k.

Hence the direction-cosines of the normal to the surface at the

point Xi, yi, Zi are proportional to the three expressions

aXi + hyi + gzi, hxi + byi + fzi, gxi -\- fyi + czu (10)

Another result which is required concerns the changes in the

coefficients in the equation of the surface if the axes of reference

are transformed to another set of three orthogonal lines meeting

at the centre. If the coordinates of a point are x, y, z referred

to the old axes and x', y', z' referred to the new, the values of x,

y, z can be worked out in terms of x', y', z' and the nine direc-

tion cosines of the new axes with reference to the old. On put-

ting these values for x, y, z in the above expression, we obtain the

equation of the quadric surface referred to the new axes as

a'x'^ + by^ + c'z'^ + 2f'y'z' + 2 g'z'x' + 2 h'x'y' = k,

where the values of a', h', c',f', g', h' can be obtained in terms of

a, h, c, f, g, h and the nine direction cosines. The following

three results can then be proved

:

a' -\- b' + c' = a -}- b + c,

b'c' + cW + aV -P - g'^ - h""

= be + ca -\- ab — p — q^ — h^,

\iM)
a' h' g'
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A special case of considerable importance arises when the

second set of axes of reference are the principal axes of the quad-

ric surface. In that case it is known that/', g', h' are each zero

and the equation of the surface has the form

a'x'^ + by^ + c'z'^ = k.

The results written above then become

a' -\-b' + c' = a-^b -\- c,

b'c' + c'a' + a'b' = be -\- ca + ab - f - g' - h\

a'b'c' =

a
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PAPERS I AND II AS ILLUSTRATED BY GIBBS'
LECTURES ON THERMODYNAMICS

[Gibbs, I, pp. 1-54]

EDWIN B. WILSON

I. Introduction

As Papers I (pp. 1-32) and II (pp. 33-54) are properly charac-

terised by H. A. Bumstead in his introductory biography

(Gibbs, I, pp. xiv-xvi) as of importance not so much for any

place they made for themselves in the literature as for the prep-

aration and viewpoint they afforded the author as groundwork

for his great memoir on the Equilibrium of Heterogeneous

Substances, it will perhaps be most appropriate to illustrate

them by an outline of Gibbs' course on thermodynamics as he

gave it towards the end of his life. From such a sketch one may
possibly infer what Gibbs himself considered important in the

papers and what illustrations he himself thought it worth while

to lay before his auditors. In this outline the notes of Mr. L. I.

Hewes (now of the U. S. Bureau of Public Roads, San Francisco)

who took the course in the academic year 1899-1900 will be

followed.*

II. Outline of Gibbs' Lectures on Thermodynamics

Lecture I {October 3, 1899). The measurements in our subject

fall into two sets, thermometry and calorimetry. Ordinary

units of heat and scales of temperature. Constant pressure and

constant volume thermometers. Gas thermometers with con-

* I took the course two years later in 1901-1902; my notes were lost,

but unless my recollection is mistaken the course did not differ except

by the inclusion, toward the end, of a few lectures on statistical mechanics

and a more rapid advance in the earlier parts (see Note on p. 50).
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stant volume, pressure varying with the temperature, give best

results. Clausius in his 1850 memoir brought order into the sub-

ject of thermodynamics—with references to Clausius in the

original and in translations, and to Maxwell's Theory of Heat.

Lecture II. Heat capacity (specific heat) at constant pres-

sure and at constant volume. Work, dW = pdv. Relation

between heat and work—first and second laws of thermody-

namics. We take the second law first (Carnot's law). Carnot

was a French army officer, son of a minister of war. He pub-

lished his results at about 28 years of age. His father was also

a mathematician and wrote on geometry and mechanics. (He

was uncle of the late President Carnot. ) Carnot's father named
him Sadi after the Persian poet. Carnot's results meant an im-

portant question solved and interpreted.* The Carnot cycle or

Carnot engine, a reversible cyclic process: Given a cyHnder im-

pervious to heat, except for the bottom which is a perfect con-

ductor, filled with some medium (as air). Given a large hot

and a large cold reservoir at assigned temperatures. Place the

cylinder on the cold reservoir until the medium has taken the

temperature of that. Carry out the following process. (1)

Insulate the cylinder and compress the medium until the tem-

perature has risen to that of the hot reservoir and then place

the cylinder in contact with this reservoir. (2) Decompress

the medium while the cylinder remains in contact with the

reservoir thus absorbing heat and doing work at constant tem-

perature. (3) Insulate and further decompress the medium
until the temperature is lowered to that of the cold reservoir.

(4) Place the cylinder in contact with the cold reservoir and

compress to original volume. The result of the process is that

some heat has been removed from the hot reservoir, som» has

been given to the cold reservoir, and some external work has

been done.

Lecture III. Carnot's law: The same results are obtained

with any medium when working between the same temperatures,

or all reversible engines are exactly equivalent between the same

* The class notes of Mr. Hewes, carefully written up, show that Gibbs

did not think it infra dig. to go into interesting bits of scientific history.
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temperatures. If you have two engines both using the same
amount of heat, they must do the same amount of work. For

if they do not, running one direct and the other reversed will do

a net amount of work without the use of heat or any other

change in the system from cycle to cycle, which would consti-

tute a perpetual motion machine—a reductio ad absurdum.

There is no perfectly reversible engine, but one can be approxi-

mated and for the purposes of reasoning one may be postulated.

We assume that heat has to do with motion of the particles of

a body. We have little doubt that matter consists of very small

discontinuous particles and there is no reason they should not

move. In regard to molecular motion forces are conservative;

there are no frictional losses.

Lecture IV. Continuation of discussion of evidence of fric-

tionless character of molecular motion. Count Rumford
thought heat not a substance. Joule determined the mechan-

ical equivalent of heat; J = 772 ft. pds. W = JQ. We may
as well measure Q directly in mechanical units as Q = W.
Carnot failed to estabhsh the law Q" = Q' + W, namely, that

the difference between the heat received and the heat given up

was (proportional to) the work done. Joule seems not to have

been entirely clear about the conversion of heat into work.

Clausius was the first to set these matters straight.

Lecture V. Discussion of meaning of first and second laws,

and of various ways of stating them, by Tait, Clausius and

Kelvin, illustrating each from considerations of the Carnot

cycle. If Q" be the heat taken in at one temperature and Q'

that given out at the other and W the work done; and if q", q',

w be the similar quantities for another engine working between

the same temperatures the quantities Q"
,
Q', W must be pro-

portional to q", q', w. For we could by multiphcation (engines

in parallel) make Q' = mq'. Now reversing one of the engines

(or the set in parallel) the net heat taken or given to the cold

reservoir would be nil and if the work were not also nil we should

be obtaining work from heat at the single temperature of the hot

reservoir which is contrary to Kelvin's statement of the second

law. Hence W = imo and since by the first law Q" — Q' = W
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and q" — q' = w we must have Q" = mq", which proves the

theorem.*

Lecture VI. The first and second laws may be used to define

a thermometric scale. For any two engines working between

the same temperatures tx and h the heats received and given up

satisfy the proportion

Qi qx

and hence these ratios may be taken as ti/ti. Thus

ti Qi U Qs 1 .1 <• Q^ ^3

- = — , ~ ~ TT' ^^^ therefore 7^" = ""•

ti Qi ti Qi Qi ti

This shows that t may be taken as proportional to Q or

Q._Qy

This is called the absolute thermodynamic scale and the only

remaining freedom is to define the unit.

The first law is not confined to reversible cycles but the second

law is. If we have two engines with

Q" — Q' = W (reversible or not) and q" — q' = W (reversible)

and run the second backward so that no work is done, the net

heat Q" — q" leaves the higher temperature and the equal

amount Q' — q' is received at the lower temperature. As heat

cannot go without work from lower to higher temperature, Q"
- q" = Q' - q' ^0. Hence

Q" - q" ^ Q' -q'

t" - t'
'

the equahty sign holding only when the numerators vanish, i.e.,

for the reversible case. But as q"/q' = t"/t' we have

Q" Q'
-7;- ^ -7 for any cycle.

* The slow development of the analytical part of the subject was note-

worthy. It was Gibbs' intention that the student should thoroughly

grasp the physical, historical, and logical background through ample

discussion.



GIBBS' PAPERS I AND II 23

If in place of Q', the heat given up at t', we use —Q' as the

heat absorbed at I', the relation becomes

•^ + — <

With the understanding that Qi represents the heat absorbed at

the temperature f » summation shows that

2yi:S0 or
j
j&O

is a statement of the second law, the equality sign holding for

the reversible engine. The corresponding statement of the first

law is 2 Qi = W or fdQ = W.
Lecture VII (Oct. 23). The characteristic equation /(p, y, t)

= 0. The -pv diagram; isothermals and adiabatics. The work
done in a circuit is the area of the circuit.

fdQ=fdW, f!^SO.
Jo Jo Jo t

If we define the energy as

ei - €0 = / (dQ - dW),
Jo

e is independent of the path since the circuit integral of dQ — dW
is zero. In like manner for reversible engines the quantity

Jo

dQ
^71 — Tjo — ; —

is independent of the path. It is called the entropy and like the

energy is known except for an additive constant determinable

when the arbitrary common origin of the paths is known. Then

dW = pdv, de = dQ - dW, drj = dQ/t,

dQ = tdt], dc = tdf] — pdv.

Of the seven quantities, five, namely, t, p, v, e, r; have particular

values at any point of the diagram; the other two, Q, W have no
certain values, being dependent on the path to that point.
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Lecture VIII. Discussion of pv diagram. To get the heat

Qab absorbed along a path from AtoB draw the adiabatic from

B and the isothermal from A intersecting in C and forming a

curvilinear triangle ABC. Then

Qab = area ABC + (rjc - t?^)^^.

The ^Tj-diagram. Isometric and isopiestic Hues. Carnot's

cycle a simple rectangular figure. We may draw diagrams other

than the py-diagram or the ^Tj-diagram for other purposes but

they do not have the advantage of simple areal interpretations.*

The energy surface e = /(rj, v) as a function of entropy and

volume.

de de

dri dv

Lecture IX. Review of fundamental concepts.

Lecture X. Mathematical transformations.

'dQ\

.dt/,'
Specific heats C'p = ( — ) , C„ = (

-

\dt/ p \ (

Elasticities E^ = - v(y\ Et = - v(-f) •

Proof of Cp/Cv = Erj/Et given first by calculus as usual and

second geometrically by means of anharmonic ratios in the in-

finitesimal figure OV, OH, OT, OP formed by the intersection of

a fine VHTP with the isometric, adiabatic, isothermal and iso-

piestic issuing from a point of the py-diagram. The second

proof is as follows:

f}p — Vo Vp — Vh PH
Cp

Cy
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The first and last steps depend merely on the infinitesimal char-

acteristic of the figure and the intervening step on the definition

of the iso-Hnes. Next, similarly,

/dA
\dv/

Vh — Vo Vb — Vp HP
Er, \dv/^ _ Vh — Vo _ Vh — Vr _ HY_

Et
~

fdp\ Pt — po Pt — Pp TP
Vt — Vo Vt — Vr TV

Lecture XI. About anharmonic ratios and in particular their

independence of the choice of the secant fine VHTP inferable

from the physical interpretation above.

Gases, pv = f(t). Laws of Boyle and Charles, Mariotte

and Gay-Lussac. f(t) = at. Practical measurement of Cp.

Theoretical measurement of Cv Measurements of E^ and Et.

Lecture XII. Velocity of sound and its relation to the

thermodynamic constants. Experiment with standing waves

and lycopodium powder (Kundt's tube).

It is found that for a gas C„ and Cp/Cv are constant within

close limits over a wide range of the pv diagram. The equation

de = dQ - dW = dQ - pdv

reduces to de = dQ = Cvdt for constant volume and integrates

into e = Cvt + V(v) where the constant of integration is a func-

tion of the volume. Similarly for constant pressure we have

6 = Cpt — pv -{- P(p). Comparing, and using pv = at,

V(v) - Pip) = (Cp - C„ - a)pv/a.

This indicates Cp — C„ — a = and F — P = 0, so that if the

zero of energy is taken at ^ = we have V = P = and the

equations of the gases are v

€ = C,t = Cpt — pv, a = Cp — Cv

Lecture XIII. Review of fundamental equations. Discus-

sion of differences between gas thermometer scale and absolute

temperature defined by Carnot cycles. Further integration of
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fundamental equations. For adiabatic changes de = — pdv

may be put in form

Cv— = — a — , or C„ log e = — a log y + H{-n),
€ V

or for any change,

de dv dH
Cv — = — a 1—r- dr],

e V dt]

which, by the equations e = Cvtfpv = at, becomes

dH
de = - pdv + t—- dr] = dQ - dW = td-q - dW

.

drj

Hence dH/dr] = 1 and H = r] -\- const; with the constant taken

as Cj, log Cv this makes*

Cv log— = 77 — a log y ,

the equation between e, rj, v.

Lecture XIV. The differential de = tdr] — pdv gives

(de\ _ /de\ _ _ ^ _ /dt\ _ _ /dp\

\dr]/^ ' \dv/^
'

d'r]dv \dv/
^

\dr]/^

Consider the functionf \p = e — trj and d\p = —rjdt — pdv.

Then

\dt/,~
'^'

\dv/ ~ ^' dtdv
~

\dv)t
~

\dt/,'

* On comparison with the development, Gibbs, I, 12-13, formulas A

to D, it will be seen that there are slight differences, but the method here

given was followed by Gibbs in his course on thermodynamics in differ-

ent years.

t I do not recall, and there is no evidence in the notes, that Gibbs

gave names to the functions ^p, x, f such as free energy, heat function,

or thermodynamic potential. He appears not to have referred to the

function * = 77 — (c + pv)/t = — f/< which is widely used as a potential.
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Consider the function x = e + py and dx = tdr] + vdp. Then

\dr]/p ' \dp/,,
'

dr]dp \dp/^ \dr]/p

Consider ^ = e — trj -{- pv and d^ = — rjdt + vdp. Then

(^\ = - (^\ = -^ = - ('h\ = (^\
Kdt/p

'''

\dpJt ^' dtdp \dp)t KdtJp

The four Maxwell relations. For perfect gases

7] = Cvlogp -{- {Cv + a) log y — C„ log a = (7„ log i + a log y,

\p = Cvt — Cvt log t — at log V,

with similar expressions in f and x- The fundamental forms

imply that e is a function of t?, y; that ;^ is a function oi t, v; that

X is a function of 77, p; and that f is a function of t, p.

Lecture XV. Avogadro's law. This differs from the laws

thus far considered in that it relates to the invisible, molecular,

properties of a gas instead of to the observable properties. The

equation of a gas becomes pv = A{m/M)t where m is the mass

of the gas and M is the molecular weight.

Lecture XVI. A gas mixture has the equation

\Mi Mi Mj

The translational kinetic energy of the molecules is proportional

to the pressure and therefore to the temperature.

Lecture XVII. The geometric interpretation of p and t on

the thermodynamic surface €(17, v). The use of the surface is to

aid in thermodynamic investigations. The equation of the sur-

face is known for a perfect gas, but the idea of it is equally

applicable to any substance which need not be in a homogeneous

state. Discussion of a substance in a liquid and vapor phase;

ruhngs on the surface; the py-diagram.
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Lecture XVIIL The solid-liquid and solid-vapor lines; the

"triple-point" and the triply tangent plane. The relation

dp Q
dt {vv — VL)t

for the invariant system consisting of liquid and vapor.

Lecture XIX. Integrate de = td-q — pdv from liquid to vapor

phase, t and p being constant.

€r — iL = t{T}v — -til) — p(vr — Vl)

or

^Y = tv — triv + PVV = €;. — tr}L + PVL = fi.

The function f has the same value. The interpretation of f as

the intercept of the tangent plane on the e-axis. The equation

,. ,. .
dp rjv - riL Q

dtv = d^L gives — = = -•
dt Vv — Vl [Vv — Vijt

The discontinuity of dp/dt at the freezing point. Discussion of

the physical meaning of the Maxwell relations.

Lecture XX.* In the py-diagram the isothermals in the vapor

state start from large values of v approximately like the hyper-

bolas pv = at; SiS V decreases their form is modified somewhat

because when the vapor becomes dense the relation pv = at

is somewhat inexact If the vapor starts to condense for values

p = p',v = v' the isothermal becomes a straight line p = p'

and so remains until condensation is completed aX p = p' = p"

and V = v" < v'. From this point as v decreases the iso-

thermal rises rapidly because a Hquid is compressed only with

rapidly increasing pressure. The locus of the points {p\ v') and

* To this point the lecturer had been following his two Papers I and

II (Vol. I, pp. 1-54) with numerous omissions, with very few modifica-

tions, and with considerable elaboration of the physical principles and

facts underlying the subject. From here on he goes into a very consider-

able development, which though perfectly natural and now found in

other books, is not found in his writings. It seems that these applica-

tions of his own may have so great an interest as to justify following

them in considerable detail in the order of his thought.
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(p", v") forms a curve which we call the critical locus. If the

temperature is high enough there will be no condensation. It

has been seen that f is constant for the rectilinear portion of the

isothermal including its extremities which lie upon the critical

locus.

For any path connecting these two limiting points (p', v') and

{p", v") with p' = p" upon the isothermal t the total change of

f must be nil. Now

6" - e' = fdt = fdQ - fpdv,

n" - V = fdQ/t,

p"v" - p'v' = fipdv + vdp).

If the second equation be multiplied by —t' = —t" and the

three be added

(c" - t"y)" + p"v") - W - t'v' + p'v')

= fdQ - t' fdQ/t + fvdp = 0.

Hence for any path joining the two points

/
^-^^ dQ -\- vdp = 0.

In particular if the path be taken as a line v = v' rising

above the critical point to p = p"
', a line p = p'" to the value

V = v", and finally the Hne v = v" to p = p" (the three lines

forming three sides of a rectangle of which the straight por-

tion of the isothermal is the base), the value of fvdp is

{v" — v') {p' — p"
') and thus for this path

/ ^—-^dQ + {v"-v'){p' -p'") =0.
6

We have seen that pv = aMs a law satisfied within wide

limits. The law

a at

V = -,+
1.2 V — b

proposed by van der Waals, reduces essentially to pv = at when
V is large and is found to be an improvement on that equation
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for smaller values of v. For large values of t the isothermals in

the py-diagram are concave upwards throughout their course

from V = CO to y = 6 where they become infinite ; for small values

of t the concavity changes and indeed the curves have a maximum
and minimum. An isothermal of this type may have some degree

of realization; for the phenomena of the super-cooled vapor in

which condensation does not start and of super-heated liquid in

which vaporization does not start are known, and indicate that

under suitable conditions the isothermals of the vapor state may
cross the critical line as the volume is reduced and the isothermal

of the liquid state may also cross that line when the volume in-

creases. The part of the isothermal of van der Waals which

lies between the minimum and maximum and for which dp/dv is

positive cannot be expected to be realized, as a positive value of

dp/dv represents a mechanically unstable condition. If none-

theless one writes d^ = — rjdt -\- vdp and integrates along an iso-

thermal one has f" — f' = J'vdp and as for coexistent states

f" — f ' = 0, one must have for such states J'vdp = 0. This

means that from any van der Waals isothermal the line p =
p' = p", which is the physical isothermal corresponding to

coexistent states for the same temperature, must cut off equal

areas, one below the line and the other above it.

If the series of isothermals be drawn there are three interest-

ing loci, the critical locus which gives the limiting conditions of

coexistence of vapor and liquid phases, the locus of maxima and

minima, and the locus of the point at which the rising (unrealiz-

able) part of the isothermal cuts the hne p = p' = p".

Lecture XXI. The word "unstable" is used in thermo-

dynamics in not quite the same sense as in mechanics. If we

have a supersaturated solution crystalhzation may not start;

the substance may be stable within limits to certain variations,

but will start to crystallize rapidly if a minute crystal be intro-

duced, i.e., the solution may be unstable to the introduction of

the crystal phase. So in superheated water, there may be

stability with respect to various processes, but not with respect

to the introduction of a bubble of steam.

Entropy has been defined for a body considered homogeneous

;

the restriction may be removed. There would be no difficulty
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with respect to coexistent homogeneous phases such as a sub-

stance part liquid and part vapor which has been under discus-

sion; we should add the entropies as well as the volumes and

energies of the two parts. It is, however, necessary to proceed

with some caution because entropy and energy have arbitrary

origins and it is essential that the entropy and energy in one

phase should be consistent with those in any other phase into

which the substance may go or from which it may come. Sup-

pose we have a substance in various phases, and not necessarily

all in one working unit. Suppose the substance receives

amounts Qi, Q2, • • • • of heat at temperature ^1, iz, . . .
.

, negative

values of Q meaning that heat is returned to the reservoir. Also

a certain amount of work is done by the substance or on it. The

number of temperatures ti, ^2, . • • • of the reservoirs from which

the substance receives heat may be infinite. Let the substance

work on a cyclic process or on cyclic processes which may or may
not be reversible. With this entire system we combine a per-

fect (reversible) thermodynamic engine or a number of such

engines to take the quantities of heat Q2, .... all to a reservoir

of the given temperature ti. The quantities may be sche-

matized as follows

:

Reservoir tempera-

tures tl, tzi tzf ti, ....

Heat absorbed by

system Qi, Q2, Qs, Qi,

Heat used by engines — Q2, —Qs, —Qi,

Heat yielded by en-

gmes - Q2, 7 Qh -Qi,
ti tz ti

Work done by engines —-— Q2,
—-— Qs,

—-— Qi,
t2 t3 ti

Work done by system Qi, +Q2, +Q3, +Q4,
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As the whole complex consisting of the system and the engines

is cyclic, the total work done, which is

Q1 + 7Q2 + 7Q3 + 7Q4+....,
t2 t3 h

must be negative or zero as we cannot obtain work by a cyclic

process without creating a perpetual motion machine. Hence

dividing by ti, which is positive, we have

«! + e^ + Q' + «' + ....=s«so, or /-so,
tl ti ts 14 t r-f

the equality sign holding only when the system is reversible.

Now let s be any state of reference of the body for which we
take 1? = 0; then any states 1 and 2 which can be reached from s

by a reversible process will have the entropies

- r dQ

t'

and the difference between the entropies will be

where there is obviously one reversible way to go from 1 to 2,

namely, that via s reversing the path from 1 to s above and

following the path from s to 2. For example, if we have a satu-

rated solution in equilibrium with some crystals, the application

of heat will dissolve the crystals maintaining a saturated solu-

tion until such point as the crystals are all dissolved and the

further application of heat will render the solution unsaturated.

Next, if heat be withdrawn the solution will become saturated

and then possibly somewhat supersaturated rather than crystal-

lizing. This process is reversible ; if the solution were supersatu-

rated appUcation of heat would render it unsaturated. The
transition from the state of saturation in the presence of crystals

to an unsaturated state through the application of heat is how-

ever not necessarily reversible because of the phenomenon of

supersaturation; but there is generally some way to induce



GIBBS' PAPERS I AND II 33

crystallization so that we can consider that the state of satura-

tion in the presence of crystals may be reached reversibly. If

this is the case it is easy enough to define the difference in

entropy between a state of supersaturation and the state of

saturation in the presence of crystals.

Consider next a process which goes on within a wholly iso-

lated system doing no work and receiving no heat. If that

system can exist in two states 1 and 2 such that the path from 1

to 2 is irreversible but the path from 2 to 1 is reversible we can

represent the difference in entropy at 2 and at 1 as 772 — 171.

Then

r^A+r^A^O and
7l t J2 t ~

irrev. rev.

^ T72 — 771.

But if the irreversible process goes on entirely within the system

there will be no heat dQ absorbed by the system, dQ = 0, and

hence

^ T72 — Tji or 172 = 171-

Hence if an isolated system changes from state 1 to state 2, the

entropy in state 2 must exceed that in state 1 (except when the

change is reversible, when 772 = 171). It is assumed that there is

some way to reach both states 1 and 2 reversibly from a third

state. Take the case of the supersaturated solution. This may
go over of itself into the state of a saturated solution with crys-

tals. We have seen that we can reach the supersaturated

states reversibly (i.e., we can reach any attainable degree of

supersaturation reversibly). We can reach the state of satu-

ration in the presence of crystals by merely placing the saturated

solution and the crystals in juxtaposition. We have thus the

possibility of defining the entropy 772 of the mixture of saturated

solution and crystals and the entropy 771 of the supersaturated

solution. The difference 772 — 771 will be positive. It is assumed

that the mixture of saturated solution and of crystals in all its

characteristics is that which would result from the spontaneous

crystalhzation of the supersaturated solution in complete iso-

lation.
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The thermodynamic surface e(r}, v) represents the various

states of a substance. There is a plane tangent to the surface

at three points representing the three phase possibihties, sohd,

Hquid, vapor. If the energy, entropy and volume of unit

masses of the substance in contact with each other in solid,

liquid and vapor state are es, vs, Vs] cl, vl, Vl', tv, -qv, Vy, respec-

tively, then the energy, entropy and volume of a unit mass of

which ms is solid, rtiL is liquid, mv is vapor are

e = mses + rriLf-L + rrivtv,

V — msrjs + mLr]L + nivVv,

V = msVs + MlVl + mvVv,

with 7ns + niL + mv = 1. There are developable surfaces "cor-

responding to the equihbrium between liquid and vapor, be-

tween solid and liquid, and between sohd and vapor. There are

curved surfaces to represent the pure phases vapor or liquid or

sohd. The thermodynamic surface is constituted of all these

parts. In addition to this there may be parts of the surface

which may be actually realized to some extent corresponding to

supersaturation when the liquid fails to crystallize and super-

heating when the liquid fails to vaporize. Such parts of the

surface must lie inside the surface as viewed from the positive

end of the entropy axis because they must represent states in

which the entropy is less than it is in states into which the

substance may spontaneously go.

Let A and B be any two points of the thermodynamic surface

which represents the entirely stable states. The segment AB
must lie within (or on) the surface as viewed from the positive

entropy axis. For consider any point P on AB and instead of

the unit of substance for which the surface is given consider a

mixture of AP/AB units of the substance in the state represented

by A with PB/AB units of substance in the states represented

by B. The energy and volume and entropy of the mixture are

_ AP PB
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AP PB
'^ = ab'^^ab'^^

_ AP PB

Shut up in the volume v and isolated, changes will go on in the

mixture which while unable to change e or y will increase 77.

Thus the unit of the substance will come to equilibrium at a

point on the thermodynamic surface e = tp, v = Vp, ri
"^ tjp.

As the proof holds for any point P no point between A and B
can lie in the surface unless they all do. It follows that if a

tangent plane is drawn to the surface at any point which repre-

sents an entirely stable state of the body no point of the surface

can lie on that side of the plane for which entropy is greater.

Physically, in any change that would increase rj but involves the

formation of a state widely different (such as a new phase) there

is a certain reluctance* to take the step and this phenomenon

* Lewis and Randall in their Thermodynamics, and the Free Energy

of Chemical Substances, McGraw-Hill (1923), say, on p. 17: "In the

work of Gibbs and some other writers upon thermodynamics, some proc-

esses are supposed to be of infinite slowness, but this view of the exist-

ence of a so-called "passive resistance" is apparently not supported by

experimental evidence . . . .
" The term "passive resistance" is appar-

ently not used by Gibbs in Papers I and II; but that he would have re-

garded the reluctance to change exhibited in the phenomena of super-

cooling, superheating and supersaturating as due to such resistances is

rendered likely by his definitions and illustrations when he first intro-

duces the term, namely, in Paper III (Gibbs, I, p. 58) where he writes:

"In order to apply to any system the criteria of equilibrium which have

been given, a knowledge is requisite of its passive forces or resistances

to change, in so far, at least, as they are capable of preventing change.

(Those passive forces which only retard change, like viscosity, need

not be considered.) ... As examples, we may instance the passive

force of friction which prevents sliding when two surfaces of solids are

pressed together, . . . , that resistance to change which sometimes pre-

vents either of two forms of the same substance (simple or compound),

which are capable of existing, from passing into the other. ..." It cer-

tainly does not appear from this phraseology that Gibbs was supposing the

processes which he associated with the term passive resistance to be of

infinite slowness; indeed his underlining of the word preventing and his



36 WILSON ART. C

gives rise to states which for some variations behave as stable

states but for others give indications of not being entirely

stable.*

excepting those passive forces which only retarded change seem clearly

to indicate that there was a state of no process whatsoever associated

with the passive resistances rather than one of very slow process. And
again in the discussion of Certain Points Relating to the Molecular Con-
stitution of Bodies (Gibbs, I, pp. 138- 144) he seems to be drawing a pos-

sible logical distinction between passive resistances which prevent

change and those which only slow it down, though they may slow it down
very greatly. He certainly does seem to postulate that there may be

real states of equilibrium which are not states of dissipated energy and

which do not even with infinite slowness go over into such states. Lewis

and Randall would appear to postulate that there are in reality no such

states, that only states of dissipated energy are states of equilibrium.

They may be entirely right without Gibbs being in any way wrong. It

is important to have the solutions for both ideal cases—that in which the

change is absolutely prevented and that in which it is completely con-

sumated. A case in practice may well be intermediate between the two

so that both solutions might be inapplicable. Gibbs speaks as though

hydrogen and oxygen placed together at room temperature would never

unite to form water vapor; while Lewis and Randall expect them to unite

(almost completely, though slowly) according to their equation (22), p.

485, viz., H2 + 5O2 = H20(^) ; A F°2is = —54507, and so, too, we may pre-

sume that if hydrogen were shut up by itself they would expect it to go

over into helium. There is, of course, no practical difference between

the two postulates when the reaction is slow enough, but it would seem

that Gibbs' form would be at least as convenient practically as that of

Lewis and Randall.
* The logical difference between stability and slowness in attaining

the stable state must be kept in mind. Thus a liquid in the presence of

its vapor may be very slow in evaporating to the point where the vapor

is saturated and the equilibrium is established. Things do not dry im-

mediately simply because there is not equilibrium between their state

of wetness or dryness and the humidity in the atmosphere. In thermo-

dynamics time is disregarded, the processes are permitted to take place

infinitely slowly. Indeed finite velocities may introduce irreversibility.

For example in the simple Carnot cycle in the decompression stage 2

(Lecture II) it is specified that the decompression is isothermal, which

means that it is slow enough so that the medium remains at the tempera-

ture of the reservoir. If the medium were a perfect gas pv = at, the

work would he W = Spdv = at log (?;2/fi). But if the decompression

be fast enough the medium would expand practically adiabatically (and
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Lecture XXII (December 18, 1899). A detailed discussion of

the characteristics of the thermodynamic surface with respect to

increasing entropy.*

Lecture XXIII {January 11, 1900). The surface hes on the

negative entropy side of any tangent plane. If the surface in

the immediate vicinity of the point of tangency lies on the nega-

tive entropy side of the plane, the substance is in a stable state

for infinitesimal variations from the state represented by the

point of tangency. In like manner as an isolated system tends

to a state of minimum energy it follows that if the surface lies

upon that side of the tangent plane upon which energy increases

the state represented by the point of tangency will be one of

stable equilibrium ; if at a considerable distance from this point

the plane again cuts the surface we have a kind of instability

(the state is not entirely stable) but there is still stability for

small variations.

then heat up from the reservoir). The work would be less, say w. By
the time the medium had absorbed the heat from the reservoir its energy

would however be the same. For the two processes we have therefore

Q — W = q — w or Q — q = W — w>0 or Q>q. When the heat Q is

transferred from the reservoir to the medium isothermally at tempera-

ture t, the medium gains entropy to the amount Q/t and the reservoir

loses the same amount of entropy. In the adiabatic decompression and

subsequent heating the medium gains the same amount of entropy Q/t

but the reservoir loses only q/t so that the system consisting of reservoir

and medium gains the amount {Q — q)/t of entropy. To put this in

another light suppose there are two like cylinders one in condition vi, t

which expands adiabatically to state V2, t and then heats up as above and

the other in state V2, t which is compressed isothermally in contact with

the reservoir to (^i, t) as in stage (4) of the Carnot cycle. The operation

of the two will result in work W — w being done on the media. In the

final condition the two cylinders have only interchanged states. The
reservoir has gained the heat Q — q equivalent to the work done and the

system consisting of the two cylinders and medium will have gained the

entropy (Q — q)/t representing the irreversibility in the process.

* This was essentially a review and illustration of the close of the pre-

vious lecture, consideration being also given to the kind of isothermals

encountered in van der Waals' equation. It does not seem worth while

to follow this detail here, though it was helpful to the class in gaining a

better appreciation of the subject matter. The long Christmas vacation

intervened at this point in the course.
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Conditions for stability. Let z = /(.r, y).

dz dz
z = 2o + -^^x + —Ay

ax dy

ART. C

+ H^. ^^' + 2^ AxLy + ^, Ay^ +
d^z ^

v^
' dxdy dy"^

Tangent plane

dz dz
Zp = Zo + -- Ax -\- -- Ay,

dx dy

^- ^P = Ht^, ^^' + 2£^Aa:-A2/ + ^,A2/2J + ..

dH d^

dxdy dy^

Neglecting higher powers, the condition that z > Zp, except for

Ax = Ay = 0, is first

dh , d'z

^,>0 and ->0.

and then by completing the square also

dx"^ dy^ \dxdy/
> 0.

For the limit of stability this last condition is zero. Re-

place 2 by e and x, yhy r],v and remembering de = idr] — pdv the

conditions are

dh fdp\ dh (dt\

dv^ \dv/r, dti^ \dr]

dh d^e

dv^ df]
2

/ d^e Y _ _ (dp) (dt\ _ /dpV

\dvdr]' \dv/„ \dri/^ xd-q/^
V

The first condition means that when the change is adiabatic p
must decrease as v increases, and the second means that at con-

stant volume the temperature must rise if heat is supplied. The
third condition may be transformed. Note first that

i!i - _ (^\ _ (^\
dr\dv \dr]/^ \dv/^
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Now for constant volume p generally increases if heat is sup-

plied, and under adiabatic conditions the temperature generally

rises under compression; hence generally this second derivative

is negative. But for water under the temperature of maximum
density the results are reversed and the derivative is positive.

Next

, fde\ dh ^ dh ^

dp = — d\—- } = — —— drj — dv = — Bdt] — Adv,
\dV/r, dvdrj dv^

dh dh
dt = d[^^] = -—dr) -j- -— dv = Cdr, + Bdv.

drf dvdt]
(-) =

Solve for dt] and dv; then

/^\ _ _ AC - B-"

\dv)t
~

C Xdri/r, A

AC - 52/dp\ _ AC - B'
^

/dt\

\dii] Jt B \dv/p B

Now as C > 0, AC — B^ >0, this means that on an isothermal p
must decrease with increasing v. So, too, at constant pressure

the temperature must increase with a supply of heat. In the

general case where B <0, supplying heat and maintaining a con-

stant temperature must decrease the pressure, or at constant

pressure the temperature must increase with the volume. Note

that equating the last two expressions and inverting the deriva-

tives yields the Maxwell relation obtained from the function f

.

Lecture XXIV. Discussion of van der Waals' equation.*

* The development may not seem logical and was probably adopted

for pedagogic reasons. As early as Lecture XVII the py-diagram for

vapor, liquid, and vapor-liquid phases was introduced, leading from

physical reasoning to the definition of critical locus and the conception

of that sort of stability or instability which is represented by the super-

cooled vapor or superheated liquid. On this basis in Lectures XVIII-
XIX properties of the thermodynamic surface were discussed. In Lec-

ture XX the equation of van der Waals was cited as affording possible

conceptual though largely unrealizable isothermals through the critical

region, and this type of isothermal was kept to the fore, in parallel with
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Here

a Rt
P = - -, + 7' (1)

V^ V —

/dp\ _ 2a _ Rt

\dv/t
~

V'
~

(v -by~^ ^^^

at the limit of stability. Eliminating t, the locus in the pv plane

is*

a 2ab . .

p = -,--r' (3)
v^ v^

We have also the equation

\dvyt

Qa 2Rt
= - ~T + 7 ^3 = (4)

to represent the inflections of the isothermals. Equations (1),

(2), (4) have a common solution, which must be also a solution

of (3), and this is the critical point. If (1) be regarded as a

cubic in v the critical point is that for which the cubic has three

equal roots. For this point

the actual physical isothermal representing complete equilibrium, in

the detailed discussion of the thermodynamic surface including the

questions of stability (whether entire or limited) in Lectures XX-XXIII.
This general discussion completed, the lecturer returns to a considerable

development and illustration with the aid of the equation of van der

Waals.
* The limit of stability is defined by {dp/dv)t = 0, i.e., when AC —

B' = 0. It may be observed that by this definition there may lie within

the limit of stability states with negative values of p, i.e., with tensions

instead of pressures. From (3) we have v = 2b when p = 0. Then
Rbt/a = 1/4. In terms of the critical values v/vc = 2/3, t/tc = 27/32.

Thus for temperatures below 27ic/32 = .Siitc the van der Waals' iso-

thermal dips down to negative values of p. Indeed as v decreases toward

b, p in (3) decreases toward —a/b^ = —27pc, and t toward zero. Al-

though all negative values of p represent instability in vapor phases, we
do know that under careful experimental conditions liquids can be made
to support very considerable tensions without going over into the vapor

phase, thus parts of these isothermals for negative p can be realized

qualitatively even if the quantitative relations are quite inadequately

represented by (1).
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1 a 8a
2762' ^^ "

27 Rb'

la 8a
Vc = 3o, P' ~ 7^77' ^c

~ > (5)

and

6=^^ a = 3po^;c^ 7^ = ^^^ (6)
3' "

' 3 f,c

There is no great difficulty in determining pc, tc from observa-

tion. Sketch of possible methods. The determination of Vc is

more difficult because infinitesimal changes in v near Vc produce

changes of p, t from pc and tc which are infinitesimals of higher

order and hence slight changes in p and t from pc and tc produce

large variations in v from Vc,—as may be seen geometrically

from the shape of the isothermals in the vicinity of the critical

point. However, we may determine Vc by the known value

oiR.

Lecture XXV. Discussion of the accuracy with which van

der Waals' equation represents the physical facts. The critical

locus may be obtained from the condition that Sv^v along the

isothermal from one of its intersections (p, v^ with the critical

locus to the other {p, v^ must be equal to p{v2 — Vi) by the areal

of property previously proved. Hence

p{v2 -V,) - ~ -^ - + nt log -^—- = 0. (7)
V2 vi V2 —

Equation (1) holds for p, Vi, t and for p, V2, t. Eliminate p, t.

Then

V2 + vi , yi - & , Vi
,

V2
log -I

+ — = 0.

Let

^^2 — i^i 1^2 — 6 Vi — b V2 — b

Vr-b _ V2-b
^'~

b '

^'-
b

Then with P = F1/F2 we have

V2 21ogP _ L _ 1'

P - 1 P

7i = PV2.
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At the critical point Vi = V2, log P = 0. We may take P ^ 1.

Furthermore

a
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One may plot in the same diagram the isothermals from

b^ _ Rht/a _ 1

a ~ V ~
(7 + 1)2'

and the locus of the limit of stability from

¥p 2V 1

a (7 + 1)3 (7 + 1)2

The table is good for any substance satisfying van der Waals'

equation.

Lecture XXVI. li \}/ = e —tr], d\p = —'i]dt —pdv, and

_ _ (^\ - ("^ ?L
\dv / 1 \v'^ V — h

may be integrated to find

),

^ = -^ - ntAog(,v -h)+^ (t), (8)
V

v = -
(^)^

= R log (v-h)- $' (t), (9)

e = _ ^ + $(^) -t^'{t), (10)
V

^•^
(I). = -'*"«• (!')

If the volume is very great the specific heat for constant volume
is ordinarily constant, say c. Then —^'{t) = c log t + const.,

and the constant may be taken as zero without loss of gen-

erality. Hence

*(0 = d - d log t, (12)

and for a substance satisfying van der Waals' equation we have

\p = -- - Rt log {v - h) + d - d log t, (13)
V

7] = R\og(v - h) -{- c log t, (14)

e = - - + d, (15)
V
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The last two equations consist of sums of a function of v and a

function of t. The thermodynamic surface is

r] = R log (y — 6) + c log (16)
c

or

^=-- + ^(^73^0- (17)

This surface is that which corresponds to following the sub-

stance through its partly stable and its unstable states which

correspond to the parts of the isothermals within the critical

locus; it is, therefore, not precisely the thermodynamic surface

discussed in Lecture XXI.
We may obtain ^ = e — trj + pv a,s

f = -- - Rt log {v - b) -\- ct - d log t + pv. (18)
V

This is not the desired form, which should involve p and t, but

the elimination of v would require the solution of a cubic equa-

tion. The condition for corresponding states is ^2 = Ti and this

reduces to (7) which was obtained above.

Corresponding states. By introducing the values of a, 6, J? in

terms of pc, Vc, tc into the equation and using

P = p/pc V = v/vc, T = t/tc,

van der Waals' equation takes the form

which is of the same form for all substances, but with pressure,

volume and temperature expressed as multiples of the (different)

critical values for the (different) substances.

Lecture XXVII. The tangent plane to the thermodynamic

surface is

e — eo = t{-n — Vo) — p(v — Vo).
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The slopes of the plane are t in the erj plane or planes parallel

thereto and —pin the ev plane or any parallel plane. Further
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the various forms depends on the particular inquiry to which

they are applied.

Lecture XXVIII. Returning to van der Waals' law,

(

dp\ R
dt/v V —

This is not quite true, of course, but it is surprisingly correct

in many cases over a very wide range. For very great densities

it cannot be expected to hold, and we have to exclude dissocia-

tion at very high temperatures, and those states in which the

substance is congealed. Now in the -pt plane a line of constant

volume becomes straight. It is easy to determine correspond-

ing values of p and t under conditions of constant volume and

observe how straight the curves in p against t are. At the limit

of stability we had {dp/dv)t = 0, i.e., maxima or minima of the

isothermals in the yv plane. Keeping t constant in the p^-dia-

gram corresponds to a vertical displacem.ent. If {dip/dv) « > it

is seen that the lines of increasing volume on the p^-diagram lie

one above the other in the direction of increasing pressure; in

the limit when {dp/dv)t = the successive lines of constant

volume intersect. These lines will therefore envelop a locus

which consists of points pv for which (dp/dv)t = 0, i.e., for states

at the limit of stability. This locus has a cusp which is the crit-

ical point. In the region within the cusp and near to it there

are three tangent lines of the envelope through each point, i.e.,

for a given pair of values p, t there are three lines of constant

volume along which one may proceed. Taking van der Waals'

equation in the form (19), the equations

8 8^- T -T

V V - 1/3' UfA ~
Y^ {V - 1/3)2

will give the cuspidal locus on elimination of V from

9(V-l/3)''
^

3 7-1/3 3 2

4 73 ' 72 " " 73 72 73

The plot of P against T is more readily made from this para-

metric form than from the equation obtained by eliminating V.
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The point P = 1, T = 1 corresponding to F = 1 is the critical

point. As

(-)
\dT/v

8/3

V - 1/3'
= 4.

The values of V, T, P and (dP/dT)v are entered in the table

which clearly shows the cusp at (1, 1, 1) and from which the

envelope may be plotted easily.

V
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and hence yij;2i^3 = ah/p and

^3 d log p

d log t

- 1.

The value Vs is that at which the rising (unstable) part of the iso-

thermal cuts the horizontal line and is not attainable by experi-

ment. But on substituting this in the equation we have

by -f-

/d log p _ \2 dlogp _ 2
Vdlogi / dlogt

which is sometimes useful in working with coexistent phases

when we are willing to put conjfidence in the equation of van der

Waals.

The general equation of state

p = F'{v) + tf'iv),

of which van der Waals' is a special case, maybe discussed. For

this (dp/dt)v is again a function /'(t;) of v and at constant vol-

ume is constant, so that the isometric lines in the p^diagram are

straight. We have

,/, = -F(v) - tf(v) + $(^),

€ = -F(v) -f$(0 - t^'{t).

If we use for $ (t) the expression ct — ct logt, thene = —F{v) + d.

At any rate both e and 77 consist of a function of the volume
plus a function of the temperature. It is to these equations

that we naturally look for some improvement upon van der

Waals'.

Lecture XXX. Let us make the hypothesis that there is an

equation of state which is independent of the substance, pro-

vided only we measure p, v, t in the appropriate units. What
results could be obtained? There is one state of the substance

which is physically defined, namely, the critical state. It is

therefore P = p/pc, V = v/vc, T = t/tc which are the variables
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which must be used and the equation must be between P, V, T.

Such an expression as

pv

— must be the same for all substances.
PcVc

tc

If m denote the mass and M the molecular weight we have

p t V pci'cM p V M
Pc tc Vc Um ' tm

equal for all substances. (The last two expressions must be

measured in the same units for the different substances, but the

first three may be measured in any units.) So, too,

t_ /dp\ ^ t_ /dri\ ^ 1 /dQ\

p\dt/v p \dv/t p \dv/t

would be alike. Also

V \dt/p V \dp/t V

'dQ'

\dp/

For coexistent phases there would be certain expressions in-

variant of the substance.

p\dt/v p\dv/t pv2 — Vi

As f1 = ^2 we may state that the ratios

(€2 - ei) : ^(772 - Vi)-Piv2 - Vi)

are the same for all substances when 2 and 1 stand for the vapor

and the liquid phase, each in the presence of an infinitesimal

quantity of the other. By examining data for different sub-

stances one may see how far the departure from constancy is

and thus gain some idea of in how far it might be hopeful to seek

for equations of state which would satisfy the requirement that

in proper units the equation should be the same for the different

substances.
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III. Further Notes on Gibbs' Lectures. Photographs of

Models of the Thermodynamic Surface

These thirty lectures as given in the academic year 1899-1900

represent the development, discussion, and application of the

matter in Papers I and II so far as Gibbs covered it. In the

year 1901-1902 he covered the same ground in just fifteen lec-

tures. He continued with a lecture on dynamical similarity

and the theory of models which he applied to the consideration

of intermolecular forces and the problem of corresponding states,

and then launched into the topic of heterogeneous substances

(Paper III). It will be seen that although he laid great stress on

the physical and on the logical aspects of thermodynamics, and

spent a good deal of time on van der Waals' equation as a type

of equation of state, he did not indulge in many numerical appli-

cations, nor discuss practical engineering consequences of the

theory. He used chiefly the pt-diagram, giving scant mention

to the temperature entropy diagram.

An interesting and helpful episode in the course was the illus-

tration of the discussion of the thermodynamic surface by a

model of the surface for water, which had been sent him by
Maxwell. Four photographs of this model taken from different

points of view are reproduced here. The legends indicate the

direction of the axes.

Maxwell's highly favorable comments on the work of Gibbs and

the concrete evidence which he gave of his opinion through the

construction of the model of the thermodynamic surface prob-

ably did more at the time to convince physicists of the impor-

tance of Gibbs's contributions than the reading of so long, so

novel, so closely reasoned and withal so difficult a memoir as

that on Heterogeneous Equilibrium. It is of interest in this

connection to give the record of the award by the American

Academy of Arts and Sciences of its Rumford Medal to Gibbs.

At the meeting of May 25, 1880, Professor Lovering presented

the following report from the Rumford Committee.*

"The mechanical theory of heat, which treats of heat as being, not a

pecular kind of matter called caloric, but as being some form or forms

* The Committee consisted of Wolcott Gibbs, E. C. Pickering, J, M.
Ordway, John Trowbridge, J. P. Cooke, Joseph Lovering, G. B. Clark.
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of molecular motion, has made necessar}' and possible a new branch of

mechanics, under the name of thermo-dj'namics. This theory has not

only introduced new ideas into science, but has demanded the applica-

FlG. 1 Fig. 2

Fig. 3 Fig. 4

The Thermodynamic Surface (Maxwell's Model)

Fig. 1. Vertical axis; energy (e). Axis of volume (?0 toward the front

and left. Axis of entropy (tj) toward the right.

Fig. 2. Vertical axis; energy (e). Axis of volume (r) toward the front

and right. Axis of entropy (77) toward the right and back.

Fig. 3. Vertical axis; energy (e). Axis of volume (v) toward rear and
left. Axis of entropy (r/) toward front and left.

Fig. 4. Vertical axis; volume {i'). Axis of entropy (rj) toward front

and left. Axis of energy (e) toward the right.

tion, if not the invention, of special mathematical equations. Clausius

has devoted thirty j^ears to the develoi)ment of thermo-dynamics, and

at the end of his ninth memoir he expresses, in two brief sentences, the
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fundamental laws of the universe which correspond to the two funda-

mental theorems of the mechanical theory of heat : 1 . The energy of the

universe is constant; 2. The entropy of the universe tends towards a

maximum.
"Professor J. Willard Gibbs, in his discussion of the 'Equilibrium of

Heterogeneous Sul)stances/ derives his criteria of efiuilibrium and sta-

bility from these two theorems of Clausius, and places the two generali-

zations of Clausius in regard to energy and entropj' at the head of his

first publication. Having derived from his criteria some leading equa-

tions, and having defined his sense of 'homogeneous' and its opposite,

he applies these equations:

—

"1. To the internal stabilitj^ of homogeneous fluids.

"2. To heterogeneous masses, under the influence of gravity or other-

wise; such as gas-mixtures, solids in contact with fluids, osmotic forces,

capillarity, and liquid films.

"3. Finally, he considers the modifications introduced into the con-

ditions of equilibrium by electromotive forces.

"His treatment of the subject is severely mathematical, and incap-

able of being translated into common language. The formulas, how-

ever, are not barren abstractions, l)ut have a physical meaning.

"The laws of thermo-dynamics reach down to the heart of physics

and extend tlieir roots in all directions. It is now understood that the

energy of a system of bodies depends on the temperature and physical

state, as well as on the forms, motions, and relative positions of these

bodies. The Rumford Committee congratulate the Academy on the

opportunity they now enjoy of awarding the Rumford Premium for a

contribution to physical science of far-reaching importance; not antici-

pating, but already realizing, the approval which this award must

receive from all who are conversant with the subject.

"For the Committee,

"Joseph Lovering, ChairmanJ'

The medal was awarded at the meeting of January 12, 1881,

Professor Lovering having in the interim been elected president

of the Academy. His address as Chairman of the Committee

was in part* as follows.

"On the mechanical theory of heat, as a foundation, has been erected

* The material here quoted is from Proc. Amer. Acad. Arts Sci., 16,

pp. 407-408 and 417-421. The introductory portion which deals with

the history of the award is omitted.



GIBBS' PAPERS I AND II 53

the grandest generalization of physical science, the Conservation of

Energy. The results of observation and calculation agree, whenever a

comparison is practicable, if the calculation is made upon the assump-

tion that the totality of energy in a system, potential as well as dynam-

ical, is as unchangeable as the totality of matter. This sweeping gen-

eralization includes and interprets Grove's experimental demonstration

of the correlation and convertibility of the different forms of energy,

known under the familiar names of gravity, elasticity, light, heat, elec-

tricity, magnetism, and chemical affinities. The conversion of heat

(which is supplied to an indefinite amount by the consumption of the

forests and the coal-beds) into ordinary mechanical energy or work, is

of the highest significance to the advancing civilization of the race; but

heat cannot be transformed into work without the transformation of a

larger amount of heat of high temperature into heat of low temperature.

This passage of heat from hot to cold bodies, without doing work, rein-

forced by the conduction and radiation of heat, creates the tendency to

what is now called the dissipation of heat. This is what the writer in

the London Spectator meant when he called hSat the communist of the

universe, the final consummation of this dissipation being a second

chaos. Sir William Thomson has computed that the sun has lost

through its radiations hundreds of times as much mechanical energy

as is represented by the motions of all the planets. The energy thus

dispensed to the solar system, and from it to remoter space, 'is dissi-

pated, always more and more widely, through endless space, and never

has been, and probably never can be, restored to the sun without acts

as much beyond the scope of human intelligence as a creation or anni-

hilation of energy, or of matter itself, would be.' Therefore, unless the

sun has foreign supplies, in the fall of meteors or otherwise, where its

drafts will be honored, its days are numbered.

"What I have attempted to state in language as little technical as

possible is tersely expressed by Clausius in two short sentences: 'The

energy of the world is constant.' 'The entropy of the world (that is the

energy not available for work) tends constantly towards a maximum.'

"Professor J. Willard Gibbs takes his departure from these two

propositions when he enters upon his investigation on the 'Equilibrium

of Heterogeneous Substances.' Any adequate theoretical treatment

of this complex subject must be, necessarily, highly mathematical, and

intelligible only to those familiar with the analytical theory of heat.

To assist the imagination, Professor Gibbs has devised various geomet-

rical constructions; especially one, of a curved surface, in which each

point represents, through its three rectangular coordinates, the volume,

energy, and entropy of a body in one of its momentary conditions.
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The late Professor J. C. Maxwell (whose early death is ever a fresh

grief to science) devoted thirteen pages of the fourth edition of his

'Treatise on Heat' to the elucidation and application of these construc-

tions; and it is understood that he embodied in a visible model the

equations in which Professor Gibbs expressed his strange surface. In a

lecture delivered before the Chemical Society of London, Professor

Maxwell gave publicly the endorsement of his great name to the merits

of these researches which we are now met to honor. He says: 'I must

not, however, omit to mention a most important American contribu-

tion to this part of thermo-dynamics by Professor Willard Gibbs, of

Yale College, U. S., who has given us a remarkably simple and thor-

oughly satisfactory method of representing the relations of the different

states of matter, by means of a model. By means of this model, prob-

lems which had long resisted the efforts of myself and others may be

solved at once.'

"It is now my pleasant duty to present, in the name of the Academy
and with their approving voice, the gold and silver medals to the Re-

cording Secretary, Professor Trowbridge, who has been commissioned

by Professor Gibbs to represent him on this occasion. I cannot but

think that if Count Rumford were living, he would regard with peculiar

pleasure this award. For the researches of Professor Gibbs are the

consummate flower and fruit of seeds planted by Rumford himself,

though in an unpromising soil, almost a century ago. In transmitting

these medals to Professor Gibbs, by which the Academy desires to

honor and to crown his profound scientific work, be pleased to assure

him of my warm congratulations and the felicitations of all the Fellows

of the Academy, here assembled to administer Count Rumford's

Trust."

In reply to the President's address, the Recording Secretary then

read the following letter from Professor Gibbs :—

"To THE American Academy of Arts and Sciences:—
"Gentlemen,—Regretting that I am unable to be present at the meet-

ing to which I have been invited by your President, I desire to express

my appreciation of the very distinguished honor which you have

thought fit to confer upon me. This mark of approbation of my treat-

ment of questions in thermo-dynamics is the more gratifying, as the

value of theoretical investigation is more difficult to estimate than the

results obtained in other fields of labor. One of the principal objects

of theoretical research in any department of knowledge is to find the

point of view from which the subject appears in its greatest simplicity.

The success of the investigations in this respect is a matter on which
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he who makes them may be least able to form a correct judgment.

It is, therefore, an especial satisfaction to find one's methods ap-

proved by competent judges.

"The leading idea which I followed in my paper on the Equilibrium

of Heterogeneous Substances was to develop the roles of energy and en-

tropy in the theory of thermo-dynamic equilibrium. By means of

these quantities the general condition of equilibrium is easily expressed,

and by applying this to various cases we are led at once to the special

conditions which characterize them. We thus obtain the consequences

resulting from the fundamental principles of thermo-djTiamics (which

are implied in the definitions of energy and entropy) by a process which

seems more simple, and which lends itself more readily to the solution

of problems, than the usual method, in which the several parts of a

cyclic operation are explicitly and separately considered. Although my
results were in a large measure such as had previously been demon-

strated by other methods, yet, as I readily obtained those which were

to me before unknown, or but vaguely known, I was confirmed in my
belief in the suitableness of the method adopted.

"A distinguished German physicist has said,—if my memory serves

me aright,—that it is the office of theoretical investigation to give the

form in which the results of experiment may be expressed. In the

present case we are led to certain functions which play the principal

part in determining the behavior of matter in respect to chemical equi-

librium. The forms of these functions, however, remain to be deter-

mined by experiment, and here we meet the greatest difficulties, and

find an inexhaustible field of labor. In most cases, probably, we must

content ourselves at first with finding out what we can about these

functions without expecting to arrive immediately at complete expres-

sions of them. Only in the simplest case, that of gases, have I been

able to write the equation expressing such a function for a body of vari-

able composition, and here the equation only holds with a degree of

approximation corresponding to the approach of the gas to the state

which we call perfect.

"Gratefully acknowledging the very favorable view which you have

taken of my efforts, I remain, gentlemen, very truly yours,

"J. WiLLARD GiBBS.

"New Haven, Jan. 10, 1881."

It is noticeable that with the exception of mere mention of

the chief divisions of the great memoir in the report recommend-

ing the award there is neither in the report nor in the address of

the chairman any reference to the content of that memoir, let



56 WILSON ART. C

alone any critique of its importance to science; the references

are to the previous state of thermodynamics and to the thermo-

dynamic surface and Maxwell's model of it, i.e., to material by
Gibbs contained in his Paper II, which we have been discussing.

It may be recalled that in December 1878, more than two years

prior to President Lovering's address, Gibbs had published in

the American Journal of Science an Abstract of his memoir
(Gibbs, I, Paper IV) from which certain important descriptive

material might have been culled more readily than from the

original. That the Rumford Committee realized that a great

contribution had been made by Gibbs and that they promptly

recognized it by their recommendation of the award of the medal
is clear, but in how far they appreciated the nature and signifi-

cance of the contribution is not indicated.*

Particularly interesting in the reply by Gibbs is his reference

to the fact that it is only for gases that he has been able to write

the equation expressing the thermodynamic functions for a body
of variable composition. Perhaps his great attention in his

course to van der Waals' equation was because, although its

accuracy for liquid and vapor phases is not so great as that of

the gas equation for gases, it offered some fair approximation to

the representation of a decidedly less restricted state of matter

and led to equations expressing the thermodynamic functions

for more general bodies of variable composition. It is custom-

ary for the recipient of the medal to make a considerable address

expounding as well as he can to a general academic audience the

significance of some of his contributions. What would Gibbs

have said about the memoir on Heterogeneous Equilibrium had

he been able to be present? Would he have alluded to some of

the important possible applications of his work on osmotic equi-

librium or to the significance of his phase rule (obviously a

matter easy to make graphic to the kind of audience he would

* In the first footnote of the Abstract (Gibbs, I, p. 358) Gibbs points

out that Massieu "appears to have been the first to solve the prob-

lem of representing all properties of a body of invariable composition

which are concerned in reversible processes by means of a single func-

tion"—a fact that was probably unknown to him at the time of printing

Paper II.
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have had) or would he have gone into the matter of the electroly-

tic cell, or the theory of dilute solutions, or the mass law? Per-

haps he would have followed the lead of the address of the

Chairman and confined himself chiefly to contributions of others.

It is not without interest that in the period from 1872 to 1891 he

is not recorded as offering any course on thermodynamics which

could be presumed to include any of the matters in his thermo-

dynamic papers, although from 1886 on he announced a course

on the a priori deduction of thermodynamic principles from the

theory of probabilities, which in view of his paper of 1884 (Gibbs,

II, Pt. II, p. 16) may safely be assumed to have dealt with

statistical mechanics. Was he concentrating his attention, as

Clausius and Maxwell had done and as Boltzmann and Kelvin

were doing, on the attempt to deduce thermodynamic behavior

from dynamical properties of matter and possibly to find some

equation expressing the thermodynamic functions of a body of

variable composition other than perfect gases? It is not often

that we find a great scientist neglecting in his lectures his own
most important contributions at a time when they are of as

great interest to others as Gibbs' contributions were to the ris-

ing physical chemists of the decade from the early eighties to

the early nineties of the past century. Certainly the subject

matter of his Papers I and II to which he gave half his time

during the year 1899-1900 in the course above summarized was

no more difficult, no less suitable for instruction than the courses

he did offer on mathematical physics to students who could not

have been expected to have much if any physics beyond the first

general course, or much if any mathematics beyond the differ-

ential and integral calculus.*

It has been seen that Gibbs, as he taught thermodynamics,

late in his life, made much use of the pressure-volume diagram,

discussed briefly the entropy-temperature and pressure-temper-

ature diagrams, but ignored the volume-entropy diagram (except

as its properties may be considered to be implied in those of the

thermodynamic surface). He made no use of the concept of

* The list of courses offered by Gibbs from 1872 to the time of his

death is given in my "Reminiscences of Gibbs by a Student and Col-

league" in the Scientific Monthly, 32, 210-227, (1931).
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efficiency, so dear to the engineer, nor of that of availabihty of

energy, upon which some authors base their discussion of en-

tropy; as the equivalents of these ideas must be imphed in any
development of the subject, it is only the terminology and view-

point, not the essentials, which were omitted. He dealt at

length with the properties of the thermodynamic surface, but

did not cover all the detail which was included in his second

paper; there was no particular reason why all of it should be

covered.

As for what we find in the current literature with respect to

the subject matter of these two initial papers one may state that

the temperature-entropy diagram is now treated at length in

engineering treatises on the steam engine* in which many
detailed illustrations, both graphical and numerical, may be

found. Physicists and chemists do not seem to use the temper-

ature-entropy diagram to any great extent. The thermo-

dynamic surface was perhaps given more attention by Maxwell

in his little book on Heat (4th edition) to which reference has

been made than is now customary with writers of texts on the

physics or chemistry of heat.f This neglect is certainly not due

to any failure to appreciate the contributions of Gibbs any more

* See for example the article on the Steam Engine in the Encyclopedia

Britannica or the treatise An Introduction to Thermodynamics for En-

gineering Students hy John Mills (Ginn and Co.) or Thermodynamics of

the Steam Engine and Other Heat Engines by C. H. Peabody (John Wiley

and Sons) . It is far from clear that the use of the temperature-entropy

diagram in such works derives directly from the presentation in Gibbs'

Paper II.

t For example, in the excellent Einfuhrung in die theoretische

Physik, Berlin, 1921, Bd. II, Th. 1, by C. Schaefer, the theory of heat is

presented in 562 pages. Yet the temperature-entropy diagram seems

not to appear, nor the thermodynamic surface to be mentioned. There

are fourteen references to Gibbs in the index, mentioning the following

topics: The Gibbs paradox of increase of entropy on mixing gases, the

total energy e, the phase rule, definition of components, the electro-

motive force of a cell, and statistical mechanics. None of these refer-

ences is to Paper I or II. In the Thermodynamics of G. N. Lewis and

M. Randall, McGraw-Hill, 1923, there is equal citation of Gibbs for much
the same topics but again no mention of the i77-diagram or thermo-

dynamic surface.
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than the failure to include in some modern treatise on mechanics

many of the geometrical proofs of the Principia is an indication

of the author's lack of appreciation of Newton. Science goes on

its way, picking and choosing and modifying. The trend of the

last fifty years is not toward Papers I and II. Interesting as

they are historically, and important because of the preparation

they afforded Willard Gibbs for writing his great memoir III,

there is no present indication that they are in themselves signifi-

cant for present or future science ; for better or for worse we have

adopted other ways of preparing for the exposition of the theory

and for the use of the results of that memoir which in so many
of its parts is indispensable today and in still others as yet

inadequately explored may become indispensable in the future.
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THE GENERAL THERMODYNAMICAL SYSTEM
OF GIBBS

[Gibbs, I, pp. 55-lU; U9-m]

J. A. V. BUTLER

I. Introduction

1. General Thermodynamic Considerations. At the head of

his memoir, "On the EquiHbrium of Heterogeneous Sub-

stances," Gibbs quotes the first and second laws of thermo-

dynamics, as stated by Clausius:
*

"Die Energie der Welt ist constant.

Die Entropie der Welt strebt einem Maximum zu."

From these two principles he proceeds to deduce, with rigor

and in great detail, the conditions of equilibrium in heterogene-

ous systems containing any number of substances. As an

introduction to his method, we shall first outline the earlier

development of the laws of thermodynamics and discuss their

bearing on the question of equilibrium in material systems.

The first law of thermodynamics, or the Principle of the

Conservation of Energy, was first stated in a general form by
Helmholtz in his memoir "On the Conservation of Force"

(1847). Starting with a denial of the possibility of perpetual

motion, and making use of the experimental results of Davy,

Joule and Mayer on the production of heat by the expenditure

of mechanical work and in the passage of electric currents

through conductors, Helmholtz arrived at the generalisation

that the sum of the energies of the universe is constant and

when energy of one kind disappears, an equivalent amount of

other kinds of energy takes its place.

Lord Kelvin, in 1851, introduced the concept of the intrinsic

energy of a body as the sum of the total quantities of heat and

61
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work which can be obtained from it. Since it is not possible

to remove the whole of the heat from a body, or to change it into

a state in which we may be sure that no further work may be

obtained from it, for practical purposes we may define a stand-

ard state in which the energy is taken as zero. Then the

energy of a body in any given state is taken as the sum of the

quantities of heat and work which must be supplied to bring

the body from the standard state into the given state. The
energy of a body or system of bodies in a given state is a

definite quantity and is independent of the way in which it is

brought into that state. For if it were possible for a system of

bodies to have different amounts of energy in the same state,

it would be possible to obtain energy without the system or any

other bodies undergoing change, which is contrary to the

Principle of Conservation of Energy.

Consider two states of a system in which its energy is e' and

e". The change of the energy of the system, i.e., the energy

which must be supplied from outside, when it passes from the

first to the second state, is Ae = e" — e'. Since e" and t' depend

only on the initial and final states of the system, Ae is independent

of the way in which the change of state occurs. In general,

the energy of a system may change (1) by receiving or giving

heat to other bodies, and (2) by performing work against ex-

ternal forces. If, in a change of state, the system absorbs a

quantity of heat Q from outside bodies and performs work W
against external forces,* its energy change is

Ae = Q - PF. (1)

Now, although the energy change of a system in passing from a

given initial state to a given final state is constant and inde-

pendent of the way in which the change occurs, the same is not

true of Q or W. But of the possible ways of conducting the

change, there will usually be one for which PF is a maximum
and, therefore, Q also a maximum.
As a simple illustration, consider the fall of a body to the

* Heat evolved by the system and work done on the system by ex-

ternal forces are counted as negative.
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earth under the influence of gravity. "V^Hien the body falls

unimpeded no work is obtained and the whole of its energy is

converted into heat when it collides with the earth. If we

arrange a pulley so that, in its descent, the falling body raises

another mass we shall obtain work corresponding to the weight

of the mass raised. There is a limit to the amount of work

which can be obtained in this way, for the first body will only

continue to fall as long as its weight is greater than that of the

body which is raised. The maximum work is obtained when

the weight raised is only infinitesimally less than that of the

faUing body. In other words, we obtain the maximum work

when the force tending to cause the change (in this case, the

gravitational force on the falling body) is opposed by a force

which is only smaller by an infinitesimal amount.

Similar considerations apply to changes of other kinds. For

example, in the expansion of a gas into an evacuated space,

there is no opposing force and no work is obtained; but if the

expansion of the gas is opposed by a mechanical force acting on

a piston, work is obtained which has a maximum value when the

force on the piston is only infinitesimally less than that required

to balance the pressure of the gas. When the force on the piston

exactly balances the gas pressure, no change occurs; but when
the former is reduced by an infinitesimal amount the gas will

expand and will continue to do so as long as the applied force is

slightly less than that required to balance the gas pressure.

Under these conditions we obtain the maximum work from the

gas expansion. A change carried out in such a way is called a

reversible change, since an infinitesimal increase in the forces

opposing the change will be sufficient to make them greater

than the forces of the system and will cause the change to

proceed in the reverse direction.

If we take the system of bodies through a complete cycle of

operations, so that its final state is identical with its original

state, the total energy change is zero, so that by (1),

2Q - ZTF =
;

i.e., the algebraic sum of all the quantities of heat absorbed by

the system is equal to the algebraic sum of the amounts of work

done against external forces.
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In 1824 S.Carnot made use of such a process to determine

the amount of work obtainable by an ideal heat engine, drawing

heat from a heat reservoir at a temperature t' and giving it out

at a lower temperature t". In this process, the body or "work-

ing substance" is put through a cyclic series of operations,

consisting of two isothermal and two adiabatic stages

:

(1) The working substance is put in contact with the heat

reservoir at the temperature t' and is allowed to expand, thereby

performing work against the opposing forces and, since its

temperature remains constant, absorbing a quantity of heat

Q' from the heat reservoir.

(2) The working substance is thermally insulated so that it

cannot receive or give up heat to its surroundings, and allowed

to expand further, whereby work is obtained and the tempera-

ture falls to t".

(3) The working substance is put in contact with a heat

reservoir at t", and is compressed until it reaches a state from

which it can be brought into its original state without communi-

cation of heat. In this stage work is expended on the substance

and a quantity of heat —Q" passes from it to the heat reservoir.

(4) The working substance is thermally insulated, and

brought into its original state by the expenditure of work.

In this process a quantity of heat Q' has been taken from

the heat reservoir at t' and a quantity of heat — Q" given to the

heat reservoir at t". Since the working substance has been

returned into its original state the total work obtained is equal

to the sum of the quantities of heat absorbed, i.e.

W = Q' + Q".

The ratio of the work obtained to the heat absorbed at the

Q' + Q"
higher temperature, i.e. ^ is termed the efficiency of

the process.

Carnot postulated, (1) that a cyclic process, in which every

stage is carried out reversibly, must be more efficient than any

irreversible cycle working between the same temperature

limits can be, and (2) that all reversible cycles working between

the same temperature limits must be equally efficient, whatever
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may be the nature of the working substance or of the change it

undergoes. The proof of these propositions given by Carnot

was unsatisfactory, for he adhered to the caloric theory of heat

and did not admit that, when work is obtained, an equivalent

amount of heat must disappear. Clausius, in 1850, showed

that their proof, in fact, involves another principle which he

stated as follows: "It is impossible for a self-acting machine,

unaided by any external agency, to convey heat from one body

to another at a higher temperature." Suppose that it were

possible to have two such reversible cyclic processes, working

between the same temperature limits, one of which was more

efficient than the other. Then in the operation of the first

process a quantity of heat Qi may be absorbed at the higher

temperature and a quantity of work W obtained. This work

may be used to operate the second process in the reverse

direction so that it absorbs heat at the lower temperature and

gives it out at the higher temperature. Let the amount of heat

given out at the higher temperature for the expenditure of

work W, in this cycle be Q2. Then by hypothesis,

W/Qi > W/Q2,

or,

Q2 > Qi.

Therefore the second cycle returns more heat to the heat res-

ervoir at the higher temperature than is absorbed in the first

cycle, and it would be possible by the use of the two cyclic

processes, without the action of any outside agency, to cause

heat to pass from the lower to the higher temperature, which

is contrary to the principle stated above.

This principle is one of several alternative ways of stating

the second law of thermodynamics. We may observe that the

passage of heat from a hotter to a colder body is a spontaneous

process by which a system, which is not in a state of equilibrium,

proceeds towards equihbrium. Applied generally to all kinds of

changes, the principle may be stated in the following way:

Mechanical work can always be obtained when a system changes

from a state, which is not a state of equilibrium, into a state of
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equilibrium. Conversely, it is impossible to obtain mechanical

work, over and above the work expended from other sources,

by the change of a system, which is in equilibrium, into another

state.

We have seen that the maximum work is obtained from a

spontaneous change when it is carried out by a reversible

process. But a reversible process proceeds infinitely slowly,

since at every stage the forces of the system are nearly balanced

by opposing forces. When changes occur in Nature at a finite

rate, the forces of the system must be appreciably greater than

the opposing forces. Such changes are essentially irreversible

and the maximum work of which they are capable, which
Kelvin called the available energy, is not obtained. In an
irreversible process only part of the available energy is obtained

as work, the remainder is dissipated. Kelvin (1852) therefore

stated the second law of thermodynamics as the Principle of

the Dissipation of Energy

:

"1. There is at present in the material world a universal

tendency to the dissipation of mechanical energy.

"2. Any restoration of mechanical energy, without more than

an equivalent of dissipation, is impossible in inanimate material

processes, and is probably never effected by means of organised

matter, either endowed with vegetable life or subjected to the

will of an animated creature."

To return to Carnot's cycle, Kelvin had pointed out in 1848

that Carnot's theorem may be employed to define an absolute

scale of temperature. Since the ratio of the work obtained in a

reversible Carnot cycle to the heat absorbed at the higher tem-

perature depends solely on the temperatures of the two bodies

between which the transfer of heat is effected, we may write

Qt = <t>ii', i")i

where ^{t' , t") is a function of t' and t" alone.

Kelvin defined absolute temperature so that

t' — t"
<l>{t', t") = —^-
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The integral, / dQ/t has therefore the same value for all re-

versible paths by which the system may be changed from state

(7) to state (//). Its value for a reversible path is thus a definite

quantity, depending only on the initial and final states of the

system, and it may be regarded as the difference between the

values of a function of the state of the system in the two states

considered. This function was termed the entropy of the

system by Clausius in 1855. We may therefore write:

•(") dQ
= V' — 1

t
(2)

where 77^ and rj'^ are the values of the entropy in states (/) and

For an infinitesimal change of state, (1) may be written in

the form:

de = dQ - dW.

Now if the change of state is reversible, according to (2), dQ =

tdrj ; also if the work is done by an increase of volume dv against a

pressure p, dW = pdv, so that

de = tdr] — pdv. (3)

We may observe that all infinitesimal changes of state of a

system, which is in equilibrium, fulfil the condition of reversi-

bility, for equilibrium is a state in which the forces of the

system are balanced by the opposing forces, and in an infinites-

imal change the system can only be removed to an infinites-

imal extent from a state of equilibrium. Equation (3) there-

fore applies generally to infinitesimal changes of a system

which is in a state of equilibrium.

We will now consider the changes of a system of bodies in

relation to the changes which necessarily occur in surrounding

bodies. When the sytem undergoes a reversible change from a

state (7) to a state (77), the entropy change, as we have seen, is:

r^u -n^ ^ \ dQ/t,
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where dQ is the element of heat absorbed at temperature t.

This heat must come from surrounding bodies, and the process

can only be perfectly reversible when each element of heat is

absorbed from a body which has the same temperature as the

system itself. Therefore — / dQ/t represents the entropy
Jin

change of the surrounding bodies, so that when a reversible

change takes place the sum of the changes of entropy of the

system and its surroundings is zero.

On the other hand, if the change of the system is irreversible,

its entropy change is still 77" — rj^, since this quantity depends

solely on the initial and final states and not on the way in

which the change occurs, but it is no longer equal to / dQ/t.
JU)

Since less work is obtained from the system in an irreversible

change than in a reversible change, the heat absorbed is also

less, and therefore:

dQ/t {system) < 7?" " 1?'^

in

or

Jc

nil)

77" — TJ^ — / dQ/t (system) > 0.

J {n

The decrease in entropy of the surroundings cannot be greater

than/ dQ/t (,y,tem), since an element of heat c?Q can only be
Jin

absorbed from a body having a temperature equal to or greater

than the momentary temperature t of the system. The total

entropy change of the system and its surroundings is therefore

positive, i.e. when an irreversible change takes place, the entropy

of the universe is increased. We have seen that irreversible

changes may take place spontaneously in the universe or in

any isolated system which is not in a state of equilibrium, so

that we arrive at Clausius' statement of the second law of

thermodynamics; "The entropy of the universe tends to a

maximum."

It is evident that the second law of thermodynamics affords a
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criterion of equilibrium, which may be stated in several different

ways. The statement of Clausius, that the entropy of an

isolated system tends to a maximum, implies that equilibrium

is reached when the entropy has the maximum value which is

consistent with its energy, and when there is no possible change,

the energy remaining constant, which can cause a further

increase of entropy.

Also, the entropy of a system remains constant if the latter

does not undergo any irreversible changes and if it does not

receive any heat from its surroundings. Any change of its

energy under these conditions must be the result of work done

on or by the system against external forces. We have seen

that if a system is not in equilibrium, it may undergo changes

from which work can be obtained and which therefore result in a

decrease of energy. A system is therefore in equilibrium, if

there is no possible change, which does not involve a change of

entropy, whereby its energy can be decreased.

In making use of these criteria of equilibrium we need only

consider infinitesimal changes, for every finite change must

begin by being an infinitesimal one and if no infinitesimal change

is possible it is evident that no finite change can occur. If

(Srj),, (5e), represent the change of entropy and energy in any

infinitesimal change of the system in which the energy and

entropy respectively remain constant, the two criteria of equilib-

rium stated above may be expressed by the statement that

{b-n), ^ Oand (5e), ^ 0,

for all possible changes.

Gibbs first discusses in detail the equivalence and validity of

these criteria, and the conditions to be observed in using them.

An analysis of his discussion is given in the following chapter,

but the reader who does not wish, at this stage, to consider

these elaborate arguments need only read Section 4 on the

Interpretation of the Conditions and may then proceed to the

discussion of their application which begins with Chapter III.

11. The Criteria of Equilibrium and Stability

2. The Criteria. Gibbs begins his discussion of the equifib-

rium of heterogeneous substances by stating in the following
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propositions the criterion of equilibrium for a material sys-

tem which is isolated from all external influences:

I. For the equilibrium of any isolated system it is necessary and

sufficient that in all possible variations in the state of the

system which do not alter its energy, the variation of its

entropy shall either vanish or be negative.

This condition of equilibrium may be written

(5v). ^ 0, (4) [1]

where {8r})( denotes a variation of entropy, the energy remaining

constant.

II. For the equilibrium of any isolated system it is necessary and

sufficient that in all possible variations in the state of the

system which do not alter its entropy, the variation of its

energy shall either vanish or be positive.

This condition may be written

(5e), ^ 0, (5) [2]

where (8e) „ denotes a variation of energy, the entropy remaining

constant.

He proceeds to prove, that these two propositions are equiva-

lent to each other, that they are sufficient for equilibrium, and

that they are necessary for equilibrium. We shall quote largely

from Gibbs' own exposition, interpolating explanatory remarks

where they seem to be helpful.

3. Equivalence of the Two Criteria.* "It is always possible

to increase both the energy and the entropy of the system, or to

decrease both together, viz., by imparting heat to any part of

the system or by taking it away. For, if condition I is

not satisfied, there must be some variation in the state of the

system for which

5t7 > and 8e = 0."

Therefore, by taking heat from the system in its varied state we
may decrease the entropy to its original value and at the same
time diminish the energy, so that we reach a state for which

3?7 = and 8e < 0.

Gibba, I, p. 56, lines 20-37.
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Thus, if there are possible variations which do not satisfy I,

there must also be possible variations which do not satisfy II.

Thus if condition I is not satisfied, condition II is not satisfied.

Conversely, it is shown that if condition II is not satisfied,

condition I is not satisfied, so that the two conditions are

equivalent to each other.

4. Interyrelation of the Conditions* Before proceeding to the

proof of the sufficiency and necessity of the criteria of equilib-

rium, Gibbs discusses the interpretation of the terms in which

the criteria are expressed.

In the first place, "equations which express the condition of

equilibrium, as also its statement in words, are to be inter-

preted in accordance with the general usage in respect to differ-

ential equations, that is, infinitesimals of higher orders than the

first relatively to those which express the amount of change of

the system are to be neglected." That is, if be is change in the

energy produced by a change bS in the state of the system, and

if dt/dS is the limiting value of bt/bS when bS becomes infinitely

small, the value of 5e is taken as (de/dS) • bS, infinitesimals of

higher orders, such as dh/dS'^, being neglected. Biit different

kinds of equilibrium may be distinguished by noting the actual

values of the variations. The sign A is used to indicate the

value of a variation, when infinitesimals of the higher orders

are not neglected. Thus, Ae is the actual energy change pro-

duced by a small, but finite variation in the state of the system.

The conditions of the different kinds of equilibrium may then

be expressed as follows; for stable equilibrium

(A7?)e < 0, i.e., (Ae), > 0, (6) [3]

(i.e. the entropy is a maximum at constant energy and the

energy a minimum at constant entropy for all possible varia-

tions); for neutral equilibrium there must be some variations

in the state of the system for which

(At,), = 0, i.e., (Ae), = 0; (7) [4]

= Gibbs, I, p. 56, line 38; p. 58, line 40.
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(i.e. which do not change the entropy at constant energy, or the

energy at constant entropy), while in general

(At?), ^0, i.e. (Ae), ^0; (8) [5]

and for unstable equilibrium there must be some variations

for which

(At?), > 0, (9) [6]

i.e. there must be some for which

(Ae), < 0," (10) [7]

(i.e. in respect to some variations the entropy has the properties

of a minimum, and the energy of a maximum), while the

general criteria of equilibrium:

(577), ^ 0, i.e. (8e), ^0; (11) [8]

are still satisfied.

Secondly, in these criteria of equilibrium only possible varia-

tions are taken into account. Changes of state involving the

transport of matter through a finite distance are excluded from

consideration, so that an increase in the quantity of matter in

one body at the expense of that in another, is regarded as

possible only when the two bodies are in contact. If the system

consists of parts between which there is supposed to be no
thermal communication, the entropy of each part is regarded

as constant, since no diminution of entropy of any of these

parts is possible without the passage of heat. In this case the

condition of equilibrium becomes

(56)v, ," , etc. ^0, (12) [9]

where 77', r]", etc. denote the entropies of the various parts

between which there is no communication of heat.

Otherwise, "only those variations are to be rejected as

impossible, which involve changes which are prevented by
passive forces or analogous resistances to change." It is neces-

sary to consider what is meant by this limitation.
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Systems are frequently met with which are not in equilib-

rium, yet which appear to remain unchanged for an unlimited

time. Thus, a mixture of hydrogen and oxygen appears to

remain unchanged, although it Ls not in a true state of equilib-

rium, for a small cause such as an electric spark may cause a

change out of all proportion to its magnitude. In such a case

the change of the system into a state of equilibrium is supposed

to be prevented by "passive forces or resistance to change," the

nature of which is not well understood. It is evident that only

those forces or resistances which are capable of preventing

change need be considered. Those like viscosity, which only

retard change, are not sufficient to make impossible a variation

which they influence.

The existence of such passive resistances to change can easily

be recognised. Thus, it is possible that a system composed of

water, oxygen and hydrogen which is not in equilibrium with

regard to changes involving the formation of water, will remain

unchanged for an indefinite period. This equilibrium can be

distinguished from that caused by "the balance of the active

tendencies of the system," i.e., when the tendency of hydrogen

and oxygen to combine is balanced by the tendency of water

to dissociate, for whereas in the former case we may vary the

quantities of any of the substances, or the temperature or pres-

sure without producing any change in the quantity of water

present in the system ; in the latter case an infinitesimal change

in the state of the system will produce a change in the amount

combined.

Thus if we regard variations involving the combination of

hydrogen and oxygen as prevented by the passive forces or

resistances, and therefore impossible, we may still apply the

conditions of equilibrium to discover the equilibrium state of

a system containing given amounts of hydrogen, oxygen and

water under these conditions.

5. Sufficiency of the Criteria of Equilibrium* Three cases

are considered, corresponding to the three kinds of equilibrium.

(a) "If the system is in a state in which its entropy is greater

* Gibbs, I, p. 58, line 41-p. 61, line 11.
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than in any other state of the same energy, it is evidently in

equinbrium, as any change of state must involve either a de-

crease of entropy or an increase of energy, which are alike

impossible for an isolated system. We may add that this is a

case of stable equilibrium, as no infinitely small cause (whether

relating to a variation of the initial state or to the action of

external bodies) can produce a finite change of state, as this

would involve a finite decrease of entropy or increase of energy."

(b) "The system has the greatest entropy consistent with its

energy, and therefore the least energy consistent with its

entropy but there are other states of the same energy and

entropy as its actual state."

Gibbs first shows by special arguments that in this case the

criteria are sufficient for equilibrium in two respects. In the

first place, "it is impossible that any motion of masses should

take place; for if any of the energy of the system should come to

consist of vis viva (of sensible motions), a state of the system

identical in other respects but without the motion would have

less energy and not less entropy, which would be contrary to

the supposition." It is evident that if this last state is im-

possible, a similar state in which the parts of the system are in

motion is equally impossible, since the motion of appreciable

parts of the system does not change their nature.

Secondly, the passage of heat from one part of the system

to another, either by conduction or radiation, cannot take place,

as heat only passes from bodies of higher to those of lower

temperature, and this involves an increase of entropy.

The criteria are therefore sufficient for equilibrium, so far as

the motion of the masses and the transfer of heat are concerned.

In order to justify the belief that the condition is sufficient for

equilibrium in every respect, Gibbs makes use of the following

considerations.

"Let us suppose, in order to test the tenability of such a

hypothesis, that a system may have the greatest entropy con-

sistent with its energy without being in equihbrium. In such a

case, changes in the state of the system must take place, but

these will necessarily be such that the energy and entropy

remain unchanged and the system will continue to satisfy the
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same condition, as initially, of having the greatest entropy

consistent with its energy." Now the change we suppose to

take place cannot be infinitely slow, except at particular mo-

ments, so that we may choose a time at which it is proceeding

at a finite rate. We will consider the change which occurs in a

short interval of time after the chosen time. No change what-

ever in the state of the system, which does not alter the value of

the energy, and which commences in the same state which the

system has at the chosen time, will cause an increase of entropy.

"Hence, it will generally be possible by some slight variation in

the circumstances of the case" (e.g., by a slight change of pres-

sure or temperature or of the quantities of the substances) to

make all changes in the state of the system like or nearly like

that which is supposed actually to occur, and not involving a

change of energy, to involve a necessary decrease of entropy,

which would render any such change impossible." "If, then,

there is any tendency toward change in the system as first

supposed, it is a tendency which can be entirely checked by

an infinitesimal variation in the circumstances of the case.

As this supposition cannot be allowed, we must believe that a

system is always in equilibrium when it has the greatest en-

tropy consistent with its energy, or, in other words, when it has

the least energy consistent with its entropy."

The essential steps of this argument may be recapitulated

as follows. A system having the greatest entropy consistent

with its energy must be in equilibrium, because

(a) if it were not in equilibrium a change must take place,

and except at particular moments must take place at a

finite rate;

(/3), but it is shown that in such a case, the change can be

entirely checked by an infinitely small modification of

the circumstances of the case;

(7), therefore, an infinitely small modification makes a finite

difference in the rate of change, which cannot be

allowed.

We may observe that the statement that the hypothetical

change cannot be infinitely slow is an essential part of the

argument. For, if the change which is supposed to occur were
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infinitely slow, there would be no rea8on to disallow it because

it can be entirely checked by an infinitely small modification of

the case. The argument depends finally on the consideration

that an infinitely small modification of the circumstances cannot

cause a finite change in the rate of change of the system, for as

is explicitly stated in a succeeding paragraph, this is "contrary

to that continuity we have reason to expect."

"The same considerations will evidently apply to any case in

which a system is in such a state that A17 ^ for any possible

infinitesimal variation of the state for which Ae = 0, even if the

entropy is not the greatest of which the system is capable with

the same energy." Thus a system of hydrogen, oxygen and

water is in equilibrium when (Atj), ^ 0, for all possible varia-

tions, even if the entropy is not the greatest for the same amount
of energy. The conditions may be such that the combination

of hydrogen and oxygen to water would cause an increase of

entropy in the isolated system, but if this change is prevented

by passive forces or resistances to change, variations involving

it are not possible, and the system is in equilibrium if (At?)^ ^ 0,

for all variations which do not involve such changes.

(c) When "677 ^ for all possible variations not affecting

the energy, but for some of these variations At? > 0, that is,

when the entropy has in some respects the characteristic of a

minimum."

"In this case the considerations adduced in the last paragraph

will not apply without modification, as the change of state may
be infinitely slow at first, and it is only in the initial state that

{dr])t ^ holds true." None of the differential coefficients of

all orders of the quantities which determine the state of the

system, taken with respect to the time, can have any value

other than 0, for the state of the system for which (5r?), ^ 0.

For if some of them had finite values, "as it would generally be

possible, as before, by some infinitely small modification of the

case, to render impossible any change like or nearly like that

which might be supposed to occur, this infinitely small modifica-

tion of the case would make a finite difference in the value of

differential coefficients which had before the finite values, or

in some of lower orders, which is contrary to that continuity
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which we have reason to expect. Such considerations seem to

justify us in regarding such a state as we are discussing as one

of theoretical equihbrium; although as the equilibrium is evi-

dently unstable, it cannot be realized."

The argument of the last section is here applied to the higher

differential coefficients of the quantities which represent the

state of the system with respect to the time. Thus if <S is one

of the quantities representing the state of the system, it is shown

that all such differential coefficients as

dt

d^S
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infinitely little from the state in question", the criteria are evi-

dently necessary for equilibrium. For if there is any possible

change for which (Srj)^ ^ does not hold, since no passive

forces or resistances to change are operative, this change will

take place. Also, in this case, the inequality in the equations

cannot apply, since for every change of the system there is a

similar one of opposite sign, so that if for a certain change of

state (577) e < we should have (St/), > for a similar change of

opposite sign. In this case, we may therefore omit the sign of

inequality and write as the condition of equihbrium

(577), = 0, i.e. (de), = 0. (13) [10]

"But to prove that the condition previously enunciated is in

every case necessary, it must be shown that whenever an

isolated system remains without change, if there is any infini-

tesimal variation in its state, not involving a finite change of

position of any (even an infinitesimal part) of its matter, which

would diminish its energy . . . without altering its entropy, . . . this

variation involves changes in the system which are prevented by

its passive forces or analogous resistance to change. Now, as

the described variation in the state of the system diminishes

its energy without altering its entropy, it must be regarded as

theoretically possible to produce that variation by some process,

perhaps a very indirect one, so as to gain a certain amount
of work (above all expended on the system)." We have

seen that according to the second law of thermodynamics, a

change which can be made to yield work may take place spon-

taneously, and will do so unless prevented by passive forces.

"Hence we may conclude that the active forces or tendencies of

the system favor the variation in question, and that equilib-

rium cannot subsist unless the variation is prevented by passive

forces."

III. Definition and Properties of Fundamental Equations*

7. The Quantities ^, f, x- At this point, Gibbs proceeds to

apply the criterion of equilibrium to deduce the laws which

determine equilibrium in heterogeneous systems. For this

Gibbs, I, 85-92.
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purpose he uses the criterion in its second form, "both because

it admits more readily the introduction of the condition that

there shall be no thermal communication between the different

parts of the system, and because it is more convenient, as

respects the form of the general equations relating to equilib-

rium, to make the entropy one of the independent variables

which determine the state of the system, than tomake the energy

one of these variables."* In order to apply the criterion it is nec-

essary to specify completely the possible variations of which the

energy of the system is capable, and for this purpose differential

coefficients, representing the change of energy of homogeneous

parts of the system with the quantities of their component

substances, must be introduced. The complete significance

of these quantities does not appear until a later stage. It is

thought that the discussion of the conditions of equiUbrium

in heterogeneous systems will be more easily followed if we first

define the auxiliary functions \p, f and x and derive the varia-

tions of the energy, and of these quantities, in homogeneous

masses.

Let e, 7] and v be the energy, entropy and volume respectively

of a homogeneous body at a temperature t and pressure p. We
have seen that in any given state the energy and entropy of a body

are definite, but since it is only possible to measure differences of

energy and entropy, "the values of these quantities are so far

arbitrary, that we may choose independently for each simple

substance, the state in which its energy and entropy are both

zero. The values of the energy and entropy of any compound

body in any particular state will then be fixed. Its energy will

be the sum of the work and heat expended in bringing its

components from the states in which their energies and their

entropies are zero into combination and to the state in ques-

tion; and its entropy is the value of the integral
J

— for any

reversible process by which that change is effected."

The quantities \p, f and x, defined by the equations

^ = 6 - iT,, (14) [87]

f = ,-trj-^pv, (15) [91]

X = e + vv; (16) [89]

* Gibbs, I, 62.
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have then definite numerical values in any state of the homo-

geneous body.

The definition

xf^
= e - tr] (17) [105]

may evidently be extended to any material system whatever

which has a uniform temperature throughout. Consider two

states of the system at the same temperature, in which ^ has

the values \f/' and \p". The decrease in i/' in the change from

the first to the second state is

^' - ^" = e' - t" - tW - ri"). (18) [106]

Now if the system is brought from the first to the second state

by a reversible process in which a quantity of work W is done

by the system and a quantity of heat Q absorbed, the decrease

of energy is:

e' - e" = IF - Q, (19) [107]

and since the process is reversible

;

Q = tw - V), (20) [108]

so that;

^> - ^" = W; (21) [109]

i.e. the decrease in i/', in a change of state at constant tem-

perature, is equal to the work done by the system when the

change of state is carried out by a reversible process. Thus i^

can be regarded as the maximum work function of the system for

changes at constant temperature. Equation (21) can be written

as:

- (A^), = W, (22)

so that, for an infinitesimal reversible change of state, we may
write

:

-(5^)t = dW, (23) [llD]

In mechanics the potential of a particle in a field of force is a

quantity such that the work obtained in a small displacement

of the particle is

dW = -d4>.
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If the forces acting on the particle in the directions of the .r, ?/,

and z axes are /i, fi, fs the work obtained in a small displace-

ment is

dW = -d(j) = fidx + f^dij + fzdz,

so that

/i = „^ ' /2 = —7
' etc.

The forces acting on the particle are thus differentials of — <i),

and — </> is the force function of the particle. The quantity \p

has analogous properties and, according to (23), — \^ is the force

function of the system for changes at constant temperature.

A system is in equilibrium at constant temperature if there

is no possible change of state which could yield work, that is,

for which dW is positive, and therefore h\}/ negative. Thus, we
may write as the condition of equilibrium for a system which

has a uniform temperature throughout:

mt ^ 0; (24) [111]

that is, the variation of
\f/ for every possible change which does

not affect the temperature is either positive or zero. Gibbs

gives a direct proof that the condition of equilibrium (24) is

equivalent to the condition (5) when applied to a system which

has a uniform temperature throughout, for which the reader

may be referred to the original memoir,* The definition

^ = e - tv + pv (25) [116]

may similarly be extended to any material system whatever

which has a uniform temperature and pressure throughout.

We will consider two states of the system, at the same tem-

perature and pressure, in which f has the values f ' and f", The
decrease in f in the change of the system from the first to the

second state is,

r - r = e' - e" - tin' - V") + Viv' - V"). (26)

* Gibbs, I, 90. See also this volume, page 214.
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Now, if the system is brought from the first to the second state

by a reversible process in which work W is done by the system

and heat Q absorbed, we have as before

^' - ," = W - Q,

Q = t(v"-v'),

so that

^' - ^" = W + p(v' - y") = W - p(v" - v'). (27)

Now p(v" — v') is the work done by the system in increasing its

vokime from v' to v" at the constant pressure p, and the quantity

w - vW - v') = w,

i.e., the maximum work of the change at constant temperature

and pressure less the work done on account of the change of

volume, is often known as the "net work" of the change. Just

as the decrease in ^i' in a change at constant temperature is

equal to the maximum work obtainable, the decrease in f in a

change at constant temperature and pressure is equal to the

"net work" obtainable. Thus f is the "net work function" of

the system. From considerations similar to those cited in

discussing \p, it can be seen that — f is the force function of the

system for constant temperature and pressure.

Equation (27) may be written in the form

-Ar = W, (28)

so that, for an infinitesimal reversible change of state, we may
write

-(80t,p = dW. (29)

Now, a system is in equilibrium at constant temperature and

pressure if there is no possible change of state for which the net

work is positive. We may therefore write as a criterion of

equilibrium

;

mt,P^O, (30) [117]

that is, a system is in equilibrium when the variation of f for

every possible change of state, which does not affect the tem-
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perature and pressure, is zero or positive. It follows that it is

necessary for the equilibrium of two masses of the same com-

position, e.g., water and ice, which are in contact, that the

values of f for equal quantities of the two masses must be equal.

Thus, if the value of f for unit mass of ice were greater than the

value of f for unit mass of water, at the temperature and pres-

sure at which they are in equilibrium with one another, the

value of f of the system could be decreased by the change, ice -^

water, at constant temperature and pressure. Since according

to (30) this is impossible, the values of f for unit masses of ice

and water in equilibrium with each other, must be equal.

Similarly for the equilibrium of three masses, one of which can

be formed out of the other two, it is necessary that the value

of f for the first mass should be equal to the sum of the values of

f for those quantities of the other masses, out of which the first

mass can be formed. For example, 100 grams of calcium

carbonate can be formed from 56 grams of lime and 44 grams

of carbon dioxide. When the three substances are in equilib-

rium with each other, the value of f for 100 grams of calcium

carbonate must be equal to the sum of the values of f for 56

grams of lime and 44 grams of carbon dioxide. Also if a solu-

tion composed of a parts of water and b parts of a salt is in

equilibrium with crystals of the salt and with water vapor,

the value of f for the quantity a + 6 of the solution is equal to

the sum of the values of ^ for the quantities a of water vapor

and h of the salt.

The definition

X = e + py (31)

may likewise be extended to any material system for which the

pressure is uniform throughout. If we consider two states of a

system at the same pressure, in which x has the values x' and

x", we see that

x" - x' = 6" - e' + p{v" - v'), (32) [119]

or

Ax = Ae + pAv = Qp

,

(33)
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i.e., the heat absorbed in a change which occurs at constant

pressure, when the only work done is that due to increase in

volume, is equal to the increase of x-

Similarly, when a system undergoes a change at constant

volume, pAv is zero and, if no work is done against external

forces other than the pressure, the increase of energy is equal

to the heat absorbed:

Ac = Q„, (34)

so that the energy can be regarded as the heat function at

constant volume.

Various names have been given to the thermodynamic func-

tions 4/, ^, X- Clerk Maxwell called rp the available energy, but

a certain amount of confusion has arisen because Helmholtz in

1882* used the term, free energy, for the same quantity. G. N.

Lewis,t in his system of thermodynamics, has made use of the

functions A, F and H which are identical with Gibbs's ^, f, x
and has used the names:

A or \^: Available energy.

F or ^'. Free energy.

H OT X' Heat content.

F. Massieut was the first to show that the thermodynamical

properties of a fluid of invariable composition may be deduced

from a single function, which he called the characteristic func-

tion of the fluid. He made use of two such functions; which,

in Gibbs' notation, are as follows

:

(1)

(2)

— e-\- ty _ _ ]A

t
~ ~

t

— €-{-tv - PV _ _ f

.

t
~ ~ t

* Sitzungsber. preuss. Akad. Wiss, 1, 22 (1882).

t Lewis and Randall, Thermodynamics and the Free Energy of Chem-
ical Substances (1923).

t Comptes rendus, 69, 858 and 1057, (1869).
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Planck has also made use of the second function, which has the

same properties in a system at constant temperature and pres-

sure as the entropy at constant energy and volume.

8. Differentials of e, \p and f . The variations with temperature

and pressure of the quantities i/' and f , for- a homogeneous body

of fixed composition, are obtained by differentiating (14) and

(15) and comparing with (3). Thus

but since

we have

and

Similarly,

so that

dyp = de — tdr] — -qdt, (35)

de = tdrj — pdv,

d4/ = —pdv — -qdt, (36)

(f).=-. (a=- ^3.

d^ = de — tdr] — 77c?/ + pdv + vdp

= - ndt + vdp; (38)

Now, if the system is heterogeneous, the quantity of matter

in some of its parts may increase at the expense of that in other

parts and we shall need to express the effect of such variations

on the energy and on the quantities yp, f and x- Consider a

single homogeneous mass containing the quantities Wi, m2,

W3, . . . m„ of substances ^1, S2, Sz,... Sn- It is usually

possible to express the composition of a mass in a number of

different ways. It is immaterial which way is chosen, provided

that the components are such that every possible independent

variation in the composition of the mass can be expressed in

terms of them. For example, possible variations in the com-

position of a solution of sulphuric acid in water may equally
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well be expressed by taking sulphuric acid and water, or sulphur

trioxide and water, as components, but sulphur, oxygen and

hydrogen are not admissible as components as their amounts

cannot be independently varied . The change in the value of f

of this mass when the amounts of Si, S2,. . .Sn are increased

by dmi, drui, . . . drrin, the temperature and pressure remaining

constant, is given by

dr = (
-,—

1 • dmi + I

-—
)

• dvii
\(l17li/ 1, p, mj, etc. \CtWl2/

«. p, mi, m,, etc.

-+(r~) -^^"^ (^0)
\(tmn/t, p, m„ . . . m„_i

and we may write

(^)
\dmijt.

\dmi/t.

= Ml,
p, ntj, etc.

= jU2, etc.,
p, nil, wij, etc.

(41)

so that

{d^)t,p =nidmi + M2^m2 . . . + findvin. (42)

When the temperature and pressure also vary, by combining

with (38), we have

d^ = —r]dt-\- vdp + iJ.idmi + ju2C?W2 . . . + tindnin, (43) [92]

whence, by (38),

de = idt] — pdv + mdmi + Hidrrh . . . + UndrUn, (44) [86]

and by (35)

d}p = —rjdt — pdv + fjiidmi + HidTm . . . + Undrrin. (45) [88]

The definition of mi, etc., given above, corresponds to the most

familiar condition, viz., that of constant temperature and pres-

sure. Since f is the free energy of the homogeneous mass, the

quantity

(—)
\dnhjl, p, m.,, . . . m,.

^
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represents the rate of increase of f with the quantity of the

component S\, when the temperature, pressure and quantities

of the other components remain constant. It is therefore the

'partial free energy of the first component. According to equa-

tions (44) and (45), ^i is also given by

Ml = (jt) ' (46) [104]

and by

Ml = fT^) , (47) [104]
\afn,\/ 1, V, TOj, . . . m„

i.e. /ii is equal to the rate of change of e with mi, when the en-

tropy, volume and quantities of the other components remain

constant, and to the rate of change of \p with mi, when the

temperature, volume and quantities of the other components

remain constant.

Now all the terms in (44) are of the same kind, that is mul-

tiples of quantities {t, p, ni, etc.) which depend on the state of

the system, by the differentials of quantities (t/, v, mi, etc.)

which are directly proportional to the amount of matter in the

state considered. We may therefore integrate (44) directly,

obtaining:

e = tr] — pv -\- mmi + n^rrii . . . + Urmn, (48) [93]

whence by (14), (15) and (16)

:

\p = —pv-\- mrrii + H2ni2 . . . + Unnin, (49) [94]

f = Mi^i + M2W2 . . . + Hnm„, (50) [96]

X = tV + MlWl + /I2W2 . . . + Mn^n- (51) [95]

A concrete picture of the process involved in this integration

may be obtained as follows. If we take a homogeneous mass

having entropy 7? and volume v, and containing quantities mi,

nii, . . . m„ of the components >Si, 82,--. Sn, and add quantities

of a mass of the same composition and in the same state; t, p,

Mi> M2, etc., all remain unchanged and (44) may be apphed to a

finite addition:
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Ae = tA-q — pAv + niArtii + HiArrh . . . + UnAtUn

,

where A77, Av, Ami, etc., are all proportional to the values of

7], V, mi, etc. in the original mass. We may thus continue these

additions until we have doubled the amount of the original

mass. Then, since At; = t], Av = v, Ami = mi, etc., the energy

of the added substance is

Ae = It] — pv + iumi + nim^ . . . + m»w„ ,

and this must be equal to the energy t, of the mass originally

present.

The general justification of this treatment depends on Euler's

theorem on homogeneous functions. According to this theorem,

a y = <f)(xi, X2,...Xn) be a homogeneous function of xi,

X2,. . .a:„ of the w"* degree;

dy dy dy
Xi — -i- X2— ... + x„ 7- = my. (52)

0X1 00:2 OXn

Now a homogeneous function of the w"" degree is one for which

<j){kxi, kx2, . . . kx„) = k'"<t>{xi, X2, . . . Xn),

i.e., if each variable Xi, X2,- . .Xn is multiplied by a quantity k,

the value of the function is multiplied by /b". The energy of a

homogeneous mass is evidently a homogeneous function of the

first degree with respect to 77, v, mi, m^,. . .m„. If we increase

each of these quantities k times, i.e., by taking k times as much of

the homogeneous substance, the energy is increased in the

same proportion. Therefore by Euler's theorem, putting

€ = <f>(j], V, mi,. . .w„) we have

de dt de de
i = VT-i-v— +mi-— ... +m„ t— >

drj dv dmi dmn

or

t = r]t — vp -\- mi/xi . . . + mnUn,
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(-)
\dv/v

xdmi/r,, V

= t,

m^ • • • mn

= - P,
7Jf TTli ' ' ' trifi

wij - • • m-n

= Hi, etc.

(53)

Euler's theorem further states that if e = 0(t/, v, m\, nh, . . .m„)

is a homogeneous function of the first degree

9e 9e

a^
"^'

m;
" ~ ^'

be

drrii

= )U], etc.,

are functions of zero degree. Therefore, applying Euler's

theorem to one of these functions, e.g. to 9e/9mi, we have:

326 a^e dh
+ V — + mi :r~l + ^

a^e

dmi • dr] dmi • dv

+ mn

dm-^ drill • dm^

dh

dmi • drrin

= 0. (54)

or

dt dp dfii dfXi dfin , .

V Z~~ - V -r^ -{- mi -— -\- m2-~ ... + mn z =0. (55)
dmi dm-i dmi dmi dnii

Therefore, in general,

7]dt — vdp + midfjLi + m2dp,2 . . . + m„c?jun = 0. (56) [97]

Gibbs obtains this equation by differentiating (48) in the most

general manner, viz.,

de = tdr] + rjdt — pdv — vdp + mdmi + midm
. . . + Hndmn -\-mndHn,

and comparing the result with (44), which is a complete differ-

ential.

Equation (56) provides a relation between the variations of

the ?i + 2 quantities, t, p, m,. . .ju„, which define the state of
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a homogeneous mass. If the variations of n + 1 of these

quantities are given any arbitrary values, the variation of the

remaining quantity can be determined by (56). A single

homogeneous mass is therefore capable of only n + 1 inde-

pendent variations of state.

Additional Relations

It will be convenient to give here some additional relations

which are easily obtained from the equations of the last section.

By (37) or (45) we have, for a body of fixed composition and

mass (indicated by the subscript m),

or

This equation, which has been found a very convenient expres-

sion of the relation between \p and e, was first given explicitly

by Helmholtz* and is known as the Gibbs-Helmholtz equation.

An equivalent equation between f and x is obtained from (39)

or (43), viz:

(S).,.
=

Further, since

M 37 = -
'J^ = r - X. (59)

d{yP/t) #
^'~dr ^^jt-"^'

we may write (58) as

/d{m\ ^ _ 1
\ (II / V, m t

(60)

and similarly (59) becomes

mm ^ _x
y ai y p, m V

* Sitzungsber preuss. Akad. Wiss., 1, 22 (1882); cf. Gibbs, I, 412

(61)
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IV. The Conditions of Equilibrium between Initially Existent

Parts of a Heterogenous System*

9. General Remarks. Gibbs first considers the equilibrium of

heterogeneous systems when uninfluenced by gravity, by

external electric forces, by distortion of the solid bodies, or by

the effects of surface tension. A mass of matter of various

kinds, the conditions of equilibrium of which are to be deter-

mined, is supposed to be "enclosed in a rigid and fixed envelop,

which is impermeable to and unalterable by any of the sub-

stances enclosed, and perfectly non-conducting to heat." It is

supposed that there are no non-isotropic strains in the solid

bodies, and that the variations of energy and entropy which

depend on the surfaces separating the heterogeneous mass are

so small in comparison with those which depend on the masses

themselves that they may be neglected. The effects excluded

here are examined in detail in later parts of the Memoir.

Gibbs points out that "the supposition of a rigid and non-

conducting envelop enclosing the mass under discussion involves

no real loss of generality, for if any mass of matter is in equilib-

rium, it would also be so, if the whole or any part of it were

enclosed in an envelop as supposed; therefore the conditions of

equilibrium for a mass thus enclosed are the general conditions

which must always be satisfied in case of equilibrium." The use

of such an envelop ensures that the volume of the system remains

constant and that no heat is received from or given up to any

outside bodies. Since a system which is in equilibrium cannot

undergo any irreversible change, its entropy must, under these

conditions, remain constant.

In the first place, the conditions relating to the equilibrium

between initially existing homogeneous parts of the mass are

examined; the conditions for the formation of masses unlike

any previously existing are discussed in a later section.

10. Conditions of Equilibrium When the Component Substances

Are Independent of Each Other. \ Let the energies of the

separate homogeneous parts of the system be e', e" etc.

Gibbs, I, 62-70.

t Gibbs, I, 62^67.
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According to (44), the variation of the energy of the first

homogeneous part tlirough a change of entropy, or of volume,

or by a change of its mass, is

de' = t'dt)' - v'dv' + ju/c^mi' + tii'dm^' . . . + y.n'dmn'- (62)

We will first suppose that the components *Si, &, . . . Sn are

chosen so that dnii, dm^', . . . drrir! are independent and

express every possible variation in the composition of the

homogeneous mass considered. With regard to this choice of

components, we may note that if drrii, dnii etc. are all inde-

pendent, the number of components is evidently the minimum

by which every possible variation can be expressed. Further,

some of the terms in (62) may refer to substances which are not

present in the mass considered, but are present in other parts

of the system. If a component Sa is present in the homogeneous

mass considered, so that its quantity ma may be either increased

or decreased, it is termed an actual component of the given mass.

But if a component Sb is present in other parts of the system, but

not in the homogeneous mass considered, so that it is a possi-

bility that its quantity mb can be increased but not decreased,

it is termed a possible component of the given mass.

We will first consider the case in which each of the component

substances Si, 82,- --Sn is an actual component of each part

of the system. The condition of equilibrium of the matter

enclosed in the envelop, since its entropy cannot vary, is that its

energy cannot decrease in any possible variation. Thus if

5e', 5e", etc. represent the change of energy of different parts of

the system in a variation of the state of the system, the con-

dition of equilibrium is

de' + 66" + 8t"' + etc. ^ (63) [14]

for all possible variations. Writing out the values of these

variations in full, we have:

t' 8r}' — p' y + ill 8mi + H2 8m2 . . . + Mn'5m„'

-\-t"8r," - p"8v" + y.i"8mx" -\- ii2"8m2" . . . + iin"8mn"

+ etc. ^ (64) [15]
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for all possible variations which do not conflict with the condi-

tions imposed or necessitated by the nature of the case. These

conditions may be expressed in the following equations, which

are termed the equatio7is of co7idition.

(1) The entropy of the whole system is constant; or

bri' + h-n" + hri'" + etc. = 0, (65) [16]

(2) The volume of the whole system is constant; or

bv' + bv" + bv'" + etc. = 0, (66) [17]

(3) The total mass of each component is constant; or

bmi' + bnii" + 5mi'" + etc. = 0,

^

bm2' + bnii" + 5m2'" + etc. = 0,

bnin' + bnin" + bnin'" + etc. = 0.
^

(67) [18]

Now since all the quantities like brj', bv', bmi, . . . brtin may be

either positive or negative, the left-hand side of (64) is only incap-

able of having negative values when (65), (66) and (67) are sat-

isfied, if

t' = t" = t'" = etc.

p' = p" = p'" = etc.

Ml = Ml = Ml — etc.

M2' = M2" = M2'" = etc.

Hn = fin — IJ'Ti — etc.

(68) [19]

(69) [20]

(70) [21]

For example, consider the terms ixi'bmi + ixi'bmi" + iix"bmi"

-f etc. Since

6mi' + bmi" + bmi'" + etc. = 0,

it follows that

Mi'6wi' + ii,"bnh" + ixx"'bmi"' + etc. =

(71)
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if iJLi = Hi" = Hi", etc. But if ni" were greater than hi, hi'",

etc., there would be variations of the state of the system (if

Hi" is positive, those for which 8mi" is positive) which satisfy

(71), but for which

Hi8mi' + Hi'^mi" + Hi"5mi"' + etc. > 0.

But since the quantities Snii, 8mi", etc., may be both positive

and negative, there are similar variations in which all these

quantities have the opposite sign and for which

Hi8mi' + Hi'^rrii" + Hi"^mi"' + etc. < 0.

The same considerations apply to the other sets of terms of the

types thy], p8v, H^8m2, etc., so that we may conclude that if (64)

holds for all possible variations which satisfy (65), (66) and (67),

the equalities (68), (69) and (70) must be satisfied.

Equations (68) and (69) express the conditions of thermal and

mechanical equilibrium, viz., that the temperature and pressure

must be constant throughout the system. Equations (70),

which state that the value of h for every component must be

constant throughout the system, are "the conditions character-

istic of chemical equilibrium." Gibbs calls the quantities

Hi, H2, etc., the potentials of the substances Si, Si, etc., and ex-

presses the conditions (70) in the following statement: "The

potential for each component substance must he constant throughout

the whole mass."

We will now consider the case in which one or more of the

substances Si, S2,-.. Sn are only possible components of some

parts of the system. Let S2 be a possible component of that

part of the system distinguished by ("). Then 8mi" cannot

have a negative value, so that equation (64) does not require

that H2" shall be equal to the value of H2 for those parts of the

system of which S2 is an actual component, but only that it

shall not be less than that value. For if H2" were greater than

Ma'i Hi"', etc., the sum of the terms

fii'Snh' + iJ,2"8nh" + iX2"'8m2"' + etc.

would be positive if 8m2" were positive, but since 8m2" cannot

be negative, this expression can never have a negative value.

The condition of equilibrium (64) is therefore satisfied.
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In this case, Gibbs therefore writes the conditions of equilib-

rium (70) in the following way:

"
Ml = Ml

for all parts of which Si is an actual component, and

Ml ^ Ml

for all parts of which Si is a possible (but not actual)

component,

M2 = M2 ! (72) [22]

for all parts of which S2 is an actual component, and

M2 ^ M2

for all parts of which >S'2 is a possible (but not actual)

component,

etc..

Ml, M2, etc., denoting constants, the value of which is only

determined by these equations."

When a component is neither an actual nor a possible com-

ponent of some part of the system, the terms /idm and 8m,

which refer to this component in that part of the system of which

it is neither an actual nor a possible component are absent from

(64), and from the equations of condition (67). The condi-

tions of equilibrium are otherwise unaffected. "Whenever,

therefore, each of the different homogeneous parts of the given

mass may be regarded as composed of some or of all of the same

set of substances, no one of which can be formed out of the

others, the condition which (with equality of temperature and

pressure) is necessary and sufficient for equilibrium between the

different parts of the given mass may be expressed as follows :

—

The potential for each of the component substances must have a

constant value in all parts of the given mass of which that substance

is an actual component, and have a value not less than this in all

parts of which it is a possible component.''

11. Conditions of Equilibrium When Some Components Can
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Be Formed Out of others* If the substances Si, S2,. . -Sn are

not all independent of each other, i.e., if some of them can be

formed out of others, the number of components is no longer

the minimum number in terms of which every possible variation

of the state of the system can be expressed. For example, if

the system contains a solution of sodium chloride in water in

equilibrium with the sohd hydrate, NaCl-H20, it may be

convenient to regard the hydrate as a component, as well as

sodium chloride and water. Every independent variation of

the system can be expressed in terms of the tw^o components

sodium chloride and water, but these two components are not

independently variable in the sohd hydrate. Their ratio is

fixed.

Consider a system containing, in addition to other sub-

stances, water, sodium chloride and the solid hydrate NaCl-H20,

and let the components Si, S2 and S3 be water, sodium chloride

and the hydrate respectively. We will suppose that the other

components S4,... Sn are independent of each other. The

general condition of equilibrium, which may be written more

briefly in the form

2^577 - Ipdv + 2mi5toi + 2M25m2 . . . + ^UrMn ^ (73) [23]

still holds, but the equations of condition

25mi = 0, S5m2 = 0, S5m3 = 0, (74) [24]

do not necessarily hold, since the total amount of water and

sodium chloride in the system may decrease and the total

amount of the hydrate may increase. It is therefore necessary

to replace (74) by equations representing the relation between

the quantities of these substances. Thus, if b grams of sodium

chloride combine with a grams of water to form (a + 6) grams

of the hydrate, the quantity (Sms) of the hydrate contains

7 (dms) of water, and for the constancy of the actual total
a + 6

am.ount of water in the system (i.e., the sum of the amount of

* Gibbs, I, p. 67, line 24; p. 70, line 9.
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the component water and the amount of water contained in the

component, hydrate), the equation

25wi + —7-7 S5m3 = (75) [25]

must hold.

Similarly the equation

25w2 + —n 25m3 = (76) [25]
a -\-

expresses the constancy of the sum of the amount of the com-

ponent sodium chloride and the amount of sodium chloride

present in the hydrate. The other equations of condition,

2577 = 0, Xdv = 0, 257^4 = 0, etc. (77) [26]

will remain unchanged.

We may first consider variations of the system which satisfy

(74). Such variations evidently satisfy (75) and (76) and

constitute some, but not all of the variations of which the

system is capable. Equation (73) must hold for such varia-

tions, so that all the conditions of equilibrium, (68), (69) and

(72) must apply to this case also. Therefore in (73), /xi, /X2, Ms

have constant values Mi, M2, Ms in all parts of the system of

which Si, S2 and S3 are actual components. In the general

case, when these conditions are satisfied (73) reduces to

Mi25mi + ikfaSSwa + MsSSms ^ 0*. (78) [27]

* The proof of the equivalence of (78) with (73), given by Gibbs, may
be stated as follows. When conditions (68), (69) and (72) are satisfied,

and so long as 5m is zero for every substance in all parts of the system of

which that substance is not an actual component, i.e., for all terms in

(73) involving a value of m which may be greater than the corresponding

value of M, we may write (73) in the form

tE5v — pSSy + MiS5mi + M225m2 + MzHbrnt + Mi'L&nn . . . + M„S5to„ ^ 0,

and since

S67; = 0, 'Lhv = 0, S5m4 = 0, etc.,
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We may eliminate ZSnii and 25w2 from this equation, by means
of the equations of condition (75) and (76), so that it becomes

-aMiXdniz - hMi^Lbrm + (a + b)M3X8mz ^ 0, (79) [28]

so that, as XSms may be either positive or negative,

-aMi - hMi + (a + 6)^3 = 0,

or

aAfi + 6M2 = (a + h)Mz. (80) [29]

The relation between the values of the potentials, each of which

is determined in a part of the system of which the substance

concerned is an actual component, is thus:

am + &M2 = (a + h)iiz. (81)

In a more general case, suppose that the system may be

considered as having n components Si, 82,- Sn, of which

Sk, Si, etc. can be formed out of the components Sa, Sb, etc.,

according to the equation:

a<Ba + /3®6 + etc. = /c®,. + X©i + etc., (82) [30]

where <Sa, @6, ©a, ®z, etc., denote the units of mass of the sub-

stances Sa, Sb, Sk, Si, etc., and a, jS, k, X, etc., the numbers of

these units which enter into the relation. Then, as before,

(73) will reduce to

M„26ma + Mb^bMb + etc + Mk'Ednik

+ MiZSmi + etc. ^ 0. (83) [31]

It is evidently possible to give 25Wa, S5m6, ^8mk, ^dnii, etc.,

values proportional to a, 13, —k, —X, etc., and also to the same

this reduces to

MiS5mi + M22dm2 + MsSSjms ^ 0. (78)

The limitation of values of 5m to zero, whenever they refer to parts of

which the component in question is not an actual component, does not
aflfect the range of possible values of SStoi, SSmj and S5wj and may be
disregarded.
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values taken negatively; therefore

aMa + ^Mb + etc - KMk — \Mi - etc =0,

or,

aMa + ^Mb + etc = KMk + \Mi -\- etc (84) [33]

The relation between the quantities Ma, Mb, etc., is thus of

the same form as that between the units of the component

substances (82). These relations take a very simple form if we
employ as the unit quantity of each substance, its formula-

weight in grams. Thus if we take as unit quantities of water,

sodium chloride and the hydrate, NaCl-H20 the quantities in

grams represented by the symbols H2O, NaCl and NaCl • H2O,

the relation between these substances is represented qualita-

tively and quantitatively by the equation.

H2O ^- NaCl = NaCl-HaO.

With this choice of units, (84) becomes

^HjO + -^NaCl = -^NaClHzO-

Therefore the values of mhjOj MNaCi ^^^ A'NaCiH20 for these sub-

stances, in parts of the system of which they are present as

actual components, are related by the equation

MH2O + MNaCl = MNaClHjO'

Similarly, if the substances hydrogen chloride, oxygen, water

and chlorine are components of a system when the unit of quan-

tity of each substance is the quantity (in grams) represented by

its chemical formula (82) becomes

2HC1 + ^02 = H2O -f CI2,

and equation (84) takes the form

2Mhci + hMo, = Mu,o + ^ch-

Thus the values of /i in parts of the system of which these sub-

stances are present as actual components, are related by the
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equation

2mhC1 + 2MO2 — MH20 + MCI2 >

and this is evidently the relation between the /x's in a gaseous

mass containing all four components. In this case we may-

observe that if the gram were taken as the unit mass of aU four

substances, the relation between the components would be

(approximately)

73 @a + 16 ©6 = 18 ©ft + 71 ©,,

where <Sa, ®6, ©*, ®z represent one gram of hydrogen chloride,

oxygen, water and chlorine, respectively; and (84) would take

the form

73 Ma + 16 Mb = 18 Mk + 71 Mr,

or,

73 Ha + 16 jUb = 18 Hk + 71 Hi,

where the value of /x for each substance is that in a part of the

system in which it is present as an actual component.

Again, the four substances magnesium chloride, potassium

sulphate, magnesium sulphate, potassium chloride, may be

regarded as components of a solution made by dissolving mag-

nesium chloride and potassium sulphate in water, since the last

two may be formed out of the first two according to the equation

MgCl2 + K2SO4 = MgS04 + 2KC1.

K the units of quantity of the four substances are the quantities

represented by the symbols MgCl2, K2SO4, MgS04 and KCl,

(84) takes the form

-^MgCla + -^K2S04 = -^MgSO* + 2 M^Ch

so that the potentials in the solution are related by the equation

/^MgCh + MK2SO4 — MMgSO* + 2 mkci-

Gibbs shows that if there are r independent relations similar
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to (82) between the components, >Si, S2,. . . Sn, r equations

similar to (84) must be satisfied in addition to the general con-

ditions (68), (69) and (72), provided that each of the compo-
nents Si, 82,- . . Sn is an actual component of some part of the

system.

But it must be understood that a relation between the com-
ponents such as (82) implies not merely the chemical identity of

the substances represented, but also that the change of the

substances represented by the left hand member into the

substances represented by the right hand member can occur in

the system and is not prevented by passive resistances to

change. For example, in a system containing water and free

hydrogen and oxygen, at ordinary temperatures, the combina-

tion of hydrogen and oxygen to form water is prevented by
"passive resistances to change," so that we cannot write

l®H + 8©o = 9 ©^4,

as a relation between the components, for under these conditions

there can be no change in the amounts of water in the system in

any possible variation of its state. Water must therefore be

treated as an independent component and there will be no

necessary relation between the potential of water and the

potentials of hydrogen and oxygen.

12. Effect of a Diaphragm {Equilibrium of Osmotic Forces) *

Consider the equilibrium between two homogeneous fluids,

separated by a diaphragm which is permeable to some of the

components and impermeable to others. Suppose that the two
fluids are enclosed in a rigid, heat-insulating envelop as before,

but that they are separated by a rigid, immovable diaphragm.

We shall distinguish quantities which refer to the two sides of

the diaphragm by single and double accents.

As before, the total entropy of the system is constant, i.e.,

dv' + 8v" = 0, (85) [72]

and the total quantities in both fluids of those components.

* Gibbs, I, 83-85.
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Sh, Si, etc., which can pass through the diaphragm, is constant,

i.e.,

dmh' + 87nh" = 0, dm/ + 6m /' = 0, etc., (86) [75]

but the quantities of those components, Sa,Sb, etc., which cannot

pass through the diaphragm must be constant in each fluid,

i.e.,

8ma' = 0, 8ma" = 0, dnib' = 0, 8mb" = 0, etc., (87) [74]

and the volume of the fluid mass on each side of the diaphragm

must be constant, i.e.,

8v' = 0, bv" = 0. (88) [73]

The general condition of equilibrium (64), which takes the form

t'bt]' — p'bv' + Ha'dMa + Hhbrrih . . - + Hh'bmi,' + Hi'dnii . . .

+t"8v" - p"8v" + ^a"8ma" + fJLb"8mb" . . .

+ fjiH"8mH" + tii"8mi" ... ^0,

will now give the following particular conditions:

(1) t' = t", (89) [76]

(2) m;/ = m;.", m/ = Mi", etc., (90) [77]

if Sh, Si, etc., are actual components of both fluids; but it is

not necessary that

V' = V", (91)

or

tia' = Ma", Mb' = Mb", etc. (92)

Thus the values of the potentials of components which are

present on both sides of the diaphragm and which can pass

through it must be equal, but it is not necessary that the pres-

sures, or the values of the potentials of those substances to

which the diaphragm is impermeable, shall be the same in the

two fluids.
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Gibbs points out that these conditions do not depend on the

supposition that the volume of each fluid mass is kept constant.

The same conditions of equiUbrium can easily be obtained, if we

suppose the volumes variable. In this case the equilibrium

must be preserved by external pressures P', P" acting on the

external surfaces of the fluids, equal to the internal hydrostatic

pressures of the liquids p', p". Suppose that external pressures

P' and P" are appUed to the two fluids, which are separated by

an immovable diaphragm, in some such arrangement as Figure 1.

When the volume of the fluid (/) increases by 8v' work is done

against the external pressure P' and the energy of the source of

this pressure is increased by P'8v'. Similarly when the volume

of fluid (//) is increased by 8v", the energy of the source of the

P'
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Si only, it is necessary for equilibrium that f = t" and m' =

Hi", but not that ii2 = /X2", or that p' = p". The difference of

hydrostatic pressure on the two sides of the membrane which is

necessary to preserve equilibrium is the osmotic pressure of the

solution, and is that which is required to make the value of

potential of Si m the solution the same as its value in the

solvent. We shall calculate its value in simple cases in a later

section.

V. Coexistent Phases

13. The Phase Rule* The variation of the energy of a

homogeneous body, containing n independently variable com-

ponents, has been expressed by the equation

:

dt = tdr\ — pdv + indrtii + /X2c?m2 ... + HndiUn. (95)

In this equation, there are altogether 2n + 5 variables, viz.,

mi, rrhj . . . w„,

/Xi, /i2, ... Hn,

and €, t, 77, p, V.

These quantities are not all independent, for the n -\- 2 quanti-

ties, t, p, jjLi, M2, • • • Mn can be derived from the original equation by

differentiation. Thus, the equations

\t) = ^' C/l = - V,
y^V/v, Tni,...mn \^^/ V, nn,...mn

i
= Hi, etc.

nil,., .mn

give us n -(- 2 independent relations between the 2n -\~ 5 vari-

ables. The original equation (95) is an additional relation, so

that if € is known as a function of 77, v, rrii,. . .nin, there are

altogether n -f 3 known relations between the 2n -f 5 variables

and the remainder, n -(- 2 in number, are independent.

The homogeneous body may thus undergo n + 2 independent

Gibbs, I, 96-97.
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variations, e.g., the quantities m,i,...m„, r?, v may be varied

independently of each other. But if they are all varied in the

same proportion, the result is a change in the amount of the

body, while its state and composition remain unchanged. A
variation of the state or composition of the body involves a

change in at least one of the ratios of these quantities. There

are n + 1 independent ratios of these n -\- 2 quantities

(e.g., the ratios mi/v, m^/v,. . .m„/v, rj/v) so that the number

of independent variations of state and composition of a homo-

geneous body is n + 1.

Gibbs calls a variation of the thermodynamic state or com-

position of a body, as distinguished from a variation of its

amount, a variation of the phase of the body. In a heterogene-

ous system, such bodies as differ in composition or state are

regarded as different phases of the matter of the system, and all

bodies which differ only in quantity or form as different examples

of the same phase. Thus we may say that the number of inde-

pendent variations of the phase of a homogeneous body which

contains n independent components is n + 1.

Consider a system of r phases each of which has the same

v. independently variable components. The total number of

independent variations of the r phases, considered separately,

is (n + l)r. When the r phases are coexistent these variations

are subject to the conditions (68), (69) and (70), i.e., to

(r — 1) (n 4- 2) conditions. The number of independent vari-

ations of phase of which the system is capable is therefore

% = (n + l)r - (n + 2) {r - 1) = n - r + 2. (96)

The integer ^5 has been called the number of degrees of freedom

of the system.

This relation, which is now known as the phase rule, holds

even if each phase has not the same n independently variable

components. For if a component is a possible, but not an

actual, component of some part of the system, the variation,

bm, of its quantity in that part, can only be positive, whereas

in the previous case it can be either positive or negative, and

instead of the equality /x = Af, we have the condition n ^ M.
The number of independent variations of the system is there-
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fore unaltered. When a component is neither an actual nor a

possible component of some part of the system, the total

number of variations of the phases, considered separately, is

one less than {n -\- l)r and, since there is no condition as to the

potential of this component in the part of the system of which it

is not a possible component, the number of conditions is also

reduced by one. Finally we may consider the case in which

some of the components can be formed out of others. Let n,

as before, be the number of independently variable components

of the system as a whole, and let n + /i be the total number of

substances which are regarded as components in various parts of

the system. If all these latter components were independent,

the number of degrees of freedom of the system would be

n + A — r + 2. But, since they are not independent, there are

h additional equations between their potentials similar to (84),

corresponding to h equations representing the relations between

the units of these substances. The number of independent

variations of the system, therefore, is still n — r -{- 2.

Gibbs deduced the phase rule more concisely by the following

considerations, "A system of r coexistent phases, each of

which has the same n independently variable components is

capable of n + 2 — r variations of phase. For the temperature,

the pressure, and the potentials for the actual components have

the same values in the different phases, and the variations of

these quantities are by [97] subject to as many conditions as

there are different phases. Therefore, .... the number of inde-

pendent variations of phase of the system, will he n -\- 2 — r.

"Or, when the r bodies considered have not the same independ-

ently variable components, if we still denote by n the number of

independently variable components of the r bodies taken as a

whole, the number of independent variations of phase of which

the system is capable wUl still he n -\- 2 — r. In this case, it

will be necessary to consider the potentials for more than n

component substances. Let the number of these potentials be

n -\- h. We shall have by [97], as before, r relations between

the variations of the temperature, of the pressure, and of these

n -{• h potentials, and we shall also have . . . . h relations

between these potentials, of the same form as the relations
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which subsist between the different component substances,"

(that is, the variations of the n + /i + 2 quantities, viz.,

n -\- h potentials, and temperature and pressure, are subject to

r -^ h relations).

We may illustrate the phase rule by reference to systems

containing a single component (w = 1). If there is only one

phase, |5 = 2, i.e., the temperature and the pressure may be

varied independently. If there are two phases, e.g., liquid and

vapor, only one independent variation of phase is possible, so

that the temperature and the pressure cannot be varied inde-

pendently of each other. A variation of the temperature

involves a necessary variation of the pressure, if the two phases

are to remain in equilibrium. If there are three phases of the

substance, ^^ = 0, i.e., it is impossible to vary either the tem-

perature or the pressure while the three phases remain. The

conditions under which three phases of the same substance

can coexist are thus invariant. Gibbs remarks that "it seems

not improbable that in the case of sulphur and some other sub-

stances there is more than one triad of coexistent phases" (a

prediction which has been verified in numerous cases), "but it is

entirely improbable that there are four coexistent phases of any

simple substance."

14. The Relation between Variations of Temperature and

Pressure in a Univariant System* According to (96), a system

of r = w + 1 coexistent phases has one degree of freedom. The

pressure and the temperature cannot therefore be varied inde-

pendently and there must be a relation between a variation of

the temperature and the consequent change of pressure.

We will first consider a system of one component in two phases,

e.g., liquid and vapor. The variations of each phase must

be in accordance with (56), so that we may write

v' dp' = rj' dt' + m' dfi' ,1 .Q_s

v"dp" = v"dt" + m"diJL".j ^ ^

If the two phases are to remain in equilibrium,

dp' = dp", dt' = dt", dp' = dtx".

* Gibbs, I, 97-98.
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Therefore, eliminating djj.' from (97), we have

(vW - v"m')dv = Wm" - rj"m')dt,

or

dp r\'m" — r]"m'

dt v'm ' — V m (98) [131]

If we consider unit quantity of the substance in each of the two

phases, we may put m' = 1 and m" = 1, so that (98) becomes

d'p

dt

Now,

where Q is the heat absorbed when a unit of the substance

passes from one state to the other, at the same temperature and

pressure, and v" — v' is the corresponding change of volume.

Thus, we obtain the Clapeyron-Clausius equation :*

dv Q

-n'
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There are thus n + 1 Hnear equations between the w + 2

quantities dp, dt, dm, . . . dun, by means of which the n

quantities, d^y dm, . . . dy.n can be eliminated. We thus obtain,

in the notation of determinants:

v' mi rrii . . . w/

v" my" m^" . . . m„''

v'" mi'" mi'" . . . mn'"

dp =

r\' mi m^' . . . w„'

t]" mi" W2" . . . w„"

7/ mi m% . . . 7/in

dt. (101) [129]

As a simple example, we shall work out the application of this

equation to a system containing as separate phases, calcium

carbonate, lime and carbon dioxide. The two components

lime and carbon dioxide are sufficient to express every possible

variation of the system. Let the entropies, volume and quan-

tities of the phases be specified as follows.

Volume
Entropy
Quantity of carbon dioxide.

Quantity of lime

Gas
phase
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ate, we shall have

m/ = mi" = h, and 1712" = W2'" = a,

and (102) reduces to

dp ^ v'" - V - v" ^ _Q_
dt v'" -v' - v" t.Av ^ ^

where Q is the heat absorbed when a quantity a + 6 of calcium

carbonate is dissociated into lime and carbon dioxide at the

same temperature and pressure, and Av is the increase of volume

in the same change. For rj'" — r\ — r\" is the difference be-

tween the entropy of a quantity (a + 6) of calcium carbon-

ate, and that of the quantities a of lime and 6 of carbon di-

oxide. Q = tij]" — v' — v") is thus the heat absorbed in

the dissociation of the calcium carbonate.

When the number of potentials considered in various parts

of the system is n + h, there will be h independent relations

between them, by means of which the variations of h of the

potentials may be eliminated from the equations of the form of

(100) in which they occur. We may thus obtain n + 1 equa-

tions between the n potentials of the independently variable

components of the system as a whole.

IS. Cases in Which the Number of Degrees of Freedom is

Greater Than One* (a) Systems of Two or More Components

in Two Phases. We will consider first the case of two inde-

pendent components in two phases. We shall have two equa-

tions similar to (100), one for each phase:

y' dp = T]' dt -\- mi dni + mz dm,

v"dp = v"dt + mi"dni + m2"dfjL2. (104)

Eliminating d/x2 from these equations, we obtain:

(vW - v'W)dp = Wm^" - v"m2')dt

+ (ini'nh" - mi"rrh')dni, (105)

* Gibbs, I, 99-100.
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i.e., the system can undergo two independent variations, in

accordance with (96). Now if the proportions of the two com-

ponents are the same in the two phases, i.e., if

m.\ mi"

nh' nii"

the coefficient of dju in (105) is zero, so that

{v'm" - v"mi')dv = Wni2" - n"m')dt, (106)

i.e., the same relation between dp and dt holds, as for a single

component. For example, in the equilibrium between ammo-
nium chloride and its vapor, the latter may contain ammonia

and hydrogen chloride, formed by dissociation. These two

substances may be regarded as the independently variable

components of the system, but if no excess of either of them is

added the ratios of their amounts are the same in both phases.

Then (106) holds, so that the system behaves as if it had a

single component.

When there are n independent components in the two phases,

then in the absence of any restriction on their proportions the

number of degrees of freedom is ^^ = n -f 2 — 2 = n. But

when the quantities of all components are proportional in the

two phases, the equality of the n — 1 ratios of m/, rth', . . . m„'

with the n — 1 ratios of m/', mz', . . . mn" gives n — 1 additional

conditions, so that the number of degrees of freedom is reduced

to one and there is a relation similar to (106) between the

variations of temperature and pressure.

Again, in a system of two components in two phases, at

constant temperature, (105) becomes

dp mi' m^" — mi"W
T~ = ~'

T,

—
-77 r •

(107)
dm V m2 — V m^

If the proportions of the two components are the same in the

two phases, the numerator of the fraction on the right is zero, so

that

dp

dm
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Thus, at constant temperature, the pressure is in general a

maximum or a minimum when the composition (i.e., the pro-

portions of the two components) of the two phases is identical.

Similarly, it can be shown that, at constant pressure, the tem-

perature of the two coexistent phases is in general a maximum
or a minimum when the composition of the two phases is

identical.

Applying these relations to the equilibrium between a binary

liquid and its vapor, we see that (1) at constant temperature

the vapor pressure is a maximum or a minimum when the

vapor has the same composition as the liquid, and (2) the

% Benzene

Fig. 2

100

temperature at which the two phases are in equilibrium at

constant pressure, i.e., the boiling point, is a maximum or a

minimum when the composition of the two phases is identical.

These rules were arrived at independently by Konowalow.*

As an example of this behavior. Figure 2 shows the boiling

points and compositions of the liquid and vapor phases of

ethyl alcohol and benzene.

Similarly, the temperature at which a binary liquid is in

equilibrium with a solid phase, which may be a solid solution of

the same components (mixed crystals) or a compound of

* Wied. Annalen, 14, 48, (1881).
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invariable composition, is a maximum or a miaimum, for

constant pressure, when the two phases have the same com-
position. Examples of this behavior are shown in Figures

% lodobenzene
Fig. 3

100

V 10 9 Q 7 6 5 4 3 2

Composition ofsolution ( Hz o/FeCli)

Fig. 4

3 and 4. Figure 3 shows the compositions of the solutions and

mixed crystals of bromobenzene and iodobenzene which are in

equilibrium with each other (at constant pressure) at different

temperatures. The composition of the two phases is the same
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when the temperature is a minimum. Figure 4 shows the

conditions under which aqueous solutions of ferric chloride are

in equilibrium with various solid compounds of the same
components. A maximum in the temperature-composition

curve occurs when the liquid phase has the same composition

as the solid compound with which it is in equilibrium.*

(6) Systems of Three Components in Three Coexistent Phases.

In this case, we have three equations similar to (100):

v' dp = 7]' dt + mi djxi + tn^' dm + mz dm,

v" dp = If]" dt + mi" dm + m2" dm + mz' dm,

v'"dp = r)"'dt + mi'"dm + m2"'dm + mz"'dm,,

from which, by eliminating dm and dm, we obtain:

(108)

v' mi m^
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Since similar equations can be obtained for the other com-

ponents, the pressure will thus in general be a maximum or a

minimum at constant temperature, and the temperature a

maximum or minimum at constant pressure when the foregoing

condition is fulfilled.

For example, the three components water, alcohol, salt may
give rise to a system of the three phases, solid, salt-solution,

vapor. When the composition of the solution is such that it

can be formed by combining quantities of the salt and the

vapor, i.e., when the proportions of alcohol and water in the

vapor are the same as in the solution, the pressure is a maxi-

mum or a minimum at constant temperature. Again, in the

three component system; potassium sulphate, aluminium

sulphate, water; with the three phases, viz., solid potassium

alum, solution, vapor, the vapor pressure is a maximum or a

minimum when the solution can be formed out of the solid salt

and the vapor, i.e., when it contains the two salts in the same

proportions as in the solid phase.

VI. Values of the Potentials in Very Dilute Solutions

16. A Priori Considerations * We may draw some con-

clusions as to the values of the potentials in a homogeneous

mass, when the quantity of one of the components is very

small, from the form of (56). Applying this equation to a

homogeneous mass having two independently variable com-

ponents, we obtain, when t, p and nii are constant

m(^) +n,J^) =0. (110) [210]

When TUi = 0, this equation requires that either

(P)
= 0, (111) [211]

mi

or
'

d\x

(
, .

=00. (112) [212]
dm^/

1, p, m,

*Gibbs, I, 135-138.
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We can distinguish between these possibilities by making use of

a proposition which we shall obtain in a later section,* viz., that

when t, p, and 1712 are constant, ni is an increasing function of

mi. We shall now consider two cases.

(a) Mi Is Capable of NegativeAsWellAs Positive Values. Thus

if we regard the hydrate FeCls • 6H2O (*Si) and anhydrous ferric

chloride {S2) as the components of a solution of ferric chloride

and water, the amount of ferric chloride will be negative in

solutions containing a smaller proportion of ferric chloride than

the hydrate itself and positive in solutions containing a greater

proportion. We may add the hydrate Si to solutions for which

the amount of ferric cliloride is either negative or positive. In

both cases ^ti is increased. Therefore ^ui must be a maximum
when the mass consists wholly of Si, i.e., when Wa = 0. There-

fore, if ?ri2 is capable of negative as well as positive values.

(3, -«.
p, t, mi

when m2 = 0.

(6) rrii Is Capable Only of Positive Values. For example, if

water {Si) and ferric chloride {S2) are regarded as the components

of the solutions, m^ cannot have negative values. The potential

of water {m) must increase when water is added to a ferric

chloride solution, and therefore decrease when ferric chloride is

added to the solution. Thus, in the limiting case when nh =

0, the value of the differential coefficient in (111) cannot be

positive.

Gibbs points out that "if we consider the physical signifi-

cance of this case, viz., that an increase of rrh denotes an

addition to the mass in question of a substance not before con-

tained in it," there does not appear "any reason .... for supposing

that this differential coefficient has generally the value zero." Sup-

pose that we have a mass of water in equilibrium with ice. The
addition of a salt to the water will destroy the possibility of this

equilibrium at the same temperature and pressure and, if the

temperature and pressure are kept constant, the liquid will

See page 167.
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dissolve the ice. Similarly the addition of a salt to water

causes a decrease in the pressure of water vapor which is in

equihbrium with the hquid at the same temperature. Both

phenomena show "that m (the potential for water in the liquid

mass) is diminished by the addition of the salt, when the tem-

perature and pressure are maintained constant. Now there

seems to be no a priori reason for supposing that the ratio of

this diminution of the potential for water to the quantity of the

salt which is added vanishes with this quantity. We should

rather expect that, for small quantities of the salt, an effect of

this kind would be proportional to its cause, i.e., that the differ-

ential coefficient in [211] would have a finite negative value for

an infinitesimal value of vi2. That this is the case with respect

to numerous watery solutions of salts is distinctly indicated by

the experiments of Wtillner* on the tension of the vapor yielded

by such solutions, and of Rlidorfff on the temperature at which

ice is formed in them; and unless we have experimental evidence

that cases are numerous in which the contrary is true, it seems

not unreasonable to assume, as a general law, that when nh has

the value zero and is incapable of negative values, the differ-

ential coefficient in [211] will have a finite negative value, and

that equation [212] will therefore hold true." We may observe

that the truth of this law has been confirmed by numerous

more exact experimental investigations.

The change of mi caused by the addition of a small amount

drrh of S2 is evidently inversely proportional to the amount

(mi) of Si, so that we may write, in the limiting case, when

W2 = 0,

P) = - -' (114)
(

where A' is positive and independent of mi.

Then, by (110),

m2
\dm-ijt. p. m,

* Pogg. Ann., 103, 529 (1858); 105, 85 (1858); 110, 564 (1860).

t Pogg. Ann., 114, 63 (1861).
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i.e.,•>

(jT^^) = ^'- (115) [214]
\d log W2/t. p. m,

The integral of this equation may be put in the form

Bm-2
M2 = A'log ' (116) [215]

mi

where B, like A', is independent of W2 and Wi. This equation

holds for such small values of rrii/mi that d\L\ldmi in (111) has

the same value as in the limiting case when m2 = 0. In such

cases mi/y may be regarded as constant and we may write

/i2 = A' log '

or

M2 = C + A' log T/iaA, (117)

where

Cwi/y = 5, and C = A' log C.

Suppose that the independently variable components of a

homogeneous body are Sa,--. Sg and Sh, and that the quantity

of Sk is very small compared with the quantities of Sa,- . S,

and is incapable of negative values. Then, by an extension of

the argument, it can be shown that

a

M. = A,' log^\ (118)

but Ah and Ch may be fimctions not only of the temperature

and pressure but also of the composition of the "solvent"

(composed oi Sa,. . .Sg) in which Sh is dissolved. If another

component Si is also present in very small amount, it is reason-

able to assume that the value oi nh and therefore those of Ah and

Ch are nearly the same as if it were absent. Thus the potentials

of components Sh,. . • Sk, the quantities of which are very small
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compared with the quantities of Sa, . Sg, can be expressed

by equations of the form

, ,
, Chnih

Hh = Ah log

Ilk = Ak log

V

Ckirik
(119) [217] [218]

where A//, Ch. -Ak, Ck are functions of the temperature, the

pressure and the ratios of the quantities nia, . . . mg.

17. Derivation of the Potentials of a Solution from Their Values

in a Coexistent Vapor Phase* The part of the memoir which

deals with the values of the potentials in gases does not come

within the scope of this article, but since it is necessary for us to

show how the potentials of the volatile components of a solution

can be determined from the partial vapor pressures in a co-

existent vapor phase we must first give a short derivation of

the equation representing the variation of the potential of a

gas with its pressure.

According to the laws of Charles and Boyle the pressure,

volume and temperature of unit weight of a perfect gas are

related according to the equation

pv = at,

where a is a specific constant for each gas. For a weight m of

the gas, we have

pv = amt,

and since, according to Avogadro's law, equal numbers of

molecules of all perfect gases occupy the same volume at the

same temperature and pressure, this equation becomes

Amt , _
p. = — > (122)

where A is a universal constant and M the molecular weight of

the gas.

*Gibba, I, 164-165.
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Let f", f ' be the values of f for two states of the gas at the

same temperature t. By (26) we have

r - r = e" - t' - tin" - v') + P"v" - pV
= - t W -7?'), (123)

since the energy of a perfect gas at constant temperature is

independent of its volume, and the product pv is also constant.

In order to find the entropy change of the gas when its volume
changes from v' to v" at constant temperature, we have by (3)

idr] = pdv

and, introducing the value of p/t given by (122),

Am dv
dv = ^-- (124)

Integrating this from y' to v", we thus have

,, ,
Am

,
v" Am

, v' , ^,"-V = ^log---^log - (125)

or, inserting these values in (123),

Amt^ v"
, Amt

, v'

^ +l^'°8,I = f +-M '°«» = ™'^.

where C is a constant, which is a function of the temperature.

The value of ^ for any volume v is thus given by the expression

Amt m
r = mC +— log-. (126)

and the potential of the gas is therefore

At m

or, by (122),

M = C + - log - (127)

At
M =m + - log p. (128)
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A perfect gas mixture is one in which there is no interaction

between the components, so that the energy is the sum of the

energies which each component would possess if present in the

same volume (and at the same temperature) by itself, and the

entropy and pressure the sum of the entropies and pressures of

the components separately under the same conditions.* In

such a perfect gas mixture it is evident that the potential of each

component is not affected by the presence of the other com-

ponents and may also be represented by (127).

When a liquid and a gaseous mass are coexistent, the poten-

tials of those components which are common to the two phases

must have the same values in each. Thus, if *S2 is an actual

component of coexistent liquid and vapor phases and its

concentration in the vapor is nii''^^ /v'^°\ its potential in the gas

phase, provided that the latter has the properties of a perfect

gas mixture, is given by the equation

^ ,

^t m^ (129)
M2 = ^2 + M^iO)

log
^(o) ,

and this is also the value of its potential in the liquid.

As an example of the determination of the potentials in a

liquid by means of a coexistent vapor phase, we may consider

a solution with two volatile components Si and Si. If the

partial pressures of the components in the vapor are pi and

P2, their potentials in the vapor by (128) are

At
/*! = /^(^) + ]^) log Vu (130)

At
M2 = fiit) -\- ^^^ log P2, (131)

where Mi^"\ Mi^'^'' are the molecular weights in the vapor.

These equations also give the values of the potentials in the

coexistent liquid phase. At constant temperature and total

applied pressure, applying (56) to the liquid phase, we have

mi dfii + Mi djXi = 0,

* A proof of this proposition is given by Gibbs (I, 155).
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At At
mi • -^^ dlogpi +nh • j^ d log pa = 0;

I.e.,

d log pi _ (WMa^
d log P2~ ~ (mi/Mi(«')

(132)

This equation was obtained by Duhem,* and may be used to

determine the partial pressures of one component of a binary

solution when the partial pressures of the other component are

known.

In many cases, when the concentration of a component

in the liquid phase is very small, the ratio of its concentrations

in the liquid and gaseous phases is constant at a constant

temperature (Henry's law), i.e.,

^2(^)/i;(^) = D (m2(«>A(''0, (133)

where Z) is a function of the temperature. In such cases,

substituting this value of W2^°V«^^*'^ in (129), we have

At rrh^^^

At nh^^'>

= ^^' + i^;^
log -^- (134)

Henry's law is not, however, a general law of nature. From a

consideration of cases in which it fails it has been shown to be

probable that it holds when the molecular weight of the solute is

the same in the vapour and in the solution. We may therefore

substitute M^*^^^ for M^'^^^ in (134). There is no reason to suppose

that the equation so obtained, viz.,

At m2^^^

M2 = Ca' + ^17717 log -TJ- (135)

Compt. rend., 102, 1449, (1886).
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does not hold in every case in which the amount of the component
is very small, provided that the proper value of the molecular

weight in the solution is employed. The difficulty arises here

that there is no independent method by which the molecular

weights in solution can be determined. The general validity of

(135) is based on the fact that it has been found to hold in a very

large number of cases in which M-/^'' is given the value to be

expected for simple molecules according to the chemical formula.

The cumulative effect of this evidence is so strong that in doubt-

ful cases the value of the molecular weight in solution may be

determined from (135) itself.

In deducing the limiting law of the variation of the potential

of a solute with its concentration we have considered a solute

having an appreciable vapor pressure. But there is no reason

to suppose that the behavior of involatile solutes is different

in this respect and we may regard (135) as generally applicable

to all components, the quantities of which cannot be negative

and which are present in very small amounts, provided that the

proper values of the molecular weights are used.

IS. Equilibria Involving Dilute Solutions. In the last chapter

of the first volume of the Collected Works (Gibbs I, Chap. IX)

is printed a fragmentary manuscript of a proposed supplement

to The Equilibrium of Heterogeneous Substances, in which Gibbs

shows that the laws of dilute solutions obtained by van't Hoff

from his law of osmotic pressure can be derived by making use of

equation (135) for the potential of a solute. It will be of interest

to give these demonstrations as examples of the application of the

method of Gibbs to specific cases. We will consider a dilute

solution formed by dissolving a small quantity, m2 grams, of a

solute aS'2, in Wi grams of a solvent Si. The molecular weight

of the solute in the solution is ilf2^^\ We will assume that the

potential of S2 in the solution is given by (135), so that under

these conditions, at constant temperature and pressure

At v_

^M2 = ^) • ± • d(^y (136)

(a) Osmotic Pressure. Suppose that this solution is separated

from a quantity of the pure solvent at the same temperature
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by a membrane which is permeable to the solvent, but not to the

solute. The difference of pressure on the two sides of the mem-
brane is the osmotic pressure of the solution. Let the potentials

of S\ and >S2 in the solution at the temperature t and the pressure

p' be Hi and ^2', and the potential of *Si in the solvent at the

same temperature and pressure y" be /i/'. For equilibrium

it is necessary that ^t/ = ni". All variations in the state of the

solution must satisfy (56), so that for constant temperature

dp' = y dni' + ^ dM2'. (137)

So long as the solution remains in osmotic equilibrium with the

solvent in its original state, din' = 0, so that

Wo'
rfp' = -7 duL2'. (138)

V

By (136)=

W , ,
At /W\

../ • aM2 = ,r (,.)
• d[ ^, I,

hence, integrating (138), we obtain

At TYli

Since — • 777^, is the pressure, as calculated by (122), of

m^ IMi^^'^ gram molecules of a perfect gas in the volume v' and

at temperature t, this equation expresses van't Hoff's law of

osmotic pressure.!

(6) Lowering of the Freezing Point. Consider the equilibrium

of the solution with a mass of the solid solvent. Applying (56)

* Strictly, -7- • dix-^ = —7 • r^

—

j—r - d —j -{ ;-•——• dp, but the
V V dinh/v') V V dp

last term vanishes at infinite dilution.

t Z. physikal. Chem., 1, 481 (1887). M. Planck also gave a derivation

of this law, Z. physikal. Chem., 6, 187 (1890).
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to the two phases, we have, for a variation of the solution, at

constant pressure,

= n'dt + mi'dm' + nh'dni', (140)

and for a variation of the soUd phase, at constant pressure,

= r,"dt + m/'d/xi". (141)

In order to preserve equiUbrium

so that if mi = mi", i.e., if we take quantities of the soUd and

of the solution which contain equal amounts of *Si,

W - v')dt = m'dfii'. (142)

Now, by (136),

Atv' /mA At
, ,^

so that, integrating (142), we obtain

AtW - V) ^^ =
^i^)

• ^2', (143)

where At is the change of temperature when the value of m^'

increases from zero to its value in the given solution. Thus

the lowering of the freezing point is

At mi' At^ rrii

- ^ - 7^7' • Mix-. = -Q- • <l^' ("*)

where

W - v") t

Q =
mi

is the heat absorbed in the melting of unit weight of the solvent

into the solution.!

* The term m^ — • dt, which vanishes when 7112' = 0, is neglected
at

here.

t van't Hoff, Z. physikal. Che?n., 1, 481, (1887).
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(c) Lowering of the Vapor Pressure of the Solvent by an

Tnvolatile Solute. Consider a mass of the solution in equilibrium

with the vapor, in which the quantity of the solute is in-

appreciable. At constant temperature we have, for a variation

of the solution,

dp = + ^ • (^/xi' + 7- • dn^', (145)

and for a variation of the vapor

m/
dp = + -jj- dm (146)

In order to preserve equiHbrium, dm' = dm", so that, sub-

stituting the value of dm given by (146) in (145) and putting

W2'
,

At m
and writing

7" = ^^'
mi

//

= 71 etc.,

we obtain

or

At
dp = ~, dp + j^^ dy2

,

7i

71'

— dp =

Thus, by integration,

7i
// At

71' - 71" M2^^^
^72'.

7i' At
Po-P = :;T3^-]^)-72,

(147)

(148)

where po is the value of p when 72' = 0. Since 71" is small in

comparison with 7/, we may write, approximately.

Po - p = 7i
n At

71' M2(^>
72
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and since

we have

ART. D

p t/
'

Ma^^) w/ ' Ma^^^'
(149)

i.e., the fractional lowering of the vapor pressure is equal to the

ratio of the numbers of molecules of the solute and solvent.

Rearranging (149), we easily obtain

i.e., the ratio of the vapor pressure of the solution to that of the

pure solvent at the same temperature is equal to the molar

fraction of solvent. This is Raoult's law.* It is to be par-

ticularly noticed that the molecular weight of the solvent which

appears in these equations is that in the vapor, while the

molecular weight of the solute is that in the solution.

VII. The Values of Potentials in Solutions Which Are Not
Very Dilute

19. Partial Energies, Entropies and Volumes. We shall now
give an account of some extensions of the method of Gibbs

which permit the quantitative treatment of equilibria involving

concentrated solutions. The development of these extensions

and the working out of practical methods for the evaluation of

the potentials and other significant properties of solutions is

largely due to G. N. Lewis and his collaborators.! Much of

the work of these investigators has been concerned with solu-

tions of electrolytes, which are the subject of a separate article

* CorriTpt. rend., 104, 130 (1887); Z. physikal. Chem., 2, 353 (1888).

t Outlines of a New System of Thermodynamic Chemistry, Proc.

Amer.Acad.,43, 259 (1907); Z. physikal Chem., 61, 129 (1907). G. N.
Lewis and M. Randall, Thermodynamics and the Free Energy of Chemical

Substances, 1923.
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in this volume. We shall only attempt to give in a concise form

the significant extensions of Gibbs' method, with examples

from solutions of non-electrolytes.

The exact treatment of cases of equilibrium involving actual

solutions is greatly facilitated by the use of some additional

quantities, which we must first introduce. Consider a solution

containing Wi, . . . 7n„ grams of the independently variable com-

ponents /Si, . . . Sn, and let e, tj and v be the values of its energy,

entropy and volume.

Then, differentiating the equation

^ = e - tr] + pv

with respect to mi, we have

\dmi/t, p. m^, etc. \dmi/t. p. m., etc. \dmi/t, p,

\dini/t. p.

m^, etc.

+ P[
mj, etc.

or

where

m = h - tm + pvi, (151)

.. = (r-) .
(152)

\ami/t, p, mj. etc.

\dmi)t, p.

'"ni - \ j^ ] »

WTj* etc.

and

Vi
=

\aWi/ I, p, mj, etc.

(154)

which represent the ratios of the increments of the energy,

entropy and volume of the solution to the increase of mi, when

the temperature, pressure and quantities of Si,. . . Sn remain

constant, are called the partial values of the energy, entropy and
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volume for a gram of the component Si. In the same way we
may determine the partial energies, entropies and volumes for a

gram of the other components. Similarly, since x = e + pr,

we have

Xi = €i + pvi. (155)

At a given temperature and pressure, the quantities e, -q, v, x
are all homogeneous functions of the first degree with respect

to Ml, . . . lUn. Therefore, by (52),

e = mill + rrhh • • + Wne„, (156)

and, by (54),

rriidli + nhdh . • . + w„c?e„ = 0, (157)

and similar equations may be obtained for rj, v and x-*

The variations of the potentials with pressure and temperature

are easily found in terms of these quantities. Thus, by (39),

\dp/t. m
^*

so that, differentiating this equation with respect to mi, we have

9 /ar\ dv d / d^\ dv/af\ ^ ^ or
— (—\

\dp/ drrii
°^

dp \dmi/drrii \dp/ drrii dp \dmi/ drrii

i.e., expressing the invariant quantities in full,

\dp/t,m \dmi/ 1. p. m„ etc.

Similarly, by (39),

\(ll / p, m

* The partial molar values of these quantities are obtained by multi-

plying the values per gram given here by the molecular weight. Practi-

cal methods of evaluating the partial molar quantities have been worked
out by G. N. Lewis and collaborators (G. N. Lewis and M. Randall,

Thermodynamics and the Free Energy of Chemical Substances, 1923).
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For example, in the case of a binary solution of the compo-

nents Si and S2, regarding Si as the solvent and *S2 as the solute,

we may adopt the following conventions:

(1) The activity of the solvent is unity in the pure solvent

at the same temperature and pressure, i.e.

ai = iVi, when A^i = 1, (163)

where

mi/Mi
Ni =

nil/Ml + milMl

is the molar fraction of the solvent.

When the possible range of concentrations extends to

iV2 = 1, as is the case with two liquids which are miscible in

all proportions, the same convention may be adopted for *S2.

(2) The activity of the solute is equal to its concentration when

the latter is very small. The concentration may be expressed

in any suitable way. If expressed as the molar fraction {N^,

we have

as -^ A^2, when ATj -> 0. (164)

In the case of dilute aqueous solutions the concentration is

often expressed as the number of mols {ui = nh/Mi), dissolved

in a given weight, say 1000 grams, of the solvent. The activity

may then be defined so that

"2 —> ni, when n^ -^0* (165)

21. Determination of Activities from the Vapor Pressure.

The potential of a volatile component of a solution is given, as

in (129), by the equation

* The molecular weight to be employed in determining the activity

by (162) may have any appropriate value. But if the activity is deter-

mined from the partial vapor pressure according to the method of

Section 21 the molecular weight of the substance in the vapor state

must be used. Also when the activity is defined by convention (2) its

value can only be equal to the concentration in an infinitely dilute solu-

tion if the molecular weight is that in the solution.
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where pi is its partial vapor pressure above the solution, and

Ml its molecular weight in the vapor, provided that the vapor

behaves as a perfect gas. If pi" be the partial vapor pressure in

the standard state in which its activity is taken as unity, which

we will consider to be the pure liquid at the same temperature,

we have

so that

tl°
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in solutions of chloroform (Si) and acetone (^2) calculated from

the partial vapour pressures determined by Zawidski.* For

both components, the activity is taken as unity in the pure

liquid.

TABLE I

Activities and Activity Coefficients in Solutions of Chloroform
AND Acetone (35.17°C.)

Ni
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If mi/Ml = rii and milMi. = Ui, we have

log 0:2' — log 0:2 = / — —-d log ori. (170)

If Ni and A'"2 are the molar fractions of the two components

ni d log Ni-\- riid log ^"2 = (171)

and, subtracting this from (169), (170) is obtained in the form

log (a^'/N^') - log (a./N,) =
rai'/Ni'

Jm/Ni
"^dlogiai/Ni). (172)

For example, Downes and Perman have determined the vapor

pressures of water over aqueous cane sugar solutions.* From
these measurements Permanf has calculated the activity

coefficients of water (Si) by (167) and those of cane sugar

(^2) by (172), takmg m/Ni = 1, when iV2 = 0. Table II gives

the values at 50°.

TABLE II

Activities and Activity Coefficients in Cane Sugar Solutions

AT 50°C.

Nt
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temperature t by f4, lA and /jli. Let ^o be the freezing point of

the pure solvent and t, the freezing point of the solution. For

the equilibrium of the solid with the pure solvent at ^o it is

necessary that

Z!2 = :^«, (173)

and similarly for the equilibrium of the solution with the solid

at t,

6 = ^«

t t'
(174)

By (161)

so that

din'jt) _ x;

dt e

ti' = ^- f'^-dt (175)
t to J'o t^ . ^ ^

Similarly, for the pure solvent, we have

7 = 7^- rS'^^ (176)
t to Jto r

and by (166), if Pi and pi are the partial vapor pressures of

Si over the liquid solvent and over the solution at t, and Af/°^ is

its molecular weight in the vapor, we have

i = f + ji^'°s^''-/p'°'"

so that

T-'i-Lj-" + w^>'''^^^/^'°^'-
<^"'

Comparing (177) and (175), it is evident that

^ \og{p,/p,^\= P^^--^-dt. (178)
Mi^^^
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Now, if we write t = to —A/, where A^ is the lowering of the

freezing point, and represent xt and x< as functions of the

temperature by means of the equations

x: = x; - Co -At,

x: = x- - c.-At,
(179)

where Co and C, are the specific heats of the pure solvent and of

the solid at constant pressure, we have

'°H^°Jrj. Tit^^' ''^'•(i»*

Here Mi^'^^ix]^ — x'J is the heat absorbed in the melting of the

molecular weight of the solid solvent at ^o- For ice and water in

the vicinity of 0°C., G. N. Lewis and M. Randall* have used

the values

Mi^^"^ ixl - X') = 1438 calories,

iWi^^^ (Co - C.) =9 calories,

and integrating the right hand member of (180) in series have

obtained the expression

log (pi/pi") = - 0.009696 At - 0.0000051 Af, (181)

which they consider accurate up to 20 or 30 degrees from the

freezing point. This equation gives log ivi/v^) or log aj at the

freezing point of the solution.

Table III gives a comparison of the values of log(pi/p]°)t for

aqueous mannite solutions, as calculated by (181) from the

freezing point depressions, with the values determined directly

from the vapor pressures by Frazer, Lovelace and Rogersf

at 20°C.

The small differences between the two sets of values are to be

ascribed to the difference between the temperatures to which

* Thermodynamics, p. 283 (1923).

t J. Amer. Chem. Soc, 42, 1793, (1920).
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they refer. The change of logfpi/pi"), or logori, with tempera-

ture can be obtained by dividing equation (166) by t and

differentiating. Thus we find that

d log (p^/p^') ^ M^ ( dMt) _ rfOiiVOl

dt A \ dt dt j

Mi(«>(^> (182)

where Mi(xi — xi'*) is the heat absorbed when the molecular

weight of the pure solvent is added to a large quantity of the

solution at the temperature t. If xi is known as a function of

the temperature, this equation may be integrated over a con-

TABLE III

Freezing Point Depressions and Vapor Pressure Lowerings of

Aqueous Mannite Solutions

m
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brane, i.e., if the pressure on the solvent remains constant, the

pressure on the solution must be such that the potential of Si

in the solution is /xi". The variation of mi with pressure, accord-

ing to (158), is

fdfjA

\dPjt.
Vi.

Therefore, if P is the pressure on the solution for osmotic

equilibrium,

.0 . _ r
Ml -Mr = - h-dP. (183)

By (166), we may write

At— i,.o —^'~ ^' ~ M:(«>
log (pi/pi"),

where pi" and pi are the partial vapor pressures of Si over the

solvent and the solution at a total hydrostatic pressure Po, and

Mi^^^ is the molecular weight of Si in the vapor. If we regard vi

as constant, we have

At
P -Po = -

J^^^ log (Pi/Pi«),* (184)

where P — Po is the osmotic pressure.

* Differentiating equation (183), we obtain

dm = — vi-dP,

and since midfii + m2dii2 = 0, this becomes .dn2 = dP, which is similar
rriiVi

to (138), rriiVi (the partial volume of Si in the solution) being substituted

for the total volume of the solution. Assuming that Vi is constant, this

At ?«2
becomes for dilute solutions which obey (136), P — Po = TnTi)

niiVi M2

which may be regarded as a more exact form of (139). This equation

was obtained by G. N. Lewis, /. Amer. Chem. Soc, 30, 668 (1908).

Equation (184) was derived by Berkeley, Hartley and Frazer, and by

Perman and Urry from A. W. Porter's theory, Proc. Roy. Soc, A, 79,

519 (1907).
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A comparison of the observed osmotic pressure of solutions of

cane sugar, a-methyl glucoside and calcium ferrocyanide with

values calculated from the vapor pressures by means of this

equation has been made by Berkeley, Hartley and Burton,*

taking for Vi the mean value between Po and P. The following

table gives their data for solutions of cane sugar and a-methyl

glucoside at 0°C.

TABLE IV

Concentration,
grams sugar in

100 grams water
loge(po/p) vi

Calculated
osmotic
pressure

Observed
osmotic
pressure
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Table V gives a comparison of the osmotic pressures of a

solution of cane sugar containing 1 gram molecule in 1000 grams

solution, as calculated by equation (185), using the vapor pres-

sure data of Perman and Downes,* with the direct determi-

nations of Morse, t

TABLE V
Calculated and Observed Osmotic Pressures op Sucrose Solutions

Temperature
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having been formed by an infinitesimal variation in the state or

composition of a part of the original mass. The new parts

form.ed in an infinitesimal variation of the original mass are

necessarily infinitely small. Let De, D-q, Dv, Drrii,. . .Drrin

denote the energy, entropy, volume and the quantities of

the components 8\, . . .Sn contained in any one of these new
parts. We have no right to assume that a very small

new part is homogeneous or that it has a definite physical

boundary. Under these circumstances in order that these

quantities may have a definite meaning it is necessary to define

unambiguously the boundaries of the new parts. Gibbs uses a

convention similar to that which he employs in the theory of

capillarity. A dividing surface is drawn round each new part in

such a way that it includes all the matter which is affected by the

vicinity of the new part, so that the original part or parts remain

strictly homogeneous right up to this boundary surface. De,

Dtj, Dv, etc., then refer to the whole of the energy, entropy,

volume, etc., within the boundary surface.

If we use, as before, the character 5 to express infinitesimal

variations of the original parts of the system, the general con-

dition of equilibrium may be written in the form

(25e + 2Z)e), ^0 (186) [36]

or, substituting the value of SSe taken from equation (62),

SDe + 2^577 - 'L'pbv + ^/xiSmi . . . + SM«5wn ^ 0. (187) [37]

Making use of this equation Gibbs deduces de novo and by a

very general argument the conditions of equilibrium when the

component substances are related by r equations of the type:

ai ©1 + a2 ©2 ... + a„ ®„ = 0. (188) [38]

We shall consider here the simpler case in which the components

^1, Si,. . . Sn are all independent of each other. There is no

real loss of generality in this limitation for, as Gibbs points out,

we may consider all the bodies originally present in the system

and the new bodies which may be formed to be composed of the

same ultimate components.
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The conditions of equilibrium between the original parts of

the system have already been established. They are:

t = T,p = P, (189)

Ml ^ Ml, li2^M2, ... Hn^ Mn, (190)

i.e., the temperature and pressure have uniform values T and P
throughout the system, and the potential of the component Si

has the value Mi in all parts of the system of which *Si is an

actual component and may have a value greater than Mi in

those parts of which it is a possible, but not an actual com-

ponent. In using (187) we suppose that the total entropy and

the total volume are constant, and since also in the case under

consideration no component can be formed out of others the

total amount of each component is also constant. The equa-

tions of condition are thus

(191) [39]

(192) [40]

(193)

25m„ + ZDnin = 0.

Inserting the values of t, p, fxi, etc., and of Zdrj, Z8v, XSmi, etc.,

as given by these equations, in (187), we obtain

SDe - TSDt; + P^Dv - M{LDmi ... - Mn^Dnin ^ 0, (194)

or

De - T-Dri + PDv - MiDmi ... - Mn-Drrin ^ 0, (195)

for each of the new parts. This is the condition which must

be satisfied in addition to the conditions relating to the equilib-

rium of the initially existing parts of the system. Gibbs shows

that when there are r relations of the type (188) between the

components the same condition holds, but there are then r

relations of the type

aiMi + a^Mi . . . + a„M„ = (196) [43]

between the potentials.

257? + ^Dt]
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If it could be supposed that the relation between the energy,

entropy, volume and mass of the infinitely small new part were

the same as that of a large homogeneous body of similar com-

position, the quantities De, Drj, Dv, Drrii, etc., would be pro-

portional to the energy e, entropy 17, volume v, masses mi, etc.,

of the large body, and (195) could be written in the form

e - Tri -\- Pv - MiMx ... - Mnmn ^ 0. (197) [53]

In general however such an assumption is not permissible.

For, apart from difficulties arising from the definition of the

boundary surface enclosing the new part, we neglect in deter-

mining the energy, entropy, etc., of a large homogeneous body

the contributions which arise from the action of capillary forces

at its surfaces, and it is obviously impossible to neglect these in

the case of very small bodies. Nevertheless it is probable that

when (197) is satisfied, (195) is also satisfied. This appears

from a consideration of the meaning of (197) in which e is the

energy of a body having entropy 17, volume v, masses mi, . . . nin,

which is formed in a medium having the temperature T, pressure

P and potentials Mi, . . . ilf„. Since the total entropy and vol-

ume are supposed to remain constant in the formation of this

body,

— Trj + Pv — MiVfii ... - ilf„m„

is the change in the energy of the medium. The quantity rep-

resented in (197) is thus the energy change of the whole system

in the formation of the new body, and since there is no change of

entropy in the process this must be equal to the work which

would be expended in the formation of the body from the

medium by a reversible process. Now work must usually be

expended to reduce a body to a finer state of subdivision, so

that if (197) is positive or zero for a finite body there does not

appear to be any reason to suppose that it will become negative

even when the particles are infinitely small. So that if (197)

is satisfied it appears that (195) will also be satisfied.

This argument would however break down if the energy of a

mass of a body within a medium ever decreased as the size of

the particles decreased (i.e., in cases of negative surface tension).
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Substances which exhibit the phenomenon of peptisation, i.e.,

when a large mass of a substance spontaneously breaks up into

small particles, may be examples of such behavior. How-
ever in such a case large masses of the substance in the given

medium would be inherently unstable and there would be no

advantage in substituting (197) for (195).

It is evident that (197) cannot be regarded as a necessary

condition of equilibrium, for (195) may be satisfied and the

system will therefore be in a state of equilibrium even when

(197) is unsatisfied. Cases of this kind are met with in super-

heated liquids, supersaturated solutions, etc. In the case of a

supersaturated solution of a given substance (197) is negative,

but we must suppose that on account of capillary forces etc. the

separation of an infinitely small quantity would give rise to

positive (or zero) value in (195). It is however difficult to

distinguish between effects of this kind and "passive resist-

ances" to change. Gibbs remarks that "such an equilibrium

will, however, be practically unstable. By this is meant that,

although, strictly speaking, an infinitely small disturbance or

change may not be sufficient to destroy the equilibrium, yet a

very small change in the initial state, perhaps a circumstance

which entirely escapes our powers of perception, will be sufficient

to do so. The presence of a small portion of the substance for

which the condition [53] does not hold true, is sufficient to

produce this result, when this substance forms a variable com-

ponent of the original homogeneous masses. In other cases,

when, if the new substances are formed at all, different kinds

must be formed simultaneously, the initial presence of the

different kinds, and that in immediate proximity, may be

necessary."

25. Generalized Statement of the Conditions of Equilibrium.

The conditions of equilibrium of the parts initially present, and

with respect to the formation of new parts, may be summed up as

follows. Since for any homogeneous mass, by (48), the equation

€ — trj -\- pv — Himi — /LI2W2 ... — MnW„ = 0, (198)

holds when mi, m^, . . .mn refer to the ultimate components of the

mass, the condition of equilibrium between the original parts
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can be expressed by the conditions that it shall be possible to

give to T, P, Mi,...Mn in

6 - Tr? + Py - MiWi - MiTTh ... - MrMn (199)

such values that the value of this expression shall be zero for

every homogeneous part of the system. The equilibrium is

practically stable if

^ ^ Tt) -\- Pv - Mimi - M^m^i ... - M„m„ ^ (200)

for any other body which may be formed from the same com-

ponents, and this condition may be united with the former one

in the statement that it shall be possible to give T, P, Mi,. ..

Mn such values that the value of (200) for each homogeneous

part of the system shall be as small as for any body whatever

made of the same components.

IX. The Internal Stability of Homogeneous Fluids*

26. General Tests of Stahility. Consider a homogeneous

fluid, the ultimate components *Si, S2, . . . *S„ of which are pres-

ent in the amounts mi, TO2, . . . m„. The conditions imposed

in deducing the conditions of equilibrium are fulfilled if we

suppose that the fluid is contained in a rigid envelop which

is a non-conductor of heat and impervious to all its com-

ponents. The conditions (199) and (200) might be employed

to determine the stabflity of the fluid, but it is desirable to

formulate them in a somewhat more general manner, since

for the stability of the fluid it is necessary that it shall be in

equilibrium both with respect to the formation of new parts as

defined in the last section, and also with respect to the forma-

tion of phases which may only differ infinitesimally from the

original phase of the body. Gibbs states the condition of

stability as follows:

"7/ it is possible to assign such values to the constants T, P,

Ml, Ml, . . .Mn that the value of the expression

^ - T-n + Pv - MiWi - M^nh ... - Mnrrin (201) [133]

* Gibbs, I, 100-105.
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shall he zero for the given fluid, and shall he positive for every

other phase of the same components, i.e., for every homogeneous hody

not identical in nature and state ivith the given fluid {hut composed

entirely of [some or all of the substances] Si, Sz, . .»S„), the con-

dition of the given fluid will he stable."

The following proof may be given of this proposition. It is

evident that if (201) is positive for every other phase of the

components, its value for the whole mass must be positive when

the latter is in any other than its given condition. The value

of (201) is therefore less when the mass is in the given condition

than when it is in any other condition. Since on account of

the conditions imposed by the surrounding envelop neither

the entropy, volume, or the quantities m^, W2, ...Wnfor the

whole mass can change, it follows that the energy in the given

condition is less than that in any other condition of the same

entropy and volume. The given condition, by (5), is therefore

stable.

Since (201) is zero when applied to the given fluid (i.e., when

e is the energy, rj the entropy, v the volume, mi, . . .mn the

quantities of the components of the given fluid), it is evident

that T is its temperature, P its pressure, and Mi, Mi, . . . Af

„

the potentials of its components in the given state. If we wish

to test the stability of the fluid with respect to the formation

of some other phase we must insert for e, -q, v, mi, etc. the values

of the energy, entropy, volume, and masses in a mass of the phase

in question (not necessarily at the same temperature and

pressure). If there is no other phase of the components for

which the quantity so obtained has a positive value the given

fluid is stable.

It has already been shown that the expression (201) repre-

sents the reversible work which must be expended in forming a

phase of energy e, entropy t], volume v and masses mi, m^,...

mn within a medium having the temperature T, pressure P,

potentials Mi, Mi, . . . Mn. The condition of stability there-

fore amounts to this: the fluid is stable if no other phase can

be formed in it without the expenditure of work.

When the value of the expression (201) is zero for the given

fluid and negative for some other phase of the same components
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it is evident that the fluid is unstable. It may also happen

that while T, P, Mi, Af2, • • • Mn niay be given such values that

(201) is zero for the given fluid there is some other phase for

which (201) is also zero. This other phase must obviously

have the same temperature and pressure, and the same values of

the potentials, and is therefore a phase which could coexist with

the given fluid. But Gibbs points out that although there

may be phases which can coexist with the given mass, it is

highly improbable that such phases could be formed within

the given mass without a change of entropy or of volume.

Thus although at the triple point water can coexist with ice

and vapor, a quantity of water in this state enclosed in an

envelop which has a constant volume and is impervious to heat

is quite stable.

27. Condition of Stability at Constant Temperature and

Pressure. In considering whether (201) is capable of a negative

value for any phase, Gibbs points out that it is only necessary

to consider phases which have the temperature T and the

pressure P. For it may be assumed that the mass is capable

of at least one state of not unstable equilibrium at this tem-

perature and pressure, and in such a state the value of (201)

must be as small as for any other state of the same matter.

Therefore, if (201) is capable of a negative value, it wUl have a

negative value at the temperature T and the pressure P. Also,

if it is not capable of a negative value, any state for which it

has the value zero must have the temperature T and the pressure

P.

For any body at the temperature T and the pressure P, (201)

reduces to

r - MiMi - Minh ... - M„w„, (202) [135]

and in this form is capable of a very direct application, which is

the basis of the geometrical methods employed by Gibbs in his

use of curves and surfaces.

Consider a series of homogeneous phases containing the two

components Si and *S2 in different proportions. The ^-curve for

a constant temperature t and pressure p is obtained by plotting
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the values of f for the unit mass of the different phases (i.e.,

nil -\- nh = I) against the composition. Thus the point Z (Fig.

5) represents a phase for which

XZMi

Wi + nii XY

and the value of f for this phase is represented by ZE. The

curve AB represents the values of f for all homogeneous phases

Fia. 5

when the composition is varied from that of the phase for which

Wi = 1 (represented by point X) to that for which nh =1

(point Y). CD is the tangent to the f curve at the point E.

It can be shown that intercepts made by this tangent on the

axes at X and Y are equal to the values of Mi and M^ for the

phase represented by E, i.e., XC = Mi and YD = Mi* The

* If the potentials of ;Si and St in the phase E are ixi and m2, the tangent

CD is characterized by the equation df = ixidm,]. + y^idmi, or since when
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value of niiMi + ^2^2 for any given values of Wi and rrh (for

which mi -\- nii = 1) is therefore represented by the point on the

line CD corresponding to these values. The expression

f - Mimi - ilf2W2 (203)

is positive for every other phase of the components, other than

the one under consideration, when there is no phase for which

the value of f , at the same temperature and pressure, lies below

the line CD. Thus if the two components form a solid com-

pound, of which the composition and value of f are represented

by the point P (under CD), the phase E will be unstable

(supersaturated) with respect to this phase, for f — MiMi — M^rUi

is negative for the phase P. But if the point representing

this phase is above CD (say at P'), T ~ Mini], — 71^2^2 will be

positive, and the phase E will be stable in respect to the forma-

tion of this phase. Similarly if the curve AB is everywhere

above the tangent CD, except at the single point of contact,

the phase E is stable with respect to the other homogeneous

phases, and cannot split into any of the phases represented

by the points of this curve.

28. Condition of Stability Referred to the Pressure of Phases for

Which the Temperature and Potentials Are the Same as Those of

the Phase in Question. In the expression

e - Tj] + Pv - Mmi - M2W2 - . .

.

(204)

T, P, Ml, M2, etc. are the temperature, pressure and potentials

in the fluid mass the stability of which is in question, and e, 17,

V, mi, W2, etc. are the energy, entropy, volume, etc. of a given

phase with regard to which the stability is being tested. These

quantities are related by the equation

e = tri — pv -\- iiimi H- /X2W2 + . • •

,

(205)

where t is the temperature, p the pressure and in, /X2, etc., the

potentials in the given phase. If we consider only phases for

nil + VI2 = 1, d7ni = —dm2, the slope of the tangent is given by
d^ — it^i ~ iMi)dm.2. Since ZE = nimi + M2W2, XC = mi'^i + M2W2
— (ixi — ni)mi = )ui. Similarly YD = juj.
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which /. ^ T, jxi = Ml, H2 = Ms, etc., we may by substituting

the value of e given by (205), reduce (204) to the expression

(P - v)v- (206)

In order to justify the use of this expression it is necessary to

show that in testing the stability of a fluid it is sufficient to take

into account only phases for which the temperature and poten-

tials are the same as in the given fluid. This can be done by

considering the least value of which (201) is capable at a constant

value of V. Suppose that (201) has its smallest possible value,

without any restriction, when evaluated for a phase having

the energy e, entropy 77, volume v, masses Wi, . . .w„.* Then if

e', rj', v', m/, rui', . . . m„' are the values referring to any other

phase we have

e' - Tv' + Pv' - Miiui' - M.nii' ... - Af„w„'

^ e — T-q -\- Pv - Mimi — MiiUi ... — Mnirin

or, if both phases have the same volume,

€' - e - T(7j' - 77)
- Mi{mi' - mi) - Miim^' - roi) . . . ^0.

Thus if the second phase can be considered as having been

formed by an infinitesimal variation of the first phase, at

constant volume, we may write this equation as

de - Tdi) - Midmi - M^dn^ ... ^0. (207)

But a variation of the energy of the first phase, at constant

volume, is given by

de = tdrj + nidirii + ^l2d'm2 + . .
.

,

(208)

and (207) and (208) can only both hold if

t = T, m = Ml, M2 = Mi, etc.

* It is supposed here that the components of the body are some or all

of the components *Si, S2, . -Sn. Gibbs considers the case in which the

components of the new phase may be different from those of the given

fluid.
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Therefore the phase for which (201) has the least value will be

found among those having the temperature T and potentials Mi,

Mi, etc., and in determining the stability of the given fluid we
need only consider phases in which the temperature and

potentials have these values. In this case the given fluid wfll be

stable unless the expression (206) is capable of having a negative

value.

The conditions of stability are thus stated by Gibbs in the

following very simple form:

"// the pressure of the fluid is greater than that of any other

phase of the same components which has the same temperature and

the same values of the potentials for its actual components, the

fluid is stable without coexistent phases; if its pressure is not as

great as some other such phase, it will he unstable; if its pressure

is as great as that of any other such phase, hut not greater than

that of every other, the fluid will certainly not be unstable, and in all

probability it will be stable {when enclosed in a rigid envelop which is

impermeable to heat and to all kinds of matter), hut it will he one

of a set of coexistent phases of which the others are the phases which

have the same pressure."

For example, consider a solution of carbon dioxide in water.

If the pressure of a vapor phase at the same temperature, and in

which carbon dioxide and water have the same potentials as in

the solution, is greater than the pressure of the solution, the latter

is unstable; but if the pressure of a vapor phase which satisfied

these conditions is less than that of the solution, the latter is

stable (with respect to the formation of a vapor phase). A
vapor phase containing carbon dioxide and water at the same

potentials as in the solution, and having the same temperature

and pressure could obviously coexist with the solution, but a

quantity of such a solution in a confined space is stable.

X. Stability in Respect to Continuous Changes of Phase*

S9. General Remarks. In order to test whether a homogene-

ous fluid is stable with respect to the formation of phases which

differ from it infinitely little (which are termed by Gibbs,

* Gibbs, I, 105-115.
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adjacent phases), we may apply to such changes the same

general test as before. It is evidently only necessary to con-

sider as the component substances of such phases the inde-

pendently variable components of the given fluid. The con-

stants Ml, M2, etc. in (201) have the values of the potentials

for these components in the given fluid, for which the value of

(201) is necessarily zero. Then, if for any infinitely small

variation of the phase the value of {201) can become negative,

the fluid will he unstable; but if for every infinitely small variation

of the phase {201) becomes positive, the fluid will be stable. Gibbs

points out that the case in which the phase can be varied

without altering the value of (201) can hardly be expected to

occur. For, in such a case, the phase concerned would have

coexistent adjacent phases.

This condition, which Gibbs calls the condition of stability,

may be written in the form

e" - t'r," + P'v" - ixi'm," ... - Mn'm„" > 0, (209) [142]

where t', p', ni, m', etc. are the temperature, pressure and the

potentials in the phase, the stability of which is in question, and

t", 1]" , v", mi', rrii", etc., are the energy, entropy, volume and

quantities of the components in any adjacent phase. Single

accents are used to distinguish quantities referring to the first

phase, and double accents those referring to the second.

Particular conditions of stability can be obtained by trans-

forming this equation in various ways.

30. Condition with Respect to the Variation of the Energy.

If we add

- e' -f t'r)' - p'v' + m'mi' + yii'nh' ... + Mn'w„' = 0,

to (209), we obtain

(e" - t') - t'{r}" - v') -h p'{v" - v') - uLi'{mi" - m/)

-M2'(W - m') ... > 0, [143]

which may be written in the form

Ae > tAr) — pAv -f mAmi + HiAm2 . . . + UnAmn, (210) [145]
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where the character A is used to signify that the condition,

although relating to infinitesimal differences, is not to be inter-

preted in accordance with the usual convention in differential

equations, in which infinitesimals of higher orders than the

first are neglected, but is to be interpreted strictly, like an

equation between finite differences. (See page 72.) When
applying the condition (210), it is necessary that the quantities

Ae, Arj, Ami, etc., should be such as are determined by an actual

change of phase and not by a change in the total amount of the

phase, for in that case the term on the left of (210) is zero.

This can be accomplished by making v constant, and then divid-

ing the remaining terms by the constant v. Then we have

A— >iA — +^iA — +M2A^
V V V V

...-{- Hn A -. (211) [146]
V

But according to (44) we have

a — = t a — -\- ^il a — +M2« —
• V V V V

...+Mn^-, (212) [147]
V

so that, "the stability of any phase in regard to continuous changes

depends upon the same conditions in regard to the second and

higher differential coefficients of the density of energy regarded as a

function of the density of entropy and the densities of the several

components, which would make the density of energy a minimum,

if the necessary conditions in regard to the first differential coeffi-

cients were fulfilled.''

In a phase of one component, it is more convenient to make m
constant instead of v, when (210) becomes

Ae > tAif} — pAv.

The meaning of this condition can be seen if the values of

€, 17 and V are represented by rectangular coordinates. Let D
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represent a phase having energy e, entropy 77 and volume v

(Fig. 6), The points representing adjacent phases form a

surface. Let E be a point on this surface, representing a phase

having the energy e + Ae, entropy rj -{- Arj and volume v + Ay.

Fig. 6

If the tangent plane to the surface through the point D, cuts the

vertical line through E at E', the ordinate of the point E' is

de de
e + — At? + — Av.

ay] dv

Since

dr]
t,

dv
P,

the vertical distance EE' is thus equal to Ae — /A77 + pAv.

Thus, (210) is positive when the e, 77, v surface for adjacent

phases lies above the tangent plane, taken at the point repre-

senting the phase in question. Any phase for which this

holds true is stable with respect to continuous changes.
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31. Condition with Respect to the Variation of the Pressure.

Substituting the value

e = t ri — p V +/xiOTi .,.-t-/x„ ntn

in (209), we obtain

- v"{t' - t") + v"{v' - V") - m,"{y.,' - Ml")

- W(m2' - M2") ... > 0. (213) [144]

This formula expresses the condition of stability for the phase to

which t', p', etc. relate. But if all phases (within any given

hmits) are stable, (213) will hold for any two infinitesimally

differing phases (within the same hmits) and the phase (")

may be regarded as the phase of which the stabiUty is in ques-

tion, and (') as the infinitestimal variant of it. Then (213) can

be written

- r]At + vAp - miA/ii ... - m,Apin > 0, (214) [148]

or

Ap > ^ Ai + -^ Ami . . . + - AMn. (215) [149]
V V V

But by (56)

dp= ^dt-\- '-^ dfJi,... + "^ d^n, (216)
V V V

so that "we see that it is necessary and sufficient for the stability

in regard to continuous changes of all the phases within any

given limits, that within those hmits the same conditions should

be fulfilled in respect to the second and higher differential

coefficients of the pressure regarded as a function of the tem-

perature and the several potentials, which would make the

pressure a minimum, if the necessary conditions with regard

to the first differential coefficients were fulfilled."

32. Conditions oj Stability in Terms of the Functions \p and T-

Writing

e" = lA" + t'W.
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and

_ ^' _ p'v' + (jiMi ... + fj^n'mn' = 0,

(209) becomes

(rP" - ^') + it" - t')v" + {v" - v')v' - (mi" - m/W
... - (m„" - mn')nn' > 0. (217) [150]

As in (213), when all phases within any given limits are stable,

this condition holds for any two phases which differ infinitely

little. When

v' = v", mi = nil", . . . lUn = Mn",

ir - ^') + it" - t'W > 0, (218) [151]

or

(^' - r) + {f - t")ri" < 0, (219)

which may be written

[^^P + -nM],, ^ < 0. (220) [153]

Note that the phase, the stability of which is in question here

is that to which t]" refers; hence Axp = 4/' — \p". Similarly,

when t' = t",

ir - ^') + V\v" - y') - m/(wi" - m/)

... - /xn'(w„" - w„') > 0, (221) [152]

or

[A^P + pAv - HiAmi ... - HnAmn]t > 0. (222) [154]

The phase of which the stability is in question is now that

distinguished by single accents.

We may first observe that since, by (45), {d^/dt\rn = —
»7>

(220) requires that d^rp/dP < 0, i.e., d-q/dt or td-q/dt is positive,

tdr}/dt being the specific heat of the phase in question at constant
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volume. Secondly, when the composition of the body remains
unchanged, (222) becomes

[A^ + vLv]t, „. > 0, (223) [160]

and since, by (45), {dxp/clv)t,„, = ~p, this implies that

{d^/dv^)t^rn > or dp/dv must be negative. The conditions

(220) and (223) thus express the conditions of thermal and
mechanical stability of the body.

The meaning of condition (222), as applied to the \p-v-m

diagram for constant temperature, easily follows from considera-

tions similar to those used in connection with (211).

Again, by (15) and (50), (209) becomes

(f" - n + v"{t" - n - v"ip" - p')

- Hi (mi" - mi') ... - Hn'imn" - m/) > 0, (224) [161]

from which we may obtain the conditions

[Af + vM - vApU < 0, (225) [162]

and

[Ar - /xiAmi ... - M»Aw„],.p > 0. (226) [163]

In order to show the meaning of this condition, we will

consider the f-composition diagram, for constant temperature

and pressure, of a two component system.* It is convenient in

graphical representations (as in Fig. 7), to use as the variables

expressing composition the fractional weights of the com-
ponents. If we limit ourselves to phases for which Wi -{- W2 = 1,

the quantities mi and rrh become equal to the fractional

weights. Then for any change of phase. Ami = — Am2. The
curve AB (Fig. 7) represents the f-values of homogeneous
phases, at constant temperature and pressure, when m2 is varied

from to 1. Let the coordinates of the point D he i;, nh and
the coordinates of an adjacent point E he ^ -\- A^, nii -{- Arrh.

Let ST he the tangent to the curve AB, at the point D. The
slope of this tangent is given by d^/drrh = M2 — Mi, so that if E'

is its point of intersection with the vertical through E, the

* Compare also Article H of this volume.
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ordinate of E' is i; -{ (m — mOAws or f + /x2A?n2 + miAwi,

since Atwj = —Ami. If Af > n^^m^ + miAwi, the point E is

above the point E'. Therefore the condition of stability of the

phase D, with respect to continuous changes, is that the f-curve

for adjacent phases shall be above the tangent at D, except at

the single point of contact.

nig'O Trt^'l

Fig. 7

33. Conditions with Respect to Temperature and the Potentials.

Since (213) holds true of any two infinitesimally differing phases,

within the limits of stabiHty, we may combine this condition, viz.,

rj"{t" - t') - v"{p" - p') + m,"W - Ml')

. . . + mn"{lXn" - fin) > 0,

and the condition obtained by interchanging the single and

double accents, i.e.,

V'it' - t") - V'(p' - p") + W/W - Ml")

. . . + m„'(Mn' - Hn") > 0,
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in the condition

(t" - n (v" - V) - (p" - V') W' - v') + (mi"-mi'; (wx"-mi')

. . . + (m„" - Mn') {mj' - m„') > 0, (227) [170]

which may be written in the form

^t^n - ApAv + A/iiAmi . . . + Aju„Aw„ > 0. (228) [171]

This must hold true of any two infinitesimally differing phases

within the hmits of stabiHty. If we give the value zero to one

of the differences in every term except one, it is evident that

the values of the two differences in the remaining term must

have the same sign, except in the case of Ap and Av, which have

opposite signs. Thus we have, for example.

(-)

/A^\
\Ami/t, V, m^,

/AM2\

\Am2Jt, V,

>0;

>0,

>0,
Ml. *"3'

(

Afin\

Amn/t. V.

>0;
Ml. M2. •Mn—

1

(229) [166]

[167]

(230) [168]

[169]

and

(:

Av\
< 0. (231)

Thus, when v, mi, ... rrin have any given constant values,

within the limits of stability, t is an increasing Junction of rj;

and when t, v, nh, . . .mn have any given constant values,

within the limits of stability, fn is an increasing function of mi,

etc. In general, "within the limits of stability, either of the two

quantities occurring {after the sign A) in any term of [171] is an

increasing function of the other,—except p and v, of which the

opposite is true,—when we regard as constant one of the quantities
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occiirring tn each of the other terms, but not such as to make the

phases identical."

It is evident that when v is taken as constant, there are a

number of ways in which one of the quantities in each of n of the

remaining n -\- 1 terms can be made zero. We can thus obtain

different sets of n + 1 conditions, Hke (229) and (230). Gibbs

points out that it is not always possible to substitute the con-

dition that the pressure shall be constant for the condition that

the volume shall be constant, without imposing a restriction on

the variations of the phase.

It may be pointed out with regard to the equations (229),

(230), that if the sign A is replaced by d we obtain conditions

which are sufficient for stability.

It is evident that if

the condition

\dmn/i. V. ^„

/A/xA

\AmnJt, V, w. . .

> 0, (232)
Mn—

1

> (233)
Mn—

1

must also hold true, i.e., the condition of stabihty is satisfied.

But (233) may also hold true if

= (234)
' Mn—

1

(when one or more of the higher differential coefficients are

positive). The expression (233) cannot hold true when the

differential coefficient term (232) is negative, so that it is

necessary for stability that

^ 0. (235)
lin—i.

34. Limits of Stability. At the limits of stability (i.e., the

limits which divide stable from unstable phases) with respect to

continuous changes, one of the conditions (229), (230) must
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cease to hold true. Therefore, one of the differential coefficients

like that in (234) must be zero.

The differential coefficients

dt dni dfXn

jri ^: i^: »36) [181]

may be evaluated in a number of different ways, according to

whether the quantities which are to remain constant are chosen
from the numerators or the denominators of the other terms.

Gibbs shows that when the quantites which, together with

V, are to remain constant are taken from the numerators of the

others, their values will be at least as small as when one or more
of the constants are taken from the denominators.

At least one of the coefficients determined in this way will

therefore be zero. But if one of these coefficients is zero it

can be shown that all the others, having their constants chosen
in the same way, will also be zero. Gibbs gives the following

proof of this proposition. "For if

(dfin/dmn)t, V, ^,. . . . ^„_u (237) [182]

for example, has the value zero, we may change the density of

the component Sn without altering (if we disregard infinitesi-

mals of higher orders than the first) the temperature or the

potentials, and therefore, by [98], without altering the pres-

sure. That is, we may change the phase without altering

any of the quantities t, p, m, ...Hr,. Now this change of

phase, which changes the density of one of the components, will

in general change the density of the others and the density of

entropy. Therefore, all the other differential coefficients formed
after the analogy of [182], i.e., formed from the fractions in [181]

by taking as constants for each the quantities in the numerators

of the others together with v, will in general have the value

zero at the limit of stabihty. And the relation which character-

izes the limit of stability may be expressed, in general, by setting

any one of these differential coefficients equal to zero."

We may write this condition in the form

dfj.,,, 1
J(
—7-: = 0, (238) [183]
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or

rd(mjv)l

L dfJ'n J
= 00. (239) [184]

'• liU • • ftn— l

But, by (56),

m„/v = {dp/dnn)t. w M„_i>

so that (239) becomes

d'^p

dn„^

Similarly, we may obtain

= 00 (240) [185]

d^p d'^p d^p
, , ,

"Any one of these equations [185], [186], may be regarded, in

general, as the equation of the limit of stability. We may be

certain that at every phase at that limit one at least of these

equations will hold true."

XI. Critical Phases*

35. Number of Degrees of Freedom of a Critical Phase. A
critical phase is defined as one at which the distinction between

two coexistent phases vanishes. For example, at the critical

point of water, the liquid phase and the vapor phase become

identical. Again, in Figure 8, the curves CA and CB represent

the compositions of the two coexistent liquid phases in the

system phenol-water at different temperatures at a constant

pressure. As the temperature rises, the curves representing the

compositions of the two coexistent phases approach each other,

and at the point C the two phases become identical. Similar

phenomena are met with in ternary mixtures. Let Si and S^

be two liquids which are incompletely miscible at a certain

temperature and pressure, but which both form homogeneous

solutions in all proportions with a third Hquid Sz. If we add

* Gibbs, I, 129-131.
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Ss to the two coexistent phases containing Si and S2, we shall

obtain a series of two coexistent ternary phases, terminating in

a phase at which the two phases become identical.

Let n be the number of independently variable components.

According to the phase rule, a pair of coexistent phases has n

degrees of freedom, i.e., is capable of n independent variations.

Thus, in the case of phenol and water, a pair of coexistent

phases can be varied independently in two ways, i.e., we can

vary both the temperature and the pressure without making

one phase disappear. Now if we keep the pressure constant

T
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. . .nin are in general different in the two phases. Or, if for

convenience we compare equal volumes of the two phases (which

involves no loss of generahty), the quantities 77, mi, nh, . . . nin

will in general have different values in two coexistent phases.

Applying tliis to coexistent phases indefinitely near to a critical

phase, ... if the values of n of the quantities t, p, /xi, mz, • • • Mn are

regarded as constant (as well as v),* the variations of either of

the others wUl be infinitely small compared with the variations

of the quantities 77, mi, m^, . . . w„. This condition, which we

may write in the form

= 0, (242) [200]
Mn-I

characterizes . . . the limits which divide stable from unstable

phases with respect to continuous changes."

Critical phases are also at the limit which divides stable

from unstable phases in respect to discontinuous changes.

Thus, in Figure 8, phases represented by points inside the curve

ACB are unstable with regard to the formation of the co-

existent phases, represented by points on this curve. The co-

existent phases thus He on the limit which separates stable from

unstable phases in respect to discontinuous changes, and the

same must be true of the critical phase.

The series of phases determined by giving t and p the constant

values which they have in the coexistent phases N and P
(Fig. 8) consists of unstable phases in the part NP between the

coexistent phases, but in the parts MN and PQ, beyond these

phases, it consists of stable phases. But when t and p are

given the constant values determined by the critical phase C,

the whole series of phases XY (obtained by varying the com-

position) is stable. Thus, in general, "if a critical phase is

varied in such a manner that n of the quantities t, p, m, fj.2,

. . .(Xn remain constant, it will remain stable in respect both to

* Since two coexistent phases are only capable of n independent

variations, this condition ensures that the variation considered cor-

responds to the change from one coexistent state to the other, which is

infinitely close to it.
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continuous and to discontinuous changes. Therefore, Hn is an
increasing function of m„ when t, v, ni, H2, . . .At„_i have con-

stant values* determined by any critical phase." If

((Ptj.n/dmJ)t. V. Ml- • Mn-1

had either a positive or a negative value, ^n would be a maxi-

mum or a minimum with respect to m„, at the critical point,

when (242) is satisfied. Thus, since Hn is an increasing function

of nin, we have

(j^) = 0, (243) [201]
\am„ /t, v,^i, Hi, . . . ,i„_,

but one of the higher differentials must be positive, i.e.,

( -J
—

3

)

^ 0, etc. (244) [202]

XII. Generalized Conditions of Stabilityf

37. The Conditions. A single phase of n components has n + 1

degrees of freedom. Therefore, if n of the quantities t, p, ni,

. . -Hn are given constant values, the phase is only capable of

one independent variation. If we take rj, wi, Wi, . . .w„ as the

independent variables, we may write (when dv = 0)

dt dt
at = — di] -{-

-— dm\ .

(17) dmi

dfi\ dfjLi

dfii = —r- d-n + -— dmi

.

dr] ami

dt

+ T"" dnin,

+

dm„

dm
dnin

dnin,
> (245) [172]

dUn dfJLn dfXn
dun = ~r dv -f

-— dm.1 . . . + ";— dm„.
arj ami dm„

When dt = 0, dm = 0, . . . dun-i = 0, we have

dlJ,n\ Rn + l

(:dmn/t, v,^i,...fin-l Rn
(246) [175]

* t; is included to insure that a change in the amount of the critical

phase is excluded,

t Gibbs, I, 111-112.
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columns of (245) and (247). But in this case it is more con-

venient to make dm = 0. Then we may write

dt dt
dt = -r dr] -\- — dv,

dti dv

dp dp
dp = ~r dr) -\- — dv;

dr] dv

and, when dt = 0, the value of dp/dv is given by

dH

(249)

drf

dh

dvdrj

dr]dv

dh

dv""

(250)

since, by (44), t = {dt/dr))^^^^ and p = — (c?e/dy);^,„. In

stable phases, {dp/dv)i^^ must be negative. Thus, expanding

(250), a phase of invariable composition is stable when

d^e dh / dh
'

drf^ dv^ \drjdvJ > 0,

dh

d;;^>'-
(251)

The physical meaning of these conditions can be seen from a

consideration of the rj-v-e surface for homogeneous phases. Let

rj, V, € be the coordinates on this surface of the point D, rep-

resenting the phase in question. Let E be the neighbouring

point on the surface, with coordinates rj + Arj, v -{- Av, e -\- Ae,

and E' the point of intersection of the tangent plane through D
with the vertical erected at E. (See Fig. 6.) Let the ordinate

of E' he € -{- Ae'. Then, to the second order of small quantities,

Ae =
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(since de/drj, de/dv define the slope of the tangent plane at D).

Thus

EE' = Ae - At'

d^e
'

dh O'e

= ^^^^^ + d";s;^^^^ + ^^^^^'

The expression on the right of this equation is positive when

dh d^e / dh \2 dh dh

(the last condition is a consequence of the other two), so that

when these conditions are fulfilled E Hes above E'. Thus the

conditions which were obtained above signify that a phase is

stable with respect to continuous changes, when the rj-v-e

surface for adjacent phases Ues above the tangential plane at the

point representing the phase in question, except at the single

point of contact.

It is often more convenient to use other sets of quantities as

the independent variables. Thus if we employ t, v, Wi, nh,

. . .rrin as independent variables, we have when dt = and

dm„ =. 0,*

dp dp dp
dp = -rdv+T-dm^... + 7-— dmn-i

dv drrii
' '

' dm„-i

dni dyL\ dni
dui =» -7- dv + ~— dnii . . . + J drtin-i,

dv drrii am„_i

dun-i = ~3— dv + —— ami . . . + :; drrin-i;
dv dmi dm„-i

whence, when dt = 0, dp = 0, dfxi = 0, . . . d^n-i = 0,

Pn

> (252)

/ dHn-l \

Xdmn-i/t.v,^,, lin-2,mn t^n-\
(253)

* In order that every variation considered shall represent a real

change of phase, it is necessary to make one of the quantities v, nii, m-i,

. . .ron constant.
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Therefore, by (43),

/ dnn-i \

\dmn-ijt. p. Ml. • • • Mn-i>

where C/„_i is the determinant

d^^ d^^

Un-l

UnJ

d^^

171

(257)

drrii dnh,

dH
dm^

dmn-\ dmi dm„_i dmz

dm-^

dH
dm-2 dm I

dH

drrii dm„_i

dnii dtrin-i

dml^i

, (258) [206]

and Un-2, etc. are the minors obtaiaed by erasing successively

the last column and the corresponding row. A phase for

which all these determinants have positive values is therefore

stable.

When there are three components and dmz = 0, these con-

ditions become

d^ ^
drrii^ dnii^ \dmi dw2/

>0,
dn_

dmi'
>0,

dn_

dmi^
> 0. (259)

If, instead of making wis constant, we use as the variables ex-

pressing the composition x = Wi/(wi -{- m^ -{- mz) and y =

m^/imi + m2 + ms), these conditions maybe obtained in the form

dx^ dy' \dx dyj
>0,

d^

dx'
>0,

d^

dy'
> 0. (260)

Thus if a f-surface is constructed for homogeneous phases

having the same temperature and pressure, with coordinates

X, y, f, the condition of stability of any phase is that the f-

surface for adjacent phases shall be above the tangent plane,

taken at the point representing the phase in question, every-

where except at the single point of contact.
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In general the condition of the Hmit of stabiHty is represented

by substituting = for > in any of these equations.

38. Critical Phases* Since a critical phase may be varied

without changing any of the quantities t, ni, n^, ... Mn, all the

expressions (245) may be equated to zero. The solution of the

equations so obtained is

Rn+i = 0. (261) [203]

(This also follows from the fact that a critical phase is at the

limit of stability with respect to continuous changes.) "To
obtain the second equation characteristic of critical phases, we
observe that as a phase which is critical cannot become unstable

when varied so that n of the quantities t, p, ni, )U2, ...Mn

remain constant, the differential of Rn+\ for constant volume,

viz.,

—j^ dv + -~- dmi ... + -J—^ drrin (262) [204]
dri ami otw,,

cannot become negative" when n of the quantities t, p, ni, m,
. . ./x„ remain constant. "Neither can it have a positive value,

for then its value might become negative by a change of

sign of dr], drrii, etc." Therefore the expression (262) has the

value zero, when n of the expressions (245) are equated to zero.

If *S is a determinant in which the constituents are the same as

in i^n+i except that the differential coefficients

dr) ' drrii ' ' * ' dm,,

are substituted in a single horizontal line, this condition is

expressed by the equation

S = 0. (264) [205]

This substitution may be made in any horizontal line of Rn + i-

* Gibbs, I, 132-134.
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These conditions may be expressed in terms of other sets of

variables. Thus using the variables of (252), we have

P„ = 0, and Qn = 0, (265)

where Q„ is the determinant formed by substituting the coeffi-

cients

-—, -—,... ~ (266)
dv ami dnin-i

in any line of (254). For a system of one component, these

equations become

\dv^/t,m ' \dv^)t,m

Again, using the variables in (256), we have as the equations of

critical phases,

Un-i = 0, and Vn-x = 0, (268) [208]

where Fn_i is the determinant formed by substituting the

coefficients

d^ dE^ MJ^
12071

drrii drrii dm n-i

in any line of (258). For two components, these equations

become

m =0, if-)
=0. (270)

Instead of making W2 constant, we may use as the variable

expressing the composition, a; = mi/(wi + W2). Then we have

as the equations of a critical phase

\dx^/t.p ' \dxyt,p

As an illustration of these relations we will return to a con-

sideration of the ^-composition diagram of a two component
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system. Suppose that at a pressure p and a temperature t',

the f-x curve for homogeneous phases has the form AB (Fig. 9),

with a double tangent PQ. Homogeneous phases between P

Fig. 9

and Q are unstable with respect to discontinuous changes.

Between R and S, the ^-curve is convex upwards, i.e.,

{d^^/dx%, t < 0,

and these phases are unstable with respect to continuous

changes. Between P and R, and between Q and S the f-curve

is still concave upwards, i.e.,

and these phases, though unstable with regard to discontinuous

changes are stable with regard to continuous changes. The

points R and S, for which

d'^/dx' = 0,
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thus represent the Hmits of stabihty with regard to continuous

changes. K the temperature is varied in the direction of the

critical point, the phases P and Q approach each other and at

the critical temperature become identical. If CD is the f-curve

at the critical temperature t", the point T representing the

critical phase, where the points P, Q, R, S, all coalesce, is a

point of undulation at which

i(P^/dx-')p. t
= and {d'^/dx')p. t

= 0.

Finally, at a temperature t'" beyond the critical point, the

f-curve is concave ever5nvhere. Now (d'^^/dx^) t, p is positive for

all homogeneous phases, which are stable with regard to both

continuous and discontinuous changes.

It is evident that by a shght variation of the critical phase we

may obtain either (1), a phase which is unstable with regard

to both continuous or discontinuous changes, or (2), a phase

which is stable with regard to continuous changes but unstable

with regard to discontinuous changes, or (3), a phase which is

stable with regard to both continuous and discontinuous

changes.

XIII. Equilibrium of Two Components in Two Phases

39. The Equilibrium. We can now consider in more detail

the relation between temperature, pressure and composition in

systems of two components. Si and S2, in two phases. Let

the quantities referring to the first phase be distinguished by

single accents, and those referring to the second phase by double

accents. Then, for any change of state, while the phases remain

in equihbrium, we have

v' dv = v' dt -\- mi dm + m^' c?^2,]

(272)
v"dp = r}"dt + mi"dm + mi'dm-]

If we consider quantities of the phases for which m^' = W/i'

,

we have

(v" - v')dv = (r;" - t\')dt + (mi" - miO^Mi. (273)
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Now, we may express dfj,i as a function of p, t, mi by the equa-

tion

This equation may be applied to either of the two phases.

Applying it to the first phase, we may write, by (158) and (159),

\dp Jt.m
'

' \dt /p. m

Hence, substituting in (273) the value of d^ given by these

equations and rearranging, we find

{{v" - v') - (mi" - miO vA dp

= [(V - r?') - (mi" - m/) ^i'] dt

+ (mi" - miO (^Y ' dmi'. (275)

Similarly, when the terms of (274) are determined by the

second phase, we obtain

[{v" - v') - (mi" - miO vi"\ dp

- Kv" -v) - (wi" - miO vi"] dt

+ (mi" - miO (j^Y • dmi". (276)
\dmi/p, I, mj

In order to interpret these equations we may first observe that

v' is the volume of the quantity of the first phase which contains

mi' of the first component. Thus [v' + (m/' — m/) {dv'/dmi')]

is approximately equal to the volume of that quantity of

this phase which contains m/' of this substance. Hence we

see that [v" — v' — (m/' — m/) y/] is approximately equal

to the difference of the volumes of quantities of the two phases

containing the same amount (viz., m/') of this substance. In

the same way [v" — v' — (m/' — mi)vi"] is the approximate
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difference of volume of quantities of the two phases which

contain the same amount (wi') of this component. The terms

relating to the entropy can be interpreted in a similar way.

Secondly, by (253) or (257) the differential coefficient

(dfjLi/dmi)t. p, m, is positive in both phases.*

40. Konowalow's Laws. In the case in which the first phase

is Hquid and the second a gaseous phase, the coefficients of dp

in (275) and (276) are evidently positive. Then, when dt = 0,

we see that

(1) From (275), dp has the same sign as (m/' — m/) dm/, and

from (276), dp has the same sign as (m/' — m/) dmi".

Therefore dnii has the same sign as dmi".

(2) Since dp has the same sign as (mi" — m/) dnii, dp and

dmi have the same sign if 7ni" > m/, and opposite

signs if mi' < mi.

Thus we may draw the following conclusions

:

(1) When the composition of the liquid phase is changed,

that of the vapor phase changes in the same sense.

(2) If the proportion of Si is greater in the vapor than in

the hquid phase, when the temperature remains con-

stant the pressure is increased by the addition of Si.

In the same way, it can easily be shown that when dp = 0, dt

and dmi have opposite signs when mi" > mi. Therefore we

have

(3) If the proportion of ^Si is greater in the vapor than in

the liquid phase, when the pressure remains constant

the temperature is decreased by the addition of Si.

(4) If the proportion of Si is the same in the vapor as in

the liquid phase, the pressure is a maximum or a

minimum at constant temperature, and the tempera-

ture a maximum or minimum at constant pressure

(See p. 113).

These rules, which are illustrated by the examples shown in

Figures 2 and 3, were first stated by D. Konowalow.f

* It may be zero if the phase is at the limit of stability,

t Wied. Annalen, 14, 48 (1881).
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XIV. Phases of Dissipated Energy. Catalysis*

41. Dissipated Energy. In considering the conditions of

equihbrium of heterogeneous masses, changes which are "pre-

vented by passive forces or analogous resistances to change"

have been excluded. Thus it often happens that "the number
of proximate components which it is necessary to recognise as

independently variable in a body exceeds the number of com-
ponents which would be sufficient to express its composition."

Thus, at low temperatures the combination of hydrogen and
oxygen may be regarded as prevented by passive forces, and
in a system containing hydrogen, oxygen and water it is neces-

sary to recognize all three substances as independently variable

components.

At higher temperatures, when the combination of hydrogen
and oxygen is not prevented by passive forces, the state of the

system is entirely determined by the temperature, pressure and
the total quantities of hydrogen and oxygen present. The
value of f can be expressed as a function of these four variables.

The fact that part of the matter present exists in the form of

water vapour does not affect the form of this function, but it is

one of the facts which determine the nature of the relation

between ^ and the above mentioned variables.

In cases like those first mentioned^ of all the phases which

may be formed from the given matter, there are some for

which the energy is as small as that of any other state of the

same matter having the same entropy and volume, or for which

the value of ^ is as small as that of any other state of the same
matter at the same temperature and pressure. These are

called phases of dissipated energy.

It is characteristic of such phases that the equilibrium can

only be slightly disturbed by the action of a small body, or by
the action of a single electric spark. The effect produced by
any such action is in some way proportionate to its cause. But
in a phase which is not a phase of dissipated energy, it may be
possible to cause very great changes by contact with a very

small body, or other action. Such changes may only be limited

by the attainment of a phase of dissipated energy.

* Gibbs, I, 138-141.
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Gibbs describes the effects which may cause a system to

undergo changes of this kind in the following terms

:

"Such a result will probably be produced in a fluid mass by

contact with another fluid which contains molecules of all the

kinds which occur in the first fluid (or at least all those which

contain the same kinds of matter which also occur in other sorts

of molecules), but which differs from the first fluid in that the

quantities of the various kinds of molecules are entirely deter-

mined by the ultimate composition of the fluid and its tem-

perature and pressure. Or, to speak without reference to the

molecular state of the fluid, the result considered would doubt-

less be brought about by contact with another fluid, which

absorbs all the proximate components of the first, *Si, ... <S„,

independently, and without passive resistances, but for which

the phase is completely determined by its temperature and

pressure and its ultimate composition (in respect at least to the

particular substances just mentioned). By the absorption of

the substances Si, ... /S„ independently and without passive

resistances, it is meant that when the absorbing body is in equi-

librium with another containing these substances, it shall be

possible by infinitesimal changes in these bodies to produce the

exchange of all these substances in either direction and inde-

pendently. An exception to the preceding statement may of

course be made for cases in which the result in question is

prevented by the occurrence of some other kinds of change; in

other words, it is assumed that the two bodies can remain in

contact preserving the properties which have been mentioned.

"The term catalysis has been apphed to such action as we are

considering. When a body has the property of reducing

another, without limitation with respect to the proportion of

the two bodies, to a phase of dissipated energy, in regard to a

certain kind of molecular change, it may be called a perfect

catalytic agent with respect to the second body and the kind of

molecular change considered."
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OSMOTIC AND MEMBRANE EQUILIBRIA, IN-

CLUDING ELECTROCHEMICAL SYSTEMS

[Gibbs, I, pp. 83-85; 4iS-417]

E. A. GUGGENHEIM

1. Introduction. The power and elegance of the methods of

Willard Gibbs in thermodynamics are nowhere better illustrated

than in their apphcation to membrane equilibria.* Owing to

the form in which he expressed the conditions for chemical

equilibria, the same conditions for the equilibrium between two

phases as regards a given species hold good whether the two

* A list of the most important symbols used, in addition to those used

by Gibbs, is as follows:

E Electromotive force of cell.

F Faraday.

/, Activity coefficient of species St.

/± Mean activity coefficient of electrolyte.

g Osmotic coefficient.

Ni Mol fraction of species St.

P Osmotic pressure.

q+, q- Number of cations and anions per mol of electrolyte.

r Ratio of partial molar volume at infinite dilution of electrolyte to

that of solvent, both at a pressure equal to the mean of those

at either side of membrane.

Vi Partial molar volume of species Si at given temperature, pressure

and composition.

Vi* Partial molar volume of species Si at given temperature, zero

pressure and infinite dilution.

[vi] Partial molar volume of species Si at given temperature, infinite

dilution and at a pressure equal to the mean of those at either

side of the membrane.

Zi Valency, positive or negative, of ionic species Si.

Ki Coefficient of compressibility of species Si at infinite dilution,

[/i,] Potential of ionic species Si.

The suffix always refers to the solvent species, e.g., Vo* is the molar

volume of the pure solvent at zero pressure.
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phases be in complete equilibrium or only in partial equilibrium,

that is, in equilibrium as regards this species but not as regards

all the species present.

The general conditions that two phases, denoted respectively

by a single and by a double accent, shall be in complete equilib-

rium are the following. First, in order that the two phases

shall be in thermal equiUbrium the temperatures of the two

phases must be the same, that is,

f ^ t". (1) [19]

Second, in order that the two phases shall be in mechanical or

hydrostatic equilibrium the pressures of the two phases must

be equal, or

P' = P". (2) [20]

Third, in order that the two phases shall be in chemical equi-

librium as regards the various chemical species Si, S2, . . . Sn the

potential of each species must be the same in the two phases, or

Ml = Ml ,

/ n
M2 = M2 ,

/ //

Mn = Mn .

(3) [21]

The essential feature of Gibbs' treatment of equiUbrium is that,

thanks to his invention of the potentials of the chemical species,

the conditions (3) [21] for chemical equilibrium are of a form

analogous to the condition (1) [19] for thermal equilibrium

and to the condition (2) [20] for hydrostatic equiHbrium.

The importance and usefulness of Gibbs' method for the

treatment of membrane equihbria depend on the fact that, pro-

vided two phases are in thermal equilibrium, i.e., (1) [19] is

satisfied, the other equilibrium conditions, namely, (2) [20] for

hydrostatic equilibrium and the several equations of (3) [21]

for chemical equilibrium, are all independent of one another.

In other words, if two phases, denoted respectively by a single

and by a double accent, be separated by a membrane capable
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of supporting an excess of pressure on either side and permeable

to some of the components Sh, Si, . . ., but impermeable to others

Sa, Sb, . .
•
, the conditions for equihbrium between the two

phases as regards the components Sk, *S., . . •,

w' = w",l

are of exactly the same form as (3) [21].

But the potentials of the components Sa, Sb, . .
.

, to which

the membrane is impermeable, will in general not be equal,

that is,

Ha 7^ Ma",l

,.'^,."} (5) [77]

Moreover, in general the pressures of the two phases will not be

equal, that is,

p' ^ V"- (6) [77]

The pressure on each phase will be equal and opposite to the

pressure exerted by the phase on the membrane, and so the

resultant force per unit area on the membrane wiU be equal to

the difference between the pressures of the two phases.

2. Proof of General Conditions of Membrane Equilibrium.

The derivation of the general conditions (4) [77] of membrane

equilibrium is given by Gibbs (I, 83). In this proof the

quantities chosen as independent variables are the entropy tj

of each phase, the volume v of each phase, and the quantities

Wi, W2, ... w„ of the various chemical species Si, Sz, ... Sn

in each phase. The corresponding characteristic function is

the energy c. The appropriate form for the general criterion

of the equilibrium is that expressed by [2] (Gibbs, I, 56)

.

In accordance with the footnote (Gibbs, I, 90) a somewhat

more familiar derivation of (4) [77] can be obtained by choosing

as independent variable the temperature t instead of the entropy
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Tj of each phase and by taking for granted the condition for

thermal equiUbrium (1) [19].

With this choice of independent variables the characteristic

function is yp defined by

\p = e — tt]. (7) [87]

Its dependence on the independent variables t, v, mi, nh, . . . m„

is given by

d\p = —r]dt — pdv + fiidmi + tiidm^ . . . + Undrrin. (8) [88]

The condition of membrane equilibrium takes the form

subject to

dyp' + dxp" = 0,
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The same form, (11) [77], for the conditions of membrane equi-

Hbrium is thus obtained whether entropy or temperature be

chosen as one of the independent variables. In fact, whatever

choice one makes of independent variables an analogous treat-

ment will lead to the same result, (11) [77].

3. Choice of Independent Comyonents. If the various quantities

mh, rrii, ... are not independently variable but are subject to cer-

tain restrictions expressible in the form of linear relations between

dnih, dnii, . . ., then (10) holds not for any values of dnih, dtUi,

. . . but only for such sets of values of dnih, dnii, ... as conform

with the linear restrictions. Instead of the conditions (11) [77]

one then obtains a smaller number of independent conditions

of the type [78] (Gibbs, I, 83) . The physical meaning of this is

quite simple. The condition for membrane equilibrium is equality

of the potential for those components to which the membrane is

permeable, provided the species chosen as independent compo-

nents include all those which are able to pass the membrane inde-

pendently. An example will make this clear. Suppose the mem-
brane is permeable to methyl alcohol CH4O but not to water H2O.

Then the corresponding condition of membrane equilibrium is

MCH4O = MCH.O- (12)

But from a purely thermodjoiamic standpoint it would be

allowable to choose as independent components methylene

CH2 and water H2O, since these will serve just as well as methyl

alcohol CH4O and water H2O to define the composition of each

phase. With this choice of components both methylene and

water are able to pass through the membrane, not independ-

ently but only in the proportions in which they form methyl

alcohol. Formula (10) in this case is

(mch, - MCH,) dm'cR, + (mhjO - MH20) drn'^^o = 0. (13)

But diucKj and dm^^o ^^^ subject to the restriction

p q '
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where p/q is the ratio in which methylene and water combine

to form methyl alcohol. Substituting (14) into C13) we obtain

PMcH, + ^Mh,o = P^CH. + e^ao. (15)

But according to [121] and the definition of the ratio it follows

that (15) is equivalent to

MCH4O = MCH«0, (16)

the same as (12). We see then that the complications discussed

by Gibbs in the paragraph preceding [78] can be avoided if we

always include among the independent components all those

species which can pass through the membrane independently.

4. Choice of Independent Variables. Although the conditions

for any membrane equilibria are completely contained in

Gibbs' formula [77] it is advantageous from a practical point of

view to transform this into a form involving quantities more

directly measurable than the potential n. For this purpose it is

most convenient to choose as independent variables the tem-

perature t, the pressure p and the number mi, nh, . . . nin oi

units of quantity of the various species *Si, S2, ... Sn. The

potentials m, m, ... /in in each phase will then be regarded as

functions of t, p, Wi, nh, • . . Mn.

The manner of dependence of the potentials mij M2, • • • Mn

on the temperature t need concern us very httle as we shall

always deal with systems maintained at a given constant tem-

perature throughout and shall not need to consider tempera-

ture variations. The manner of dependence of the potentials

Mi> ^2, • • • Mn on the pressure p is, on the other hand, of funda-

mental importance in the treatment of membrane equiUbria

because in general the pressures of two phases in membrane

equihbrium will be unequal. The required relation is obtained

by making use of the mathematical identity

dp dnih dvih dp

where ^ is defined by

^ = e-tv + pv, (18) [91]
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and is the characteristic function corresponding to our choice

of independent variables t, p, rrii, rih, ... Wn. The dependence

of variations of f on those of the independent variables is

given by

d^ = —r]dt-\- vdp + tildmi + )U2C?W2 . . . + Undnin. (19) [92]

From (19) [92] we see that

drtih

and

dp

= MA, (20)

= V. (21)

Substituting from (20) and (21) into (17) we obtain

dnh dv

dp drrih

= vh, (22)

where Vh denotes the increase in volume of a very large phase

when one adds to it unit quantity of the species Sh, keeping the

temperature and pressure constant. The volume Vh may be

called the "partial volume" of the species Sh.

5. Mols and Mol Fractions. Up to this point we have

purposely referred to nih as denoting the number of "units of

quantity" of the species Sh without specifying what is this

"unit of quantity." Willard Gibbs, living at a time when the

molecular theory was less firmly established than at present,

chose the same unit of mass for the unit of quantity of each

species. In a letter to W. D. Bancroft (Gibbs, I, 434) he

agrees, however, that "one might easily economise in letters

in the formulae by referring densities (7) and potentials (n) to

equivalent or molecular weights." We shall therefore adopt

this procedure and take as unit quantity of each species the

gram-molecule or mol in the highly dilute vapor state. None

of the formulae so far given are affected, but the potentials

fi now have the dimensions calories per mol instead of calories

per gram, and the formulae expressing the dependence of the
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potentials ^t on the composition take a simpler form. Similarly

Vh denotes the increase in volume of a very large phase when
one adds to it one mol of the species Sh, keeping temperature

and pressure constant. Therefore Vh will be called the "partial

molar volume" of the species Sh-

As already mentioned the potentials /zi, /i2, ... Mn will be

functions not only of t and p but also of the number of mols

mi, m2, . . . w„ of the various species in the phase. Actually

it is clear that each n will depend on the composition of the

phase but not on the absolute quantity of it. That is to say,

m, 1X2, ... iin will be functions of the quantities A^i, N2, . . . Nn
defined by

,. 'fni
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This definition of ideality is exactly equivalent to the condition

that for a given temperature and external pressure on a solution

the partial vapor pressure of each component shall be directly

proportional to its mol fraction.

Since A, t and Nh are all independent of p, it follows from

(22) that

P = ... (27)
dp

As, by definition, fXfP at given temperature and pressure is inde-

pendent of the composition, it follows that the same is true

of Vh. This means that the transference of any part of an ideal

solution to another ideal solution in the same solvent takes

place, at constant temperature and pressure, without volume

contraction or expansion.

For the dependence of Vk on the pressure p we may write

Vh = Vh*(l - khp), (28)

where Vh* is the value of Vh at vanishing pressure, and where

it will always be allowable to assume that kh is independent of

the pressure p. The compressibility coefficient kk may depend

on the temperature but this need not concern us.

Owing to the relations (27) and (28) we may replace (26) by

M/. = y^h*{t) + pv,*{l - hxhP) + At log Nk, (29)

where Hh*(t) is independent of the pressure as well as of the

composition.

If we now substitute from (29) into the general condition of

membrane equilibrium (4) [77], we obtain
w

p' vh*{1 - hhP' ) + At log N,/

= p"vh*{l - hhP") + At log Nh", (30)

or

Nh"
(p' - P") Vh* (l - KH ^^-^) = At log

Nh''
(31)
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Hence

where [vh] is defined by

(33)

and is equal to the partial molar volume of the species Sh at

the given temperature and at a pressure equal to the mean
of the pressures p' and p" on either side of the membrane.

Formula (32) is exact for membrane equilibrium as regards the

species Sh between two ideal solutions in the same solvent,

whether Sh denote the solvent species or one of the solute

species.

7, Non-ideal Solutions. The range of concentrations over

which solutions remain ideal varies very much according to the

nature of the solvent, the nature of the various solute species

and the temperature. It is however generally accepted that in

the neighbourhood of infinite dilution all solutions become

ideal. This provides a convenient thermodynamic treatment

of solutions that are not ideal.

In analogy with (26) we may write formally for any species

Sh, whether solvent or solute,

HH = tih\t, p) + At log Nhfhy (34)

where in^H, p) is for a given solvent independent of the compo-

sition. In general /;, is a function of temperature, pressure and

composition, but has the simplifying property that for given

temperature and pressure its value approaches unity as the

dilution approaches infinity. It is called the activity coefficient

of the species Sh and is a measure of the deviation of the solution

from ideahty so far as the species Sh is concerned.

Since ix}^{t, p) is by definition independent of the composition,

and we are assuming that in the neighbourhood of infinite

dilution the solutions become ideal, it follows that /xa''(^ v) must
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be of the same form as for ideal solutions. In accordance with

(29) we may therefore write

MA = MA*(0 + PVh*(l - hxhP) + At log NhSh, (35)

where Hh*it) is independent of the pressure as well as the com-

position; Vh* is the value of the partial molar volume of the

species Sh at the given temperature, at zero pressure and at

infinite dilution; kh is independent of the pressure and the com-

position; while Vk*(l — Khp) is the value of the partial molar

volume of the species Sh at the given temperature, the given

pressure and at infinite dilution. The activity coefficient fk at

given temperature and pressure tends to unity at infinite

dilution.

If we differentiate (35) with respect to p and use (22) we

obtain

Vfc = — = Vh* (1 - KhP) + At (36)

or

d log fh _ Vh - Vh* {I - Khp)

dp ~ At
(37)

From this we see that the activity coefficient fh will or will not

vary with the pressure at given temperature and composition,

according as the partial molar volume Vh in the solution is un-

equal or equal to its value Vh*{l — Khp) at infinite dilution at

the same temperature and pressure.

If we now substitute from (35) into the general condition of

membrane equilibrium (4) [77] we obtain

p'vh*{l - hxkP') -\- AtlogNh'U
= p"vh*(l - hKhp") + At log Nh'Jh" (38)

or

ip' - P") Vh* (l - K.^) = At log ^^'. (39)
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Hence

, „ At N,"U" ,^„,

where [vh] is defined by

M = ^A* I 1 - KA
^

1 (41)

and is the partial molar volume of the species Sh in an infinitely

dilute solution at the given temperature and at a pressure

equal to the mean of the pressures p' and p" on either side of

the membrane. Formula (40) is exact for membrane equihb-

rium as regards the species Sh between two non-ideal solutions

of the most general type in the same solvent, whether Sh denote

the solvent or one of the solute species. It is important to

observe that the values of the activity coefficients to be inserted

in the formula are those at the actual pressures at membrane
equilibrium, that is fh at the pressure p' smdfh" at the pressure

8. Osmotic Equilibrium. If in particular the membrane is

permeable to the solvent only, but impermeable to aU the solute

species, the membrane equilibrium is called "osmotic equilib-

rium." If the phase denoted by a double accent is the pure

solvent the difference p' — p" is called the "osmotic pressure"

of the solution represented by the single accent. In this case,

using the suffix to denote the solvent, we have

N," = 1, (42)

and so the osmotic pressure P in ideal solutions is given by

At 1
P = p'-p" = j^log^,. (43)

while in non-ideal solutions it is given by

At 1
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the value of fo being that at an external pressure p', and [vq]

being the value of the partial molar volume of the pure solvent

at the given temperature and at a pressure equal to the mean of

those (p' and p") at either side of the membrane.

9: Iricompressible Solutions. If it is allowable to neglect the

compressibility kq of the solvent, one need not distinguish

between [vo] and vq*, and the formulae for P may be written

At 1

P = — log
—

45)
Vo* No

for ideal solutions, and

At 1
, ,P = — log 77-7 46

Vo* Nofo

for non-ideal solutions, the value of /o being that corresponding

to an external pressure p' somewhat exceeding the osmotic

pressure P. From (45) we see that when compressibility is

neglected the osmotic pressure of an ideal solution is independent

of the external pressure on the pure solvent with which it is in

osmotic equilibrium.

10. Relation between Activity Coefficients. The variations of

the activity coefficients of the different species with variations

of composition at a given temperature and pressure are not

completely independent. For according to [98] (Gibbs, I, 88)

we have at given temperature and pressure

dt = 0,
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But

Nxd log iVi + Nd \0gN2 ... + Nnd log iV„

= dNi + dNi . . . + rfiVn = (50)

according to (25). It follows from (49) and (50) that

Nid log /i + N^d log /2 . . . + Nnd log /„ = 0. (51)

From (51) we can conclude in particular that, if throughout a

range of concentrations extending down to pure solvent the

activity coefficients of all the solute species are unity, then this

must also be the case for the solvent species. This is equivalent

to the following theorem : If at given temperature and pressure

but varying composition every solute species has a partial

vapor pressure proportional to its mol fraction (Henry's law),

then so has the solvent (Raoult's law).

11. Osmotic Coefficients. Owing to the relation (51), if the

mol fraction of the solvent species is almost unity and the

mol fractions of all the solute species are very small compared

with unity, the value of log/o for the solvent species will generally

be of a considerably smaller order of magnitude than that of

log /, for any of the solute species Sg. Thus it is quite usual in a

centimolar aqueous solution of a uni-univalent strong electrolyte

for the activity coefficient of the solute to be less than unity by
about 0.1, while the activity coefficient of the solvent in the same

solution will be approximately 1.00006. Thus for purely

numerical reasons the activity coefficient of the solvent species,

in contrast to the activity coefficient of the solute species, may
be an inconvenient function to work with. For this reason it is

often convenient to define another function called the "osmotic

coefficient" of the solvent, and denoted by g, by the relation

or

g log No = logNofo. (53)
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Using the sufl&x s to denote solute species and substituting (52)

into (51) we obtain

Nodil - g-log No) = - Nod log/o

= ^Nsd\ogU (54)
s

If No is almost unity and all the A^,'s are very small compared

with unity, we have approximately

- log No= - log (i-1^n)\ = Yj Ns, (55)

and (54) becomes approximately

d(r^'^ n)\ + Yj Nsdlogf, = 0. (56)

From this approximate relation we can conclude that 1 — g^ is

likely to be of the same order of magnitude as log /,, or as 1 — /,.

Thus in very dilute solutions not deviating greatly from ideality

the osmotic coefficient g will have a more convenient numerical

value than the activity coefficient /o of the solvent species.

Substituting (53) into (35) we obtain for the chemical po-

tential of the solvent in a non-ideal solution

MO = Mo*(0 + PVo*(l - h xop) + gAt log No. (57)

The osmotic coefficient g, like the activity coefficient /o of the

solvent species, will at given temperature and pressure tend to

unity at infinite dilution when the solutions become ideal.

Differentiating (57) with respect to p and using (22) we ob-

tain for the dependence of the osmotic coefficient on the

pressure

vo = vo* (1 - Kop) + At log No-
J-

(58)
op

or

di _ yp - ro* (1 - KqP)

dp ^ At log No
* ^^
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Thus at given temperature and composition the osmotic co-

efficient, hke the activity coefficient of the solvent, will or will

not vary with the pressure according as the partial molar

volume of the solvent Vq in the solution is unequal or equal to its

value yo*(l — kqp) in the pure solvent at the same temperature

and pressure.

12. Osmotic Equilibrium in Terms of Osmotic Coefficient.

Substituting from (57) into (4) [77] we obtain as the general

condition of membrane equilibrium for the solvent between

two non-ideal solutions

ip' - V") vo* (l - Ko ^^^') = At ig" log No" - g' log N^'),

(60)

or introducing [vo] the partial molar volume of the pure solvent

at the given temperature and at a pressure equal to the mean
of those p' and p" at either side of the membrane.

At
V' -V" =

^^^ ig" log No" - g' log No'), (61)

the values of g' and g" being those at pressures p' and p"

respectively.

K we assume the membrane to be permeable to the solvent

species only, and take the phase denoted by the double accent

to be pure solvent, we have

log N" = 0, (62)

and so obtain for the osmotic pressure P

At 1

^ = "'-''" =
''Si

'OS
iv''

(«3)

the value of g' being that at an external pressure p'.

If it is allowable to neglect the compressibility of the solvent

one need not distinguish between [vo] and vo*, in which case

instead of (63) one may write

At 1
P = 0'-,iogj,. (64)
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the value of g' being that at an external pressure p' somewhat

greater than P.

Comparing (64) with (45) we see that, when we neglect the

compressibihty, the osmotic coefficient is the ratio of the actual

osmotic pressure in a non-ideal solution to its value in an ideal

solution of the same composition. This is the origin of the name

"osmotic coefficient."

13. Extremely Dilute Solutions. If a solution, whether ideal

or non-ideal, is so dUute that the mol fractions N, of all the

solute species are extremely small compared with that of the

solvent A^o, we may make the three approximations:

log
^^ = - log (l - S ^•) = S ''•• ^^^'^

N. = ^^^ = ^'^
(66)

moWo 4- 7 , ms
s

V = moVo -\- 2j ^« ^» = ^0 1'o*. (67)

8

Formula (45) for ideal solutions then takes the approximate

form

P = ~^rn, = At^ y., (68)

where 7, denotes volume concentration. Similarly formula (46)

for non-ideal solutions takes the approximate form

P =gAt^y,. (69)

s

Formula (68) is contained in some fragmentary material by

Willard Gibbs published after his death (Gibbs, I, 421, equation

[7]). For its approximate validity it is necessary to assume

not merely that the solution is ideal and incompressible, but also

that it is extremely dilute. This formula was originally due to

van't Hoff, who realised its limitations. It has unfortunately
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been applied only too often under conditions where it cannot

be even approximately correct.

14. Electric Potential Difference between Two Identical Phases.

Up to this point we have tacitly assumed that all the species

present were electrically neutral. The fundamental difference

between the behavior of ions and of uncharged species is the

following. The potential of an uncharged species in a phase at

given temperature and pressure is completely determined by
the bulk composition of the phase, and is independent of the

presence of any impurity at the surface as long as its concen-

tration in the bulk is negligible. This, however, is not the case

for ions. Let us consider two phases identical with respect to

temperature, pressure, size, shape and bulk composition. Then

it may be that the first phase contains an excess of ions of one or

more kinds over the second phase, this excess being so small that

its effect on the size, shape and bulk concentration of the phase

is entirely negligible. If however the total excess of ions in the

first phase over those in the second has a net electric charge,

the corresponding excess charge will be distributed over the

surface of the first phase, and the potential of any ionic species

within the phase will be affected thereby. The difference

between the potential of a given ionic species in the first phase

and in the second will be determined entirely by the difference

in distribution of electric charge over the surfaces of the two

phases and independent of the chemical nature of the excess

ions. One might describe the situation roughly by saying that

the excess ions in the first phase over those in the second are too

few to show themselves in any manner except by their electrical

effect. It is usual and convenient to refer to two such phases

as "of identical composition but at different electric potentials."

To emphasize the peculiar property of the potential of an ionic

species, that it is not completely determined by the bulk com-

position of the phase, a slightly modified symbol will be used.

The potential of the ionic species Si will be denoted by [nil-

The difference between its value in the two phases of identical

composition will be of the form

Wi]' -im]" = ZiF{V' -V") (70)
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where z » denotes the valency (positive or negative) of the ionic

species Si and F denotes the faraday, so that ZiF is the charge

of one mol of the ionic species. Finally V, Y" have values

independent of the type of ion being considered, and V — V" is

called the "electric potential difference" between the two

phases.

This may at first sight appear a strange method of defining

electric potential difference between two phases of "identical"

composition, but it does not seem possible to give a simpler

definition that is not ambiguous. The usual definition of the

mathematical theory of electrostatics is not applicable to thermo-

dynamic systems, for the conditions of thermodynamic equihb-

rium of ions are by no means the same as the conditions of

equilibrium of "static electricity."

15. Electric Potential Difference between Two Phases of

Different Composition. If we now consider the difference of the

potential of a given ionic species between two phases of different

bulk composition, this difference will be determined partly by

the difference in the chemical composition in the bulk and

partly by the distribution of electric charge at the surfaces.

This may be expressed formally as

M' - W = W - m/0 + ZiFiV - 7"), (71)

where [m] denotes the potential of the ionic species, m* denotes

the part of the potential due to the chemical composition of the

phase and z,- FV the part due to the distribution of electric charge

at its surface. The quantity [m,] may be called the "electro-

chemical potential" of the species Si, m may be called the

"chemical potential" of the species Si, and V may be called the

"electric potential."

When, however, we come to ask ourselves exactly what would

be meant by the statement that the electric potential V had

the same value in two phases of different composition, w^e would

have to admit that the statement had in general no physical

significance. All equifibria and changes towards equihbrium

are completely determined by the electrochemical potentials

IJLti], and any decomposition of [m] into two terms m and ZiFV
is in general arbitrary. This attitude is in accordance with a
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remark of Willard Gibbs (Collected Works, I, 429): "Again, the

consideration of the difference of potential in the electrolyte,

and especially the consideration of the difference of potential

in electrolyte and electrode, involves the consideration of quan-

tities of which we have no apparent means of physical measure-

ment, while the difference of potential in 'pieces of metal of the

same kind attached to the electrodes' is exactly one of the things

which we can and do measure." Unfortunately not all chemists

have been as careful as Willard Gibbs in avoiding the expres-

sion "difference of electric potential" when referring to two

phases of different composition.

16. Combinations of Ions with Zero Net Electric Charge. The

potential [/xj of a given ionic species in a certain phase is the

increase in the characteristic function when one mol of the

given species is added to the phase, keeping all the other inde-

pendent variables unaltered. In particular it is the increase in f

when one mol is added at constant temperature and pressure.

If we consider, not the addition of a single ionic species but the

simultaneous addition or removal of several species, say the addi-

tion of Xi mols of the species S„ where Xi may be positive or

negative, then the corresponding increase in f will be ^ Xi [m].

i

Making the substitution in (71) we have formally

i » »

Suppose now that the net electric charge of the ions added is

zero. The condition for this is

2 ^i ^i = 0- (73)

i

If this condition is satisfied then (72) becomes

i i

Thus, although the chemical potential of an individual ionic

species is indeterminate, certain linear combinations of the
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chemical potentials of ionic species are determinate and, in

fact, equal to the corresponding linear combinations of the

electrochemical potentials, the condition for this being that the

linear combination corresponds to a combination of ions with

zero net electric charge. The physical meaning of this is simply

that the potential of a combination of ions with zero net electric

charge is determined completely by the chemical composition

in the bulk of the phase and is independent of its electrical state.

17. Ideal Solutions of Ions. At very high dilutions of ions

aU equilibria are given correctly by assuming that the electro-

chemical potential [^u,] of the ionic species <Si is of the form

[Mi] = Mi*(0 + V^ni - \Kiv) + At log Ni + ZiFV, (75)

where )U»*(0 is for a given solvent a function of the temperature

only, Vi* and Vi*{\ — Kip) are the partial molar volumes of the

ionic species Si at zero pressure and at the pressure p respectively,

Ni is the mol fraction of the species Si, and Zi its valency.

Finally V depends on the "electrical state" of the system, that

is, on the distribution of electric charges at the surface of the

phase, and has the same value for all ionic species. Solutions of

ions behaving in accordance with (75) are called "ideal." In

analogy with ideal solutions of uncharged species it is natural

to define the chemical potential m of the ionic species Si by

/i.- = Mi*(0 + PVi*(l - hiP) + At log Ni, (76)

and to call V the electric potential of the phase.

18. Non-ideal Solutions of Ions. Since all ionic solutions

tend towards ideahty at infinite dilution, it is most convenient to

treat non-ideal solutions by the introduction of activity coeffi-

cients fi just as in the case of non-ideal solutions of uncharged

species. We therefore write formally

[m] = fjii*it) + pvi*(l - ^Kip) + At log Ni

-hAthgfi + ZiFV, (77)

where Mi*(0 is for a given solvent a function of the temperature

only; y,* and Vi*{l — Kip) are the values of the partial molar
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volume of the species Si at infinite dilution at the given tem-

perature, and at zero pressure and at the given pressure p respec-

tively; A'",- is the mol fraction of the species Si] Zi its valency; and

fi its activity coefficient which, at given temperature and pres-

sure, tends to unity at infinite dilution. Finally, V has the

same value for all ionic species in the given phase.

Formula (77) will always lead to correct physical results, but

it is partly ambiguous because there is no experimental method

of distinguishing between the last two terms,

At\ogfi + ZiFV. (78)

Thus the activity coefficient of a single ionic species is physically

indeterminate, as in each phase an arbitrary value may be

assigned to V and the value of /» will vary in such a way that

the sum (78) remains invariant. If, however, we consider

combinations of ions with zero net electric charge, the cor-

responding combinations of electrochemical potentials will be

given by

i i i

-\-At^\i\ogNi-^At^\i\ogU (79)
> i

since by supposition the X/s satisfy the relation (73). It follows

that, although the individual ionic activity coefficients /,• are

physically indefinite, certain combinations of them of the form

^ ^i log fi, (80)

or

n (/')' (81)

are completely determinate whenever the Xi's satisfy (73).

19. Mean Activity Coefficient of Electrolyte. Of the various

possible products of activity coefficients of the type (81) which
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are physically determinate, the most important is the "mean
activity coefficient" of an electrolyte. Thus for an electrolyte

consisting of q+ positive ions of valency z+ and g_ negative ions

of valency z-, the condition of electrical neutrality is

q+z+ + q-z- = 0. (82)

It follows that the quantity /±, defined by

q+ log/+ + 9_ log/_ = (g+ + qJ) log/±, (83)

where /+, /_ are the ionic activity coefficients, or by

(/J ..+ ._ = (/+)^.(/_)s (84)

is completely determinate although the ionic activity coefficients

/+ and /_ are to some extent arbitrary. The function /^ is

called the mean activity coefficient of the electrolyte.

Another example of a combination of ionic activity coeffi-

cients that is definite is the ratio of the activity coefficients of

two cations, or of two anions, in the same solution and of the

same valency.

W. Membrane Equilibrium, of Ideal Ionic Solutions. We are

now in a position to write down directly the conditions of

membrane equilibrium for ionic solutions. We have merely to

substitute the values of the potentials [m] in the general con-

dition of membrane equilibrium

[Mi]' = U.r'. (85)

For ideal solutions we obtain according to (75)

p' Vi*(l - ^Kip' ) + At log Ni' + Zi FV
= p"vi*(l - iKip") + At log Ni" + ZiFV". (86)

Introducing [v^, the partial molar volume at infinite dilution

at the given temperature and at a pressure equal to the mean
of those {p' and p ") at either side of the membrane, this becomes

At log -^= ip' - p") k] + ZiF{V' - V"). (87)
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Comparing formula (87) for two ionic species i and h of the

same valency z, we obtain

At log^ = iv' - V") (N - k] ). (88)

The right hand side of (88) will generally be small compared

with At and may often with sufficient accuracy be regarded as

zero. With this approximation (88) simplifies to

N-' N-"

Applying formula (87) to the two ionic species of an electro-

lyte composed of g+ cations of valency 0+ and g_ anions of

valency Z-, we obtain

At\og(^-^j [jjj = (p' - p") iq^v^] - q-[v-]). (90)

The right hand side of (90) will generally be small compared

with At and may often with sufficient accuracy be regarded as

zero. To this degree of accuracy we may replace the exact

formula (90) by the approximate one

(N+')'^. (NJ)"- = (N+")'^.{N-")"-. (91)

If we compare (90) for the membrane equilibrium of a solute

electrolyte with (32) for the equilibrium of the uncharged

solvent, we obtain

^ /NV'Y fN-"Y g4-[M + q-[v-] . No" .^^.

or

{N+T (Njy- (N+'T (N-'T

(No'y {No"y

where r is defined by

_ q+M + q-[v-]

'
~

[vo\

(93)

(94)
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and is the ratio of the partial molar volume of the electrolyte

to that of the solvent, both at the given temperature and at a

pressure equal to the mean of those at either side of the mem-
brane. At extreme dilutions the mol fraction No of the solvent

differs very shghtly from unity, and (93) approximates to (91).

31. Membrane Equilibrium of Non-ideal Ionic Solutions.

The corresponding formulae for non-ideal solutions are obtained

similarly by substituting from (77) in the general condition of

membrane equilibrium,

[Mi]' = [m.]". (95)

For two ionic species i and h of the same valency, we obtain

in analogy with (88)

At log ^1^-^ ^1^^ = (p' - v") ( k] - M), (96)
Nn"h"Ni'fi'

where [yj, [vh] are the values of the partial molar volumes at

infinite dilution at the given temperature and at a pressure

equal to the mean of those (p' and y") at either side of the mem-
brane. It is to be observed that the combinations of activity

coefficients occurring in (96) are the ratios of the activity

coefficients for two ions of the same valency and are therefore

physically definite. If the right hand side of (96) is neghgibly

small compared to At, then (96) approximates to the simple

relation

N-' f' N-" f"

Nh'Sh' Nk"U"

For the membrane equilibrium of an electrolyte consisting of

g+ cations of valency z+ and g_ anions of valency z-, the exact

formula obtained from (77) and (95) is, in analogy with (90),

= (p'-p")(9+M + 9-[y-]), (98)

which involves only the mean activity coefficients /^ of the

electrolyte in the two phases. If the right hand side of (98)
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is negligibly small compared with At, then the exact formula

(98) may be replaced by the approximate one

(A^+0 «.(A^_') «-(/±') -'.+ "- = {N+") ".{N-") «-(/i")
'.+ '- . (99)

The corresponding formula for the membrane equilibrium of

a single ionic species in non-ideal solutions takes the form

At log^ + At log^' = (p' - p") M + z, FiV - F'OdOO)

//'
but tells us nothing, as neither the term At log 77 on the left

J*

nor the term Zi F(y' — V") on the right is physically deter-

minable.

S2. Contact Equilibrium. A most important case of mem-
brane equilibrium is that of two phases with one common com-

ponent ion, the surface of separation forming a natural mem-
brane permeable to the common ion but impermeable to all

others. This may be referred to as "contact equiUbrium."

For example, for two metals in contact, say Cu and Zn, there is

equilibrium between the two phases as regards electrons El~

but not as regards the positive ions Cm"''"*" or Zn^'^. The

equilibrium is completely defined by

[M^z-]^« = [Uni-Y-, (101)

the suffix denoting, as usual, the component, and the index the

phase. Similarly for a metaUic electrode of Cu, dipping into

a solution S containing ions of this metal, in this case Cw'''+,

the contact equilibrium is completely defined by

[Mcu-]"'" = [Mcu-]^ (102)

the electrode and solution being in equilibrium as regards the

metallic ions only. In neither of these cases of contact equilib-

rium is any "contact electric potential difference" thermo-

djoiamically definable.

28. Purely Chemical Cell. Consider the system composed of

the following phases and membranes arranged in order, each

phase being separated by partially permeable membranes from
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its neighbouring phases, and completely separated from the

remaining phases.

Phase a. Containing, inter alia, species A and B.

Membrane 1. Permeable to B only.

Phase /3. Containing, inter alia, species B and C.

Membrane 2. Permeable to C only.

Phase y. Containing, inter alia, species C and A.

If all the species A, B, C are electrically neutral, the two

membrane equilibria are determined completely by the con-

ditions

4 = Mb. (103.1)

nZ = 4, (103.2)*c f'c,

but in general

f^l^t^:, (103.3)

that is, the phases y and a are not in equilibrium as regards

the species A. If the phases y and a be now brought into

contact through a membrane permeable to A only, there will

be a flow of A from the one to the other in a direction

determined by the sign of /x][ — n". This flow will, of course,

upset the other membrane equilibria, which will readjust them-

selves. The flow of A through the auxiliary membrane and the

accompanying readjustments will not cease until either the

phases y and a are again separated, or the conditions

4 = ^^s,
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separating these phases "breaking the circuit." When the

conditions (104) are satisfied simultaneously we may say that

the cell is "run down."

More complicated "purely chemical cells" might be described,

containing a larger number of phases, membranes and com-

ponents, but the general nature of any such cell and the condi-

tions of equilibrium will be similar to that of the above simple

example.

The "purely chemical cell" is not of practical importance and,

possibly for this reason, is not usually described or discussed in

text-books. It has been described here since a clear understand-

ing of a "purely chemical cell" should facilitate a complete

comprehension of the nature of an "electrochemical cell," which

will be discussed next. It is especially to be emphasized that

from a theoretical thermodynamic point of view the electric

charges of the ions are rather incidental, the fundamental factors

at the base of any cell, whether "purely chemical" or "electro-

chemical," being the membrane or contact equilibria between

successive phases.

24. Electrochemical Cells. The only essential difference

between an "electrochemical cell" and a "purely chemical cell"

is that in the former the membrane equilibria involve charged

ions. Let us consider the following system, somewhat similar

to the purely chemical cell discussed above, in which however

the various species concerned are ions.

Phase a. Containing ions E and A.

Membrane 1. Permeable to ions A only.

Phase /3. Containing ions A and B.

Membrane 2. Permeable to ions B only.

Phase 7. Containing ions B and E.

Membrane 3. Permeable to ions E only.

Phase a'. Chemically identical with phase a.

The three membrane equihbria are defined completely by the

conditions

:

. WV = M", (106.1)

[fJiBp = M^ (106.2)

M"' = My, (106.3)



OSMOTIC AND MEMBRANE EQUILIBRIA 209

but in general

[heY 9^ M". (106.4)

As compared with the example of a purely chemical cell, we

have included in the present system one extra phase and

membrane in order that the two extreme phases or "terminals"

a and a' should have the same chemical composition. We may
therefore write

WY - [heY = ZEFiv^' - y«), (107)

and the difference of electric potential (7«' — "F") thus defined

is called the "electromotive force" E of the cell. Putting the

two phases a and a into contact is called short-circuiting the

cell and separating them "breaking the circuit." On closing

the circuit there will be an adjustment of membrane equilibria

with net flow of electric charge round the circuit in a direction

determined by the sign of E. This will cease when the con-

ditions

[Hj,f = [iia]",
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tion of the cell in order to avoid a discussion of diffusion poten-

tials. A workable cell would be the following

:

Cu
Solution Si containing

Cw++ and large excess

of other ions

Solution ^2 containing

Zn+"'' and large excess

of other ions

Zn Cu.

The diffusion potential between the two solutions Si and S2

could be made negligible by making the composition of the two

solutions substantially the same apart from the Cm++ ions in the

one and Z7i++ ions in the other, the concentration of these

being in both cases small compared with the concentrations

of the other cations.

In the metallic phases we have the purely chemical, homoge-

neous equihbrium conditions

[/icu-P + 2[Ms,-P = Me:, (109.1)

[y.zn^f' +2[M^,-f" = Mf:, (109.2)

where ^^'^ and
^f^'

are independent of the electric states of

the respective phases. The contact equilibrium conditions are

Ucu++]; = Ucu«-]"> (110.1)

Uzn-]^" = Uzn-l^ (110.2)

wr'^ = UEi-f"- (110.3)

Combining (107), (109), (110) we obtain for the electromotive

force E

2FE = [ncu+A" — [^Jcu^]"

= I'cl - 4l + [/^^"-l^ - ^^cu*^^^^ (111)

or, in terms of activity coefficients,

2f <-/i-
E = E' + ^\og'^^, (112)

where E° is independent of the composition of the solution, the

values of the mol fractions N^ and activity coefficients f^ being

those in the solution.
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More detailed discussion of electrochemical cells would be

outside our province, but the above example serves to show that

the electromotive force of any cell may be computed by regard-

ing the mechanism of the cell as a combination of several

membrane equilibria. The electromotive force E is equal to the

difference of potential of any univalent positive ion in the two

terminals of the same metal at the two ends of the cell. This

is the only electric potential difference that is measured, and is

the only one to which any reference is made in this treatment.

As already mentioned, this attitude towards the conception of

electric potential is in accordance with views expressed by
WiUard Gibbs.
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THE QUANTITIES x, ^, T, AND THE CRITERIA
OF EQUILIBRIUM

[Gibbs, I, pp. 89-92]

E. A. MILNE

The following notes amount to an independent treatment of

Gibbs' results in this section. They also iaclude an extension

of some of his calculations so as to take account of second order

terms where discussion of first order terms alone ("differen-

tials") is insufficient. Some of the later calculations are adapted

from Lewis and Randall's Thermodynamics.

1. Stability Tests. At the beginning of his memoir, The

Equilibrium of Heterogeneous Substances, Gibbs establishes

criteria of stability which may be stated as follows : Let A denote

any increment of a quantity, not necessarily small. Let d denote

a "differential" of the quantity, which may (non-rigorously) be

identified approximately with a small increment.

Then if e denotes the energy of a system, ?? its entropy, we

have:

For stable equilibrium,

(At;), < Oor (Ae), > 0.

For neutral equilibrium, in general,

(At,), ^ Oor(Ae), ^0,

but there exist variations for which

(Atj), = Oor (Ac), = 0.

For unstable equilibrium,

(rfT,), = Oor(d€), = 0,

213
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but there exist variations for which

(At;). > Oor(A€), < 0.

In the above, the subscript denotes that the corresponding

variable is maintained constant in the variation.

Gibbs proceeds, in the section under consideration (Gibbs, I,

89-92), to estabhsh the equivalence of the above to similar

variational conditions involving

(1) the work function yp, defined hy ^p = e — t-q,

(2) the heat function x, defined by x = « + P^,

(3) the free energy function f , defined hy ^ = e — tr] -\- pv.

He gives a method of proof which is sound in principle, and
which suggests the method to adopt, but which does not dis-

tinguish between small variations and finite variations. The
following includes the substance of Gibbs' results, and supplies

proofs in certain cases where Gibbs left the proof to the reader.

2. The Work Function. The value of the criteria about to be

discussed is that they render the general criteria more easily

applicable to certain particular cases, by restricting the type

of variation permitted. For example, in certain cases they

impose a condition of constancy of volume in addition to

constancy of entropy, in discussing changes of energy.

We shall now prove that the condition

W),.v^O (1)

is equivalent to the condition

(A6),.„^0. (2)

For suppose that there exists a neighbouring state for which

(Ae),., <0.

We shall prove that there then exists a state for which

(A^),,„ < 0.

This will ensure that if we are given that (1) is true, no con-

tradiction of (2) can exist; hence (1) implies (2).

For, if the neighbouring state for which (Ae),, , < is not
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one of uniform temperature, let its temperatures be equalized

at constant volume. This can only increase its entropy. Now
remove heat so as to reduce the entropy to the initial value, at

the same volume. This process reduces the energy. Thus we
have constructed a state of uniform temperature for which

(Ae),,„ < 0.

Now we have \p = ^ — tv, whence in general

ArJ/ = Ae — tAr] — rjAt — AtArj.

In our case

At; = 0, and so A\f/ = Ae — r]At

or

A^p + v^t = Ae < 0, (3)

by hypothesis.

Now add or subtract heat at constant volume. For such a

process the infinitesimal increment in energy, say rf'c is given by

d'e = t d'-n,

whilst similarly

d'\p = d't - -nd't - t d'-n,

i.e.,

d'^ = -r,d't.

It follows that the fi7nte increment in \l/, namely A'\p, is given by

/t+A't
r, d't. (4)

Accordingly, by (3) and (4),

A\P + AV < - 7?Af + jv d't.

J t + A't
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Now choose A't = —At, thus restoring the initial temperature

(a state for which
\l/

is defined is of course necessarily a state

of uniform temperature). We have then

At/' + AV < - riM + i^d't,

where now to denotes the initial temperature. This gives

At/' + AV < - -^0 Ai + /
° Uo + f-^l (t-to) + .. .\d%

where t/o denotes the initial entropy. Evaluating the integral

we have

At^ + AV < - h(jX ^^^^' + • •
•

Now (— ) is positive. Hence, provided A^ is sufficiently small,
\dt/a

Ai/- + AV < 0.

We have thus constructed a state for which the total (finite)

increment in ^, namely (A + A')\l/, is negative, contradicting

(1). Moreover it is a state of the same (initial) temperature

and volume. This demonstrates that (1) implies (2). The proof

of the converse may be left to the reader. The above estab-

lishes for a finite change Gibbs' result [HI], established by him

by less rigorous methods in equations [112] and [115] (Gibbs,

I, 91).

S. The Free Energy Function. In equation [117] Gibbs states

without proof that the condition of equilibrium may be written

We shall prove that

and

are equivalent.

(A1A)^« ^0 (5)

(Ar)^p^O (6)
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We will first show that (5) implies (6). To do this we will

show that if there exists a state violating (6) then there exists a

state violating (5). If then (5) is known to hold, there can be
no state violating (6), and so (6) holds.

Let us then suppose that a state exists for which

(Ar)«. p < 0.

Now

f = ^ + py,

and so

Af = A^ + pAv + vAp + AvAp.

Here Ap = 0, and hence

Af = Ai/' + pAv < 0.

Therefore

AiA < -pAv. (7)

Now change the volume and pressure reversibly at constant

temperature. For these changes the infinitesimal increments

are given by

d'e = i d'r} — p d'v

by the first and second laws of thermodynamics. Hence

dV = d'(€ - tri) = -pd'v,

since d't = 0. It follows that

AV = - \ P d'v,

whence

p.
At/' -\- A'^p < - pAv + / P d'y.
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Now choose A'y = — Ay, thus restoring the initial volume. Then

(Ai/^ + ^'^P)l, , < - pAy + \ Vd'v
J v„ — Av

<

where po denotes the initial pressure.

/dp\
At this point we encounter a difficulty. For I

7" ) is negative,

and so we have apparently only established that the total incre-

ment in \p, namely (A + A')\p, is less than a positive quantity.

We have thus apparently not proved that it is negative. But

if we examine the argument, we see that the original increment

in f, namely A^, must be in general of the order Ay, and in fact

there exists a constant c such that Af < clAy|, where c < 0.

This means that (7) may be replaced by

A^ < —pAv + c
I
Ay

I,

whence

(A -\r A') ^ < c\Av\ - (jX'h ^^"^'•

Hence in general

[(A + A>]^. < 0,

which contradicts (5) and so establishes our result. The

difficulty here encountered demonstrates the great need for

care in establishing thermodynamic inequalities. The reader

may find it necessary to overcome a similar difficulty in the

proof left to him in the preceding section.

It is less difficult to prove the converse. Suppose now that

we are given a state for which

{AlP)t.r < 0.
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If this state is not one of uniform pressure, let the pressure

equahze itself at constant temperature and constant volume.

Then by general theory, since this is an irreversible process, the

function \p must decrease in the process. (For if A" denotes the

change in question, and A"Q is the heat absorbed

A"r, ^ A"Q/t = A"e/t,

or

A"€ - t A"rt ^ 0, or A'V < 0.)

Hence we have constructed a new state of uniform pressure for

which

(A.^),. „ < 0.

Now

Ar = A{^P + vv)

and here Av = 0. Hence

Ar = Avi' + vAj),

or

Af < vAj).

Now change the pressure and volume reversibly at constant

temperature. For this change, infinitesimal increments are

given by

d'e = t d'-r] — p d'v,

d'f = d'{e - 7)t + vv)

= V d'p,

since d't = 0. Hence the new finite increment A'f is given by

rpo + A'p

A'^ = V d'p,
J Pa
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and accordingly

/•po + A'p

Af + AY <vL-p + \ V d'p.
J po

Now choose A'p = —Ap, thus restoring the initial pressure.

Then

Ar + A'r < .oAp - lljn + (|)/p
- .0) + ...] d'p

Now I 7- ) is negative. Hence
\dp/o

[(A + A')r]^p <0.

4. The Heat Function. We shall now prove that the varia-

tional conditions

(Ax),.p^O (8)

and

(Ae),.„^0 (9)

are equivalent. These criteria are not stated by Gibbs, but

clearly there must be a parallel set of criteria involving the

heat function.

To prove that (8) implies (9) let us suppose there is a

neighbouring state for which

(A€)„„ < 0.

We shall prove that this implies the existence of a neighbouring

state violating (8). Hence if we know that (8) holds, (9) must
also hold.

If this neighboring state is not one of uniform pressure, let

the pressure equalize itself. This can only increase the entropy,

and thus we have a state of the same energy and volume, and

greater entropy. Now remove heat at constant volume until
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the original value of the entropy is restored. The energy can

only decrease in the process. Hence we arrive at a new state of

uniform pressure for which

(Ae),.„ < 0.

Now

and hence in general

Ax = Ae + pAv + vAp + ApAv.

But in our case Av = 0. Hence here

Ax = Ae + vAp.

Consequently

Ax — vAp = Ae < 0.

Now expand or compress adiahatically . For any such process,

the infinitesimal change of energy d'e is given by

d't = —p d'v

and hence for this process

d'x = d'{(: -]r pv) = V d'Pf

whence for the finite change A'

rpo + A'p

A'x =
I

V d'p.
J PO

Hence

/*P0

Ax + A'x < vAp —
j V d'p.

J pa + A'p
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Choose the second process such that A'p = — Ap, thus restor-

ing the initial pressure. Then

Ax + A'x < vAp — V d'p
J pa — Ap

But

Hence

< 0.

[(A + A') xl,. V < 0.

This contradicts (8), and so the imposition of (8) must imply
the truth of (9). The proof of the converse may be left to the

reader.

As an example of the application of this criterion we shall

prove that Cp, the specific heat at constant pressure, must be
positive. Divide a homogeneous specimen of the body into two
equal parts, at the same pressure, and take a varied state of

the same total entropy in which one part has been heated at

constant pressure and the other cooled. Then by the properties

of the heat function x already established, we must have, if x
refers to unit mass,

X(77 + Ar?, p) + x{-n - At/, p) > 0,

since the gain of entropy of the one portion must be equal to

the loss of entropy of the other.

It follows, by expansion by Taylor's theorem, that

> 0.
' p

But since

/a!x\

dx = d{€ + pv)
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and

tdt] = de + pdv,

it follows in the usual way that

dx = tdr] + vdp,

whence
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and so >

Ax = Ae + pAv

= Ae + ATF = AQ.

Thus the increase in the heat function between any two states is

equal to the heat communicated when the same change is

effected (reversibly or irreversibly) at constant pressure and no

other external work is done. This property gives rise to the term

"heat function," (Gibbs, I, 92, equation [119].) The change

in the heat function is the quantity measured by any constant-

pressure calorimeter. If dt is the increase in temperature in an

infinitesimal change conducted at constant pressure when no

other external work is performed, then

dx ^dQ^
dt

~
dt*

whence

\dt)^

7. The Heat Function in General. In any change, we have

Ax = Ac + A(pv),

whence

Ax = AQ - AF + A(pv).

It may happen that some of the intrinsic energy e is converted

into kinetic energy during the process, as in the expansion of a

fluid through a nozzle. If q is the velocity of a typical element,

then for unit mass the first law of thermodynamics must be

written in the form

AQ = A(ig2) + Ae + ATF,

whence

Ax = [AQ - A(ig2) _ AW] + A{pv)
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or

A(x + k') = AQ - AW i- A{pv).

In the case of the steady rectilinear (irreversible) flow of a

fluid under its own pressure gradient, we can show that

AW = Aipv).

Hence for adiabatic flow of this character, where AQ = 0, we

must have

A(x + k') =

or

X + iQ^ = constant.

(The relation AW = Aijpv) is easily proved by considering the

work done on the moving element of fluid by the adjacent

elements at the two opposite ends.)

If the fluid happens to be a perfect gas, we can obtain a simple

expression for %• For, for any fluid whatever,

L^p dp\t

V - t

smce

d^ = d(e -\- pv — it]) = vdp — rjdt.

Now, for a perfect gas, ^ = H "^ )
since pv cc t. Hence f — j

=0

and

dx -

= Cpdi,

0/"+©/'
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or

/^X = j Cpdt.

It follows that in the adiabatic rectilinear flow of a perfect gas
from rest at temperature ^o to motion with velocity q at tem-
perature t, we have

h Q^ = — Cpdt.

J to

The above somewhat miscellaneous calculations serve to illus-

trate the properties of the heat function.

8. The Work Function \p at Constant Temperature. Let the

system undergo a change at constant temperature, doing ex-

ternal work in any way whatever (e.g., electrically), as well as by
expansion against external pressure. Then

A\P = A(e - tri)

= Ae — tAr{,

and as usual

AQ = Ae + AW.

If the change is reversible, AQ = tArj, and so in this case

A;/' = -AW,

or the increase in the work function is equal to the negative of

the external work performed. (Gibbs, I, 89, equation [110].)

Hence the name "work function."

All reversible processes connecting two states of the same
temperature yield the same amount of external work, and any
irreversible process connecting them yields less work. Thus
the decrease in the work function gives the maximum amount
of external work obtainable in changing from the first to the

second state. We can prove this in another way, from first

principles, as follows. If A'Q is the heat absorbed in any change
whatever, by Clausius' inequalities we have

A'Q
At; ^

t '
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and so here, the temperature being constant,

Ae - AiA = tAv ^ A'Q.

In any change whatever, whether reversible or irreversible,

A'Q = Ae + A'W,

whence here

Ae - ArA ^ Ae + A'W

or

A'W ^ -A^.

Thus the actual amount of external work performed, A'W,
cannot exceed — Aip.

Now suppose a system enclosed in a fixed volume. If it

undergoes of itself any process whatever, at constant tempera-

ture, then necessarily

A'W = 0,

whence

Axl^ ^ 0.

Hence a necessary condition of equihbrium, subject to the

condition of constant temperature and constant volume, is

(AiP)t.v > 0.

A state for which all possible changes satisfy this relation will

be in stable equilibrium, for it cannot undergo any change of

itself. This estabhshes Gibbs' criterion concerning A\f/ by an
alternative method.

9. The Free Energy Function f at Constant Temperature and
Constant Pressure. Let the system undergo a change at

constant temperature and constant pressure, doing any external

work whatever in the process. Then we have

Af = A(e - trj -I- pv)

= Ae — tArj + pAv.
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But

AQ = Ac -f AW.

If now the change is reversible, AQ = tAt], and so in this case

Af = - (AW - pAv).

Thus the decrease in f is equal to the excess of external work
performed over the work of expansion against the external pres-

sure. Hence the name "free energy" function.

If any process occurs at constant pressure and constant

temperature, and if A'Q is the heat absorbed and A'TF the ex-

ternal work performed,

whence

also

Hence

or

t

Ae + pAv - Af ^ A'Q;

A'Q = Ae + A'W.

Ae + pAv - Af ^ Ae + A'W,

{A'W - pAv) ^ -Ar.

Thus the excess of external work performed over that of mere

expansion cannot exceed — Af

.

Now suppose that the system is enclosed in an environment of

constant pressure and constant temperature. Then if any

process occurs of itself, the only external work is that of expan-

sion, and so

A'W = pAv.

Therefore

Af ^ 0.
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Hence a necessary condition that such a system shall be in

stable equilibrium under the stated conditions is

(Ar)p. t>0,

for it then cannot undergo any change of itself. This estab-

lishes Gibbs' criterion concerning Af by an independent method.

10. Further Illustration. The following original example

illustrates further the properties of the ^-function.

"A system, which can perform external work in any manner,

is brought reversibly from a temperature ti to a temperature

<2( < ^i) in such a way that it only gives up heat at the tempera-

ture ti. Prove that the external work performed, AW, is given by

ATF = A-A + mik - k)

where Ai^ is the decrease in the work function \p between the

temperatures ^i and ^2, and tji is the entropy at <i." (This is a

generalisation of the similar result in the particular case ti = t^

estabhshed above.)

We have

^1 — '/'2 = Cl — €2 — (flt/i — ^2^72)

ci - €2 = Ae = AQ + ATF,

where now AQ denotes the heat given up at ^2- Since the

process is reversible and the heat is given up at tz

m — m = AQ/ti.

Hence

AW = A\p -\- (tiTji - tiVi) — t2(vi - V2)

= Alp + r]i{ti — ti).

This result is, of course, somewhat trivial. We may, however,

extend it to include irreversible processes. The following

theorem may be established.

"If the system is brought by any process, reversible or

irreversible, from the state at ti to the state at t^, and not neces-

sarily subject to the condition of only giving up heat when at
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temperature ^, then the external work performed, A'VF, satisfies

the inequahty

^'W ^AW - {t - h) dv,

the integral being taken along the path in the (rj, t) diagram

actually traversed by the system and AT^'" having the same

meaning as above."

For, along any path whatever, if the differentials which

follow denote positive increments,

d'Q = d'e -\-d'W

and

d'Q denoting the heat given up at t. Hence

d'W ^ - d'€-\-t d'v.

Since d'e and d'r] are the actual increments in the functions e and

7j along the path, we may replace them by de and dt^. Now

Hence

Integrating,

d\J/ = de — tdt] — rjdt,

d'W ^ -# - 7}dL

A'W ^ Arp - vdt

^ A\}/ -\- (tim — ti-qi) —
I

tdt}

^ AW + t2 (rji - m) - / 'tdr,

on using the result of the first part. Hence

A'W ^AW- \t - k) dr,.
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Since AQ > it follows that iji > 772. If ^ ^ ^2 throughout the

process, the integral is positive whether or not i is a single-

valued function of 77 during the process (i.e., whether or not the

system always has the same temperature at intermediate stages

at which the entropy takes the same value). Consequently

A'W ^ AW.

It follows that AW is the maximum amount of external work
that can be obtained by processes in which the temperature of

the system does not fall below (2. That is, the maximum work is

obtained when all the heat is given up reversibly at temperature

ti, and the amount of this work is

AiA + vi ih - k),

A^ being the decrease in the work-function. This extends the

physical significance of the work-function to processes of non-

constant temperature.

The absolute value tji, of the entropy appears to occur in

this expression; but it must be remembered that the absolute

value of the entropy occurs also in the definition of \p. The
same constants used in fixing the entropy 77, must be employed

in the entropy-values used ia tracing the changes in \p.
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THE PHASE RULE AND HETEROGENEOUS
EQUILIBRIUM

[Gibbs, I, pp. 96-100]

GEORGE W. MOREY

I. Introduction

Treatises on the Phase Rule usually deal with heterogeneous

equilibrium from a purely geometrical point of view, making use

of the familiar equation, F = n-\-2 — r, in which F is the

number of degrees of freedom, n the number of components,

and r the number of phases, as a qualitative guide, and depend-

ing on the Theorem of Le Chatelier for determining the effect

of change of conditions on the equilibrium. It is unfortunate

that the subject has been developed in this manner, instead of

by the direct application of the equations which were developed

by Gibbs. The Phase Rule itself is but an incidental qualita-

tive deduction from these equations, and the justification of the

geometrical methods is their derivation as projections of the

lines and surfaces "of dissipated energy," painstakingly ex-

emplified* by Gibbs. While in the first portion of the "Equilib-

rium of Heterogeneous Substances" the actions of gravity,

electrical influences, and surface forces are excluded from con-

sideration, these restrictions are later removed, thus rendering

unnecessary the various "extended" Phase Rules which have

been proposed to remedy this supposed defect.

II. Equation [97] and the Phase Rule

1 . Equation [97] . The Phase Rule may be derived from Gibbs'

fundamental conditions for equilibrium [15-21], but Gibbs'

own treatment is intimately connected with his equation [97]

* Equilibrivun of Heterogeneous Substances, Gibbs, I, 118 et seq.

233
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vdj) = Tjdt + niid/jii + nhdm . . . + nindun, (1) [97]

in which v and ?; refer to the volume and entropy of m.i + ma

... -^ Mn units of the phase considered, p and t to the pressure

and temperature, and /x to "the potential for the substance

in the homogeneous mass considered." The chemical potential,

/x, is defined by the equations

Ml
^/^\ Jdr\ ^/ix\ =(^\ (2) [104]

\dmi/„,v.m \dmi/t.v.m \dmi/„,p,m \dmi/t.p,m'

in which e, \p, x, and f refer, respectively, to the energy and the

three Gibbs' thermodynamic functions defined by the equations

\p = e - tr],
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the given energy and volume. The concept of phase, and the

derivation of the Phase Rule, result from the appUcation of

equation (1) [97] to the consideration of "the different homo-
geneous bodies which can be formed out of any set of component

substances." "It will be convenient to have a term which

shall refer solely to the composition and thermodynamic state of

any such body without regard to its quantity or form. We
may call such bodies as differ in composition or state different

phases of the matter considered, regarding all bodies which

differ only in quantity and form as different examples of the

same phase. Phases which can exist together, the dividing

surfaces being plane, in an equilibrium which does not depend

on passive resistances to change, we shall call coexistent.

"If a homogeneous body has n independently variable com-

ponents, the phase of the body is evidently capable of n + 1

independent variations." This follows from the fact that there

are n + 2 independent variables, pressure, temperature, and

the n quantities yiii, H2, ... Mn connected by an equation of the

form of (1) [97]. "A system of r coexistent phases, each of

which has the same n independently variable components is

capable of n + 2 — r variations of phase," or degrees of freedom,

F. "For the temperature, the pressure, and the potentials for

the actual* components have the same values in the different

phases, and the variations in these quantities are by [97] subject

to as many conditions as there are different phases. Therefore,

the number of independent variations in the values of these

quantities, i.e., the number of independent variations of phase

of the system, will be n + 2 — r."

"Hence, if r = w + 2, no variation in the phases (remaining

coexistent) is possible. It does not seem probable that r can

ever exceed n -\- 2. An example of w = 1 and r = 3 is seen in

the coexistent solid, liquid, and gaseous forms of any substance

of invariable composition. It seems not improbable that in

the case of sulphur and some other simple substances there is

more than one triad of coexistent phases; but it is entirely

* The distinction between "actual" and "possible" components need
not be discussed in this place. See Gibbs, I, 66.
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improbable that there are four coexistent phases of any simple

substance.* An example of n = 2 and r = 4 is seen in a solution

of a salt in water in contact with vapor of water and two differ-

ent kinds of crystals of the salt." Coexistence of r = w + 2

phases gives rise to an invariant equilibrium, and such a co-

existence is frequently called an invariant point. Invariant

points are also referred to by the number of phases present ; for

example, a triple point in a one-component system, quadruple

point in a two-component system, etc.

When r = 7i -\- 1, there are n -{- 1 equations of the form of

(1) [97], one for each of the coexisting phases, and the system

has one degree of freedom. We may eliminate n of the n -\- 2

independent variables, giving an equation between the two

remaining. If the quantities dm, dti2, djin are eliminated by

the usual method of cross multiplication, we obtain a linear

equation between the changes in pressure and temperature,

which for the general case takes the form

7j' m/ rrii . . . rrin

t\" mx" rri'i' . . . rrin"

dp _ T?" mi" Tn?" . . . m
dt v' m\' rrh'

v" wi" m^"

m„

m.

yn ^n ^^n
_

_ _

^^n

(6) [129]

We shall develop in detail the application of this equation to

several types of systems.

III. Application of Equation [97] to Systems of One Component

3. The Pressure-Temperature Curve of Water. A simple case

of heterogeneous equilibrium is that of a one-component

* For an extended discussion of the possibility of the coexistence of

more than n + 2 phases, see R. Wegscheider, Z. physik. Chem., 43, 93

(1903) et seq.; A. Byk, ibid., 45, 465 (1903) et seq.
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system, such as water, in which the liquid coexists with its own
vapor at a series of pressures and temperatures. There are two

equations of the form of (1) [97], one for the vapor and one for

the hquid. If we denote vapor and Hquid by the indices v and I,

and use, as we shall hereafter, the capital letters V and H
(capital eta) lor total volume and total entropy, respectively,

these equations are

'V'dp = R^dt + m^'dn,

and

V^dp = Wdt + m^dfx.

It will be remembered, from the derivation of these equations,

that the quantities V and H refer to the total volume and total

entropy of the mass considered ; in this case, where there is only

one component, to the total volume and entropy of the m grams

contained in each phase. If we divide each equation through

by the mass w, they take the form

v^dp = -q^dt + dfi,

v^dp = 17'rfi + dny

in which the lower-case letters are used to denote specific

volume and specific entropy, as opposed to the total volume and

total entropy, denoted by the capital letters. We can eliminate

dn between these equations by subtraction, giving us

(y" - v^)dp = (tj" - y]^)dt

or

dp rf — 7j'

dt V — v^'

Since dR = dQ/t, which on integration at constant tempera-

ture yields AH = — , this reduces to the usual Clausius-Clapey-
V

ron equation

dp _ AQ

dt ~ t{v^ - vO
•
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It will be of interest to consider the detailed application of the

equation

d'p r}^ — r/^

dt v" — y'

to the pressure-temperature curve of water.

* The thermodynamic properties of water are known to a

considerable degree of precision, and tables giving the specific

entropy and specific volume of water and steam are in common
use by engineers. In such tables it is customary to take the

specific entropy of liquid water at zero degrees centigrade as

zero, but since we are always dealing with differences in entropy

this is immaterial. Absolute values of entropy are not deter-

minable; to determine absolute values of entropy we would

have to know the value of the entropy at absolute zero,t and its

variation with temperature from the absolute zero up, and we

do not possess the necessary data for this. Herein Hes one of

the reasons for the entropy concept being a difficult one to

grasp; we are not able to measure entropy directly as we are

able to measure the other quantity factors, volume and mass.

For practical purposes, however, this is not material, since we

are always dealing with entropy differences. In Fig. 1 are shown

plotted the specific entropy of Uquid water and the specific

entropy of saturated water vapor from zero to 200°C., the

specific volume of water vapor at the saturation pressure in

the same temperature range, and the pressure-temperature

curve of the equilibrium, liquid -(- vapor. Since the slope of the

p-t curve is determined by the difference in entropy between

vapor and liquid, it is immaterial whether the entropy of the

* From this point to the end of section (11), p. 251, the text is taken,

with some omissions, alterations and additions, from the author's article,

Jour. Franklin Inst., 194, 439-450 (1922) ; sections (16) to (23) inclusive

(except (18) and (22)) are taken in like manner from the same article,

pp. 450-460.

t Absolute values of entropy may be calculated for many substances

by the use of the so-called Third Law of Thermodynamics, a principle

whose validity has not been completely demonstrated.
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liquid at 0°C. is taken as zero or some other value. The entropy

of the vapor is greater than that of the liquid by the entropy

of vaporization, that is, the heat of vaporization divided by

the absolute temperature. In the case of the volume, only the

specific volume of the vapor is plotted, as that of the liquid

is so small that it cannot be shown on the scale of the dia-

gram. Let us now consider some actual values.

so /OO /so 200
T£Mf>e/fATUff£ /-V OeSRSES Cef^TJORADe

Z50 300

Fig. 1. The specific entropy of liquid water and of saturated water
vapor, the specific volume of saturated water vapor, and the vapor
pressure of water, plotted against temperature.

At zero degrees centigrade, if the entropy of the Hquid is zero,

that of the vapor is 2. 18 calories. The specific volume of water

vapor in equilibrium with liquid at zero degrees is 206 liters per

gram; it is evident that the volume of the liquid, 1 cc, is

negligible in comparison. In the equation

dp

dt

v" - V
4}V «)i

the terms must all be of the same kind; if the slope of the p-t

curve is given in atmospheres per degree, and the volume in
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liters, the entropy must be expressed in liter-atmospheres

instead of in calories. The factor for this conversion is 0.0413;

inserting the above values in the equation, we get

dp/dt = (2.180 X 0.0413)/206 = 0.00044 atm. per degree;

the corresponding experimental value is the same. At 50° the

values are

dp ^ (1.928 - 0.168) (0.0413) ^
dt (12.02 - 0.001)

Again the experimental value is the same, and the volume of the

liquid is still negligible. At 100°, the corresponding quantities

are

dp _ (1.756 - 0.312) (0.0413) _ „' „__

dt (1.209 - 0.001)
"•"'^^^'

agreeing exactly with experiment. At this temperature the

volume of the liquid amounts to less than one-tenth of one per

cent of the total volume ; the value of dp/dt is increasing with

increasing temperature, and the explanation is evident from an

inspection of the entropy and volume curves. As the tem-

perature is increased the entropy of the vapor diminishes, that

of the liquid increases, hence the difference decreases as the

temperature increases. The numerator, the entropy of vapori-

zation, is therefore diminishing, but its decrease is more than

offset by the decrease in the denominator taking place at the

same time because the increasing vapor pressure increases

the density of the vapor, hence decreasing its specific volume.

In the interval from zero to 10° the numerator decreases to 95.6

per cent of its value at zero, while the denominator decreases to

only 51.5 per cent of its value at zero. The difference does not

remain so marked, but for the interval 90-100° the values are

96 per cent and 70.9 per cent, respectively, and for the interval

190-200°, 96.1 per cent and 81.4 per cent, respectively. Appli-

cation of the two equations of the form of (1) [97] to the uni-

variant equilibrium, liquid + vapor, in the one-component sys-

tem, water, shows us that not only does the pressure increase with
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increasing temperature, but the rate of increase also increases.

The p-t curve is accordingly concave upward, and the slope

continues to increase. As the critical point of water is ap-

proached, the difference between the properties of liquid and

vapor diminishes rapidly, and vanishes at the critical tem-

perature. Hence the equation for the p-f curve becomes

indeterminate, and the vapor pressure curve ends.

fO
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which may be regarded as the projections of the sohd p-t-x

model on the p-x, p-t, and t-x planes, respectively. It

should be noted that in referring to these projections, and to the

similar ones in the following figures, their conventional designa-

tion in chemical literature has been followed, instead of the

convention in mathematics that the symbols shall be in the

order abscissa, ordinate; a:, y. The system, H2O-KNO3,* does

not show liquid immiscibility, nor are solid hydrates formed, so

there are four possible phases in the system; one vapor phase,

one liquid phase and two solids, ice and solid KNO3. Co-

existence of four phases in a two-component system gives us

four equations of the type of (1) [97] between the four un-

knowns, pressure, temperature, and the two chemical poten-

tials, so the system is completely determined. The four phases

can only coexist at one temperature and one pressure, that is, at

the invariant point, often called the cryohydrate when one

component is water. The invariant point can be considered

as the intersection of four curves representing univariant

equilibria, each of which equilibria will contain three of the

phases which coexisted at the invariant point. We can have the

four combinations: ice + solution + vapor, ice + potassium

nitrate -f vapor, ice + potassium nitrate -\- solution, and potas-

sium nitrate + solution -{- vapor. Consider each of these curves

in detail, starting with the last, the solubihty curve of potas-

sium nitrate in water.

5. Application of Equation [97] to a System in Which No Com-

pounds Are Formed. H2O-KNO3. In the univariant equilib-

rium, potassium nitrate + solution + vapor, there is only

one phase of variable composition, the solution. Since potassium

nitrate is not volatile at temperatures we are considering, the

vapor phase is pure water; since potassium nitrate forms

neither hydrates nor solid solutions with water, the solid phase

is pure potassium nitrate. Let us now apply equation (1) [97]

to this univariant equilibrium. In the derivation of equation

(1) [97],

Vdp = Udt + midfxi + WgC^Ma

* The circumstance that an inversion takes place in KNOj at 127.8° is

ignored, as not being pertinent to the points under consideration.
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for a two-component system, composition was expressed as the

total mass rrii and wi of the substances present, and volume and

entropy as total volume and total entropy. For some purposes

this is the most convenient form, but for our present discussion

it is more convenient to express composition as weight per cent

potassium nitrate. Since we have Wi + Wj grams of the two

components water and potassium nitrate, respectively, if we
divide through hy rtii -{- rrh we shall get

dp =
;

dt +
1

dfjLi + ; dfn.
nil -{- nh mi + m2 rui -\- rUi mi + mj

The coefficient of the first term, the total volume divided by
the total number of grams of material, is evidently the specific

volume of the phase. Similarly, the coefficient of the second

term is the specific entropy. The fractions

mi rtii

and
mi -\- nh mi + ma

are the weight fractions of the components H2O and KNO3,
respectively, and if we represent the weight fraction of KNO3
by X, that of H2O will be (1 — x). The equation now is

vdp = rjdt + (1 — x)dni + xdm, (7)

in which v and rj are specific volume and specific entropy. We
will have three such equations, one for the vapor, denoted by

the superscript v, one for the liquid, denoted by the superscript /,

and one for the solid, denoted by the superscript s. From these

equations we may eliminate dfxi and d^a by the usual methods of

cross-multiplication, giving the equation

x" — a;'

dt , ^ x" — x\
(y' - rO -

; {v' - v^)
x' — x

(8)

6. The Equilibrium, KNO3 + Solution -\- Vapor* At the

* The data for the system, HjO-KNOj, are taken in part from Lan-
dolt-Bornstein, Physikalisch-chemische Tahellen, 1912; in part from

unpublished data by F. C. Kracek and G. W. Morey.
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cryohydrate point the weight fraction KNO3 is 0.021; since the

vapor is pure water, its weight fraction of KNO3 is zero, and that

of the soHd phase is unity. Substituting these values, we get

The coefficient of the second term in both numerator and

denominator is a fractional coefficient. Without an actual

determination of the entropy of any phase, certain definite

conclusions can be drawn. In the numerator, we have the

entropy differences: (vapor — liquid), a positive quantity, and

(solid — liquid), a negative quantity. The former is always

several times the latter; in the case of this dilute solution their

ratio is probably not very different from the ratio of the entropy

of vaporization of water to the entropy of fusion of KNO3, which

is of the order of magnitude of 20 to 1. The first term predomi-

nates, and the numerator is a positive quantity of the order of

magnitude of the entropy of vaporization of water at zero degrees,

or a little less than 2.18. In the denominator the term affected

by the fractional coefficient, the difference in specific volume of

liquid and solid, is negative and is itself very small. The first

term, the volume difference (vapor-liquid), is comparatively

enormous; at the cryohydrate temperature and pressure it is

even larger than the volume difference in pure water at its

freezing point, 206 liters per gram. The slope of the pressure-

temperature curve is at the beginning close to that of pure

water; that of pure water is concave upward, owing to the

denominator decreasing in value more rapidly than the numer-

ator, and the same is true in this case. The pressure-tempera-

ture curve of all systems containing a volatile component at low

pressure will show a similar initial upward concavity, owing to

the rapid decrease in the specific volume of the vapor phase with

increasing pressure.

As the temperature is raised, the fraction of KNO3 in the liquid

increases, while the composition of the other phases remains

the same. The specific entropy of the vapor continually
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decreases; that of the sohd increases, as does that of the hquid.

The first term in the numerator consequently decreases, the

second increases, and the coefficient of the second term also

increases; since the first term is positive, while the second is

negative, the numerator is a continually decreasing positive

quantity. The denominator is decreasing at a progressively

slower rate. As the temperature is raised these effects con-

tinue, until a temperature is reached at which the rate of

decrease of the numerator becomes equal to that of the denomi-

nator, and the curve has a point of inflection. After this it is

no longer concave upward, but is concave downward, as the

vapor pressure of the saturated solution is still increasing with

the temperature, but at a diminishing rate. The temperature

of this point of inflection is approximately 205°, and the pres-

sure is about 5.3 atmospheres.

The determination of the solubility curve of KNO3 in HoO
is a simple matter at temperatures below 100°. As long as the

vapor pressure remains less than one atmosphere, we can shake

up solid and liquid in a thermostat until equilibrium is reached,

suck out a sample of the supernatant liquid through a filter,

and determine the composition by analysis. After the pressure

has exceeded one atmosphere, other methods must be employed.

Of course, if a mixture containing an excess of KNO3 is heated

in an open vessel, when the vapor pressure reaches one atmos-

phere the solution will begin to boil, and will evaporate to

dryness. But if the mixture be heated in a closed tube, from

which the water cannot evaporate, the solubility curve will be

continuous until the mixture is entirely liquid ; the temperature

at which the saturated solution boils at a pressure of one

atmosphere is not a significant point on the solubility curve.

From this point of view there is no distinction between a

solubility curve and a melting-point curve, and the curve EBm
can be regarded either as the solubility curve of KNO3 in H2O
or as the melting-point curve of H2O-KNO3 mixtures. The

first to realize this fact was Guthrie* in 1884, and the system,

H2O-KNO3, was one of those that he studied. He sealed

* Guthrie, Phil. Mag., 18, 117 (1884).
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mixtures in closed tubes and observed the temperature at which

the crystals disappeared.

As the temperature is raised past the point of inj9ection of the

p-t curve, the KNO3 content of the liquid increases and the

coefficient of the second term in the numerator increases corre-

spondingly. At 115°, the boiling point of the saturated solu-

tion, the ratio a; V(l — a:') is about 2.5; at the point of inflection,

about 4. As this coefficient continues to increase, the numer-

ator decreases more and more rapidly, and the value of dp/dt

decreases; but, as it is still positive, the pressure continues to

increase with temperature. With a little further increase in

temperature, the ratio x^/{l — x^) becomes such that the entire

second term equals the first term, and the difference is zero;

the numerator is now zero, so dy/dt is zero, and the curve

has a horizontal tangent. Since at this point

it follows that

x^ _ _ yfj-Tj^

1 — x' v' — v

The ratio of the entropy difference (vapor-liquid) to the entropy

difference (solid-liquid) is equal to the ratio of KNO3 to water in

the saturated solution; the saturated solution at this point

contains about 95.3 per cent KNO3, so this ratio is approxi-

mately 95.3/4.7, or 20. The entropy of the water vapor at this

temperature and pressure can be obtained from steam tables,

that of KNO3 from specific heat data, and the entropy of the

liquid can accordingly be calculated. It should be remembered

that we are here dealing with entropy differences, not absolute

entropy, and when we take off the entropy of the steam from a

steam table we must remember that the assumption is made

in the steam table that the entropy of liquid water at its freez-

ing point is zero.

7. The Maximum Pressure of the Equilihrium, KNOz -\-

Solution + Vapor. The point of maximum pressure is found

at a KNO3 content of about 95.3 per cent, a temperature of
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about 266°, and a pressure of about 7.9 atmospheres. Our

equation is

0-953 ,

dt , ,. ,

0.953.
,.

'

^'^ ~ '^ + o:or7
^'' ~ '^

and the numerator is zero because the negative entropy differ-

ence (solid-liquid), multiplied by the ratio a: V(l — 2:0 is equal to

the positive entropy difference (vapor-liquid). On further

increase in temperature x continues to increase, the negative

second term becomes larger than the positive first term, and

the numerator becomes negative. The denominator is still

positive, so the p-t curve has a negative slope; pressure de-

creases with increasing temperature. On further increase in

temperature, the numerator continues to become more strongly

negative, until at the melting point of pure KNO3 it is the

entropy difference (solid-Uquid) for KNOj.
8. The Maximum Temperature of the Equilibrium, KNO3 +

Solution + Vapor. The changes which have been taking place

in the denominator will now be considered. The specific

volume of the vapor phase at all points is much larger than that

of any other phase, its smallest value at the maximum pressure

being about 100 cc. per gram. As the pressure decreases from

this point, the specific volume of the vapor increases; the effect

of this is merely to alter the rate of decrease of pressure which

takes place from this point. But as the liquid phase approaches

KNO3 in composition, the amount of water becoming very

small, the second term in the denominator becomes of im-

portance. The specific volume difference between fused and

solid KNO3 is but a few tenths of a cubic centimeter; when the

water content is only 0.1 per cent, the negative volume differ-

ence (solid-liquid) is multiplied by the ratio 999/1, and at 0.01

per cent water, by 10,000. As the water content decreases,

the coefficient of the second term in the denominator, (v — vO>

increases rapidly, the denominator approaches zero, and the slope

of the p-t curve, dp/dt, becomes infinite. At this one point

the curve is vertical; on further increase in temperature the
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curve again has a positive slope. In a system of the type,

H2O-KNO3, the experimental realization of this portion of the

curve would be extremely difficult and we will not consider it

further at present, except to point out that at zero water content

the equation becomes

dp 77* — rj'

dt V — v^

which is the equation of the tangent to the melting-point curve

of pure KNO3. The p-t curve of the saturated solutions is

therefore tangent at its end to the melting-point curve of

KNO3, the curve showing the change in melting point of

potassium nitrate with pressure. This type of equilibrium will

be considered later.

9. The Second Boiling Point. We have seen that a melting-

point or solubility curve of the system, H2O-KNO3, extends

from the cryohydrate E to the melting point of pure KNO3,
and have followed the change in vapor pressure with composi-

tion in detail. We have therefore correlated the temperature-

composition or solubility curve with the pressure-temperature

curve. One curve gives the change with the temperature in the

composition of the liquid in equilibrium with solid and vapor, the

other gives the change with temperature in the vapor pressure

of the saturated solution. One other pair of the three vari-

ables, composition of the liquid, temperature, and pressure,

can be considered, namely, the change in vapor pressure of the

saturated solution with composition. This is the pressure-

composition curve; from it we see that the vapor pressure at

first increases with decreasing water content of the saturated

solutions, reaches a maximum at a small H2O content, then

decreases rapidly with further diminution of the water content,

until at its end-point at pure KNO3 the vapor pressure is that

of the triple point of KNO3. We are all familiar with the fact

that as the water content of the saturated solution decreases

with increasing temperature the vapor pressure increases, until

at the boiling point of the solution the pressure of the atmos-

phere is reached. But there are two saturated solutions whose

vapor pressure is one atmosphere; one has a water content of 29
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per cent, the other of only one per cent. At the first boiling

point, addition of heat causes the solution to evaporate, liquid

changing into solid and vapor. At the boiling point at higher

temperature, called by Roozeboom, who discovered it, the

second boiling point, the solution boils on cooling. At the

second boiling point, the liquid changes into solid and vapor

with evolution of heat. If a melt of KNO3, saturated at its

melting point with water, be quickly cooled, it will be seen to

boil suddenly and violently, and at the same time to solidify.

This second boiling point has been observed in many systems,*

including silicate systems at high temperatures, and the phe-

nomenon has been made the basis of a theory of volcanism,t

which has been applied successfully to the activity of Mt.

Lassen, California.!

10. The Equilibrium, Ice + Solution + Vapor. Of the four

univariant equilibria which proceed from the invariant point

we have considered but one, namely, the univariant equilib-

rium, solid KNO3 + solution + vapor. The univariant

equilibrium, ice + solution + vapor, is a second one in which

we have both liquid and vapor, and in this case solid and vapor

have the same composition. Our equation (8) becomes

^V _^ /ytl

X' — x'

and, since x^ = x* = 0,

dp ^
^^' - ''^ - ^^ ^^' - ^'^

^ r - v'
^

dt , ,, - a;'
,x 2^" - v"'

(y* — y') — ; (V — y')
U — X

But this equation refers to the vapor-pressure curve of ice; all

terms relating to the liquid have disappeared. This is a general

* H. W. Bakhuis Roozeboom, Proc. Z2o?/. (Soc. Amsterdam, 4,371(1901).

t G. W. Morey, J. Wash. Acad. Sci., 12, 219 (1922).

t A. L. Day and E. T. Allen, Carnegie Inst. Wash., Publ. No. 360

(1925). A. L. Day, /. Franklin Inst., 200, 161 (1925).
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relation; whenever any two phases in a binary system have the

same composition the pressure-temperature relations become

those of these two phases, without reference to the composition

of the other phase present.

11. The Equilibria, Ice + KNO^ + Vapor, and Ice + KNOz +
Solution. The preceding univariant equilibria have been

formed from the invariant equilibrium, ice + KNO3 + solution

+ vapor, by the disappearance of ice or of KNO3, respectively.

Two others can be obtained, by the disappearance of liquid or of

vapor. In case the liquid disappears, we have left ice + KNO3
+ vapor, and the p-t curve of this equilibrium will coin-

cide with the vapor-pressure curve of ice, and from the

invariant point will go to lower pressure and lower temperature.

In case the vapor disappears we have the condensed system,

ice + KNO3 + liquid, and the curve gives the change in eutectic

(cryohydrate) composition with pressure. The equation of this

curve* is

dp _
^^ ^ ^ a:'^^"' - x'

^^ ^ ^

and since x'" = 0, a;"''**" = 1, and x^ = 0.021, this becomes

(„.ce _ I) t ^1^ („^NO. _ ,)

dp ^^ ^ ^ ^ 0.979
^^ ^ ^

Here again the entropy and volume changes of the water are the

predominating factors; since the entropy difference is positive

and the volume difference, in the exceptional case of water,

negative, the p-t curve of this equilibrium has a negative slope.

But in this case, as in all condensed systems, the slope is very

steep; the numerator is of the order of magnitude of 0.3 cal. or

0.012 liter-atmospheres; the denominator is of the order of

* This is the equation of the tangent to the curve; but it is convenient

to refer to it as the equation of the curve itself, and need not cause

confusion.
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magnitude of 0.1 cc, or 0.0001 liters. The value of dp/dt is

thus about —0.012/0.001, or 120 atmospheres per degree; the

curve will be almost vertical. In other words, pressure, as com-

pared with temperature, has, as a rule, but little effect on the

equilibrium temperature and composition,

13. Derivation of an Equation in Which the Argument Is

Pressure, Temperature, and Composition. It will be of interest

to correlate the solubiUty (t-x) curve more closely with the

p-t curve.* The p-t curve gives the change of vapor pressure

with temperature along the three-phase curve, representing

coexistence of vapor, liquid (saturated solution), and solid, and

the equation used in its discussion contained pressure and

temperature as expressed variables. The t-x curve repre-

sents the change with temperature of the weight fraction x

of the second component in the saturated solution along the

same curve, and for its discussion it is useful to have an equa-

tion containing temperature and composition as expressed

variables. Applying (1) [97] in the form of equation (7) to two

coexisting phases, denoted by single and double accents, and

eliminating dm, gives

[v'(l - x") - v"{\ - x')\dp = h'(l - x") - 'n"{l-x')]dt

+ (x' - x")diJL2. (9)

But /x is a function of pressure, temperature, and composition,

so we may write

From the equation

de = tdR — Vdp + midm + miduz . . . + w„c/ju„, (11) [12]

it follows that

dn2 dV dfjii 9H
T~ = :;— . and "77 = — 7—

.

dp dnh dt dm2

* Cf. footnote on page 257.
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which give the rate of change of total volume and of total

entropy, respectively, on addition of mj. Since

V = {mi-\- mijv, —-= V - {\ - x)
—

drrii dx

and, similarly,

an dv-— = ^ — (1 — a;)
—

•

dm2 dx

djJLi dfi2
Substituting these values of

—
- and Trin (10), inserting this

O^ 01/

value of diJi2 in (9) and rearranging, gives

^y' _ ," _ (^' _ ^") ^£^ dp = [v - n" - {x' - x") ~\^ dt

x' - x" dfji2 „ , ,+ 1 T,^ndx". 12)
1 — X dx

This is a general equation* for the equilibrium between two
dfJL2

phases in a binary system. The term r-j, can in general be
OJu

evaluated only from experimental data; indeed, the whole of

chemical equilibrium is contained in the evaluation of this

term. Gibbs has indicated the form it takes for dilute solutions,

and has shown that it is necessarilyt positive for stable phases.

13. Derivation of an Equation Applying to the Solubility

(t-x) Curve. Equation (12) can be written in the form

x' — x" du.2

Av^' dp = AV^ dt + j^^ ^, dx", (13)

* This equation can be derived in a number of different ways; the

introduction of equation (1) [97] is not necessary nor is it the most
convenient way. It is used here as being more in harmony with the

general mode of treatment. Cf. E. D. Williamson and G. W. Morey,
J. Am. Chem. Soc, 40, 49 (1918).

dfX2

t Gibbs, I, 112. The proof refers to -— but it is easily shown that
al7l2

if this is positive ——, must be positive also.
dx"
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in which Av^^ and At?^^ have been substituted for

^,' _ ," _ (^' _ :,-) ^,j and ^v' - -n"
- ix' - x") ^^,],

respectively. This appHes to any two-phase equiUbrium ; if we

have in addition a third phase, denoted by triple accents, we

have another equation of the same form. Elimination of dy

, dt

between the two equations and solving for t7/ gives

^ _ 1 a/x2 Av^'' {x' - X") - Ai;^^ {x'" - X")

dx" ~ ~
I - X" dx" At;32 ^^12 _ ^yl2 ^^32 ^ ^

This is a general equation which applies to any three-phase

equilibrium in a two-component system.

r \ dV'l
The terms of the form v' - v" - {x' - x") -^, requu-e

some discussion. In equation (6) [129] the volume and en-

tropy terms represent difference in specific volume and

specific entropy, and, taken as a whole, represent the volume

and entropy changes taking place along the three-phase curve.

Equation (12) refers to two phases in a two-component system,

and hence to a divariant equilibrium. The coefficients of dp

and di in this case refer to the volume and entropy changes

which take place when one gram of the first phase separates

from a large quantity of the second, a type of change called

"differential," "partial," or "fictive."

11^.. Correlation of the i-x and p-t Curves. Consider the

application of equation (14) to the t-x curve of KNO3 in the

binary system, H2O-KNO3, and let the phases with single,

double, and triple accents be vapor, liquid (saturated solution),

and solid, respectively. The equation then becomes

dt 1 dfi2 Av'^ (x" - x^) - AV^ jx' - x^)

dx''
^ ~

1 - x" dx" Av'^ At;"' - Aw"^ Arj'^

1 9/i2

The terms
:j

77 and —y, are necessarily positive. In the

denominator, Av^^ is usually negative, Ar;"' always positive,

hence the first term is usually negative. In the second term,
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At;"' is positive, Ar]'^ negative, making the second term always

negative. Because of the preponderance of Av"^ the second

term is greater than the first and, as this term has a negative

sign, the denominator is always positive. In the numerator,

Av*' is usually negative and (x" — x^) negative, so the first term
is positive in the usual case. The quantity Av"' is dominant
in the numerator also; its product with the term {x' — re')

is always positive, but as it bears a negative sign, the

dt
numerator is usually negative. This makes j-j, positive, and

the t-x curve has a positive slope. When, however, the

composition of the solution has become very close to that of the

solid, the negative second term becomes equal to the positive

first term, and the t-x curve has a horizontal tangent, followed

by a negative slope. In such cases as H2O-KNO3 this detail of

the solubility curve is not detectable experimentally, but that

it is necessarily present follows from the correlation with the

'p-t curve. The 'p-t curve passes first through a point of

maximum pressure, then one of maximum temperature, and
at its end-point coincides with the melting-point curve of

KNO3, the univariant equilibrium (solid + liquid) in the

unary system, KNO3.
15. Equilibrium Involving Solid Solutions. It was mentioned

above that solid KNO3 exists in two enantiotropic modifications,

but that consideration of this was not pertinent to the discus-

sion. The two forms are both pure KNO3, there is no solid

solution, and the inversion point extends across the diagram at

constant temperature. It will, however, cause an abrupt

change in slope on both the t-x and p-t curves of the equilib-

rium, vapor -\- liquid + solid. In the not unusual case in

other systems in which one or both of two enantiotropic forms

takes into solid solution some of the other component, the

equilibrium becomes univariant, and the inversion temperature

is either raised or lowered, depending on which of the two forms

contains the greater quantity of the other component. It will

be interesting to apply equation (14) to this case.

Let the phases with single, double, and triple accents be

vapor, the high-temperature (a) form, and the low-temperature

03) form. The equation becomes
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dt 1 dixj Av^" jx'' — X") — AV" {x» — x")

d7' " ~ l-x"'dx" A/" At?'" - Ay'^Aij^"

As before, :; ;; and —77 are necessarily positive. In the
1 — X ox

denominator, Av^" is small and may be either positive or nega-

tive; Arj"" is positive. In the second term, Av"" is large and

positive; Atj"" negative, since by hypothesis the a-form is the

high-temperature phase, and hence has greater entropy. The

product is negative ; because of the large numerical value of the

term Av"", the second term in the denominator predominates,

and, being affected by a negative sign, the resultant denomina-

tor is always positive. In the numerator the first term is of

uncertain sign, but is smaller than the second term. The

second term is the dominant one; Av"" is large and positive,

and the sign of the numerator, and hence of the entire expres-

sion, is determined by, and is the same as, that of the composi-

tion difference (x^ — x"). When the high-temperature, or

a-form, takes more of the other component into solid solution,

(x^ — X") is positive, -77; is positive, and the inversion tempera-

ture is lowered by solid solution. When the low temperature,

or /3-form, takes the greater quantity of the other component

into solid solution, the inversion temperature is raised. A
well-known example of the second case is the raising of the

inversion temperature of the low-temperature form of CaO • SiOj,

woUastonite, by solid solution of MgO-Si02.

The further treatment of equilibria in which there is solid

solution is a simple extension of the above methods. The

composition of the solid phase is no longer constant, but

variable, a circumstance for which allowance is readily made in

the discussion. In addition, the entropy and volume are no

longer independent of the composition, but this again rarely

leads to complications. In the case of solid solution in systems

in which both components are volatile all of the coexisting

phases in a univariant equilibrium may be of variable composi-

tion, but since compositions come into the equations as differ-

ences the detailed application of the equations above presents

no difficulty.
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16. Application of Equation [97] to a System in Which Com-

pounds Are Formed. HiO-CaCk. We have considered the

appUcation of equation (8) to the simplest type of system, that

in which there is but one phase of variable composition, and no

compounds are formed. It will be of interest to see what

additional complications are introduced by the formation of

compounds, and as illustration the system, H20-CaCl2, will be

chosen. Projections of the solid pressure-temperature-com-

position model are shown in Fig. 3.*

The invariant point, ice + CaCla-GHaO + solution + vapor,

is at — 55°, and the pressure is but a fraction of a milhmeter.

The compound, CaCl2-6H20, contains 50.66 per cent CaCl2,

and the cryohydrate solution, 29.8 per cent. The equation of

the pressure-temperature curve of the solutions saturated with

CaCl2-6H20is
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increase in the CaCl2 content the slope of the y-t curve becomes

negative, and the pressure falls with increasing temperature.

1 7. The Minimum Melting Point of a Dissociating Compound.

It will be remembered that in the discussion of the system,

H2O-KNO3, it was stated that when the liquid phase was very-

close in composition to the solid phase, the coefficient of the

second term would become large enough for the small negative

volume difference (solid — liquid), multiplied by the large coeffi-

cient, to equal the very much larger and positive volume

difference (vapor — liquid), but that the effect would be difficult

to detect in such a system. When that is the case, the denomi-

nator approaches zero, the slope* of the p-t curve, dp/dt,

becomes infinite, the curve has a vertical tangent, and hence a

point of maximum temperature. This is shown clearly in this

system. On further increase in the CaCl2 content of the solu-

tion, a maximum temperature is found, after which both tem-

perature and pressure fall. Two effects take place very close

together here; first, the liquid approaches the solid so closely

that the denominator becomes zero, then the two compositions

become identical. When the two phases, solid and liquid, have

the same composition, the equation of the p-t curve becomes

dp ri' — 17'

dt V' — v^

which is the equation of the melting-point curve of the hexa-

hydrate. The condensed system, liquid CaCl2-6H20 + solid

CaCla -61120, is one of the great majority of cases where melting

causes expansion; both the specific entropy and the specific

volume of the liquid are greater than those of the solid phase.

This melting point of the hydrate is called the "minimum
melting point" because it is the lowest temperature at which

solid and liquid of the same composition can exist together in

equilibrium; a whole series of such melting points can be

obtained at higher pressures in the absence of vapor along the

melting-point curve of the hydrate, the curve of the condensed

* Cf . footnote on page 251 ; t is represented by the axis of x, p by
.

tiy
. . dp

the axis of y, hence ~ is equivalent to -j-.
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system, liquid-solid. It should be pointed out that this mini-

mum melting point is not at the point of maximum tempera-

ture, but at a lower temperature. The point of maximum
temperature is found at such a salt content that the denominator

becomes zero, as previously stated, while the minimum melting

point lies at a slightly higher salt content, and a lower tempera-

ture and pressure. In a system containing a volatile component

the point of maximum temperature is not at the composition of

the compound, as is the case in systems of non-volatile com-

ponents or in condensed systems, but at a composition slightly

displaced toward the volatile component. In the case of

CaCl2 -61120 the difference is very small, and the two points

have never been separated, but at higher temperatures and

pressures the difference is no longer negligible.

After the minimum melting point has been passed, the coeffi-

cient of the second term in the denominator becomes negative,

so that in both numerator and denominator the second term,

the entropy and volume differences (solid-liquid), in themselves

negative, are multiplied by a negative coefficient, hence the

second term in both becomes positive, and is to be added to the

positive first terms. The slope of the p-t curve is then posi-

tive, and remains so until the invariant point, CaCl2 -61120

-f CaCl2 - 4H2O + solution + vapor, is reached, at which a new
solid phase, calcium chloride tetrahydrate, makes its appearance.

The p-t curves that proceed from this invariant point when dif-

ferent phases disappear present some novel features, and are

considered in detail below.

18. Correlation of the t-x and p-t Curves. The sequence

of the points of maximum temperature and minimum melting

point on the three-phase curve, vapor + liquid (saturated solu-

tion) + CaCl2-6H20, is brought out especially well by the appli-

cation of equation (14), which in this case becomes

d^ 1 dfxi Av'' (0 - x^) - Av'-^ (0.5066 - a:0

dx^
~

1 — x'- dx^ Av'^ At;"' — Ay"' Atj*'

As before, the denominator is positive, and the sign of the

numerator is determined by the sign of (x* — x^) = (0.5066 — x^).

When the difference (x' — x^) is large and positive, the
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second term predominates, the numerator is negative, and

dijdx^ is positive; as {x* — x^) approaches zero, the numerator

first approaches zero, and both the p-t and t-x curves show a

point of maximum temperature. The numerator remains

positive when x* = x^, at the minimum melting point, which is

no special point on the i-x curve except when dealing with

condensed systems, in which the vapor phase is absent. In the

case in which Av''^ is positive, the numerator is still negative,

hence dt/dx^ still positive, when x* = x^, and at the point of

maximum temperature x' < xK In systems in which both

components are volatile, complications arise from the varying

composition of the vapor phase, and interesting special cases

arise when the vapor-pressure curve of the liquid shows either

maximum or minimum points, and also in connection with

the location of the maximum sublimation temperature, es-

pecially with dissociating compounds.*

19. The Equilibrium between a Dissociating Hydrate and Its

Products of Dissociation. From the invariant point, CaCl2 • 6H2O

+ CaCl2 -41120 + solution + vapor (Fig. 3), four uni-

variant equilibria are obtained by the disappearance of each,

separately, of these four phases. If the liquid phase dis-

appears we have the three phases, hexahydrate, tetrahydrate,

and vapor; since all of these phases are of constant composition

the pressure is a function of the temperature only; there is no

concomitant change in composition of one of the phases. Our

equation becomes

^ ^
("• - "') - t^S^' - "•[

dt , ^ x" — x\
^

{v" — v') — —
-iv'' — v')

x'' — x'

in which the superscripts h and t represent the hexahydrate and

the tetrahydrate, respectively. Substituting the numerical

values of X',
^tetrahydrate ^^^ ^hexahydrate^

q^ O.QOQS, and 0.5066,

* J. D. van der Waals, Verslag. Akad. Wetenschappen Amsterdam, 6,

482 (1897). A. Smits, Z. physik. Chem., 64, 5 (1906).
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respectively, gives the value of 6.06 as the constant coefficient

of the second term. The equation now becomes

dp ^ (t?" - V) - 6.06 {-n^
- 7?0

lit
~

{V - vO - 6.06 (v'' - v'Y

The numerator of this is always positive. The entropy differ-

ence (vapor — tetrahydrate) is always positive. The entropy

difference (hexahydrate — tetrahydrate) is negative, since the

^^
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rium requires the presence of both soUd phases, calcium

chloride hexahydrate and calcium chloride tetrahydrate, which,

together with the vapor, make three phases, hence three

equations. The common name, dissociation-pressure curve

of the hexahydrate, is misleading; it is the univariant equilib-

rium involving all three phases. The invariant point is the

high temperature termination of the stable portion of this

curve ; when a mixture of these two solids, together with vapor,

is heated, at the invariant point some solution is formed; some

of the solid melts to form the eutectic liquid.

20. The Equilibrium, Two Solids -\- Liquid. A second uni-

variant equilibrium is that formed by the disappearance of

vapor. This is the condensed system composed of the two

hydrates and the eutectic liquid ; the composition of the eutectic

liquid and the eutectic temperature both change as the pressure

is increased, but the change is small, and will not be considered

further.

SI . The Equilibrium, Solid -\-Solution -\- Vapor. Two univari-

ant equilibria between solid, liquid, and vapor can be formed, the

solubility curves of the hexahydrate and the tetrahydrate. The

first of these, the equilibrium vapor + solution -t- CaCl2 • 6H2O,

has already been considered; both temperature and pres-

sure increase from the invariant point with increase in water

content of the solution. At the minimum melting point solid

hexahydrate melts to form a liquid of the same composition;

this is called a congruent melting point.

The other equilibrium between solid, liquid, and vapor is

the solubility curve of the tetrahydrate. Application of

equation (8) to this brings out no novel features; temperature and

pressure both increase as the solution becomes richer in CaCl2,

and this portion of the y-t curve is concave downward over

its entire course. It differs from the preceding, however,

because of the circumstance that, before the point at which

the y-t curve has a horizontal tangent, a new solid phase

appears, calcium chloride dihydrate. This gives rise to

another invariant point, at which the four phases are tetra-

hydrate, dihydrate, solution, and vapor. In the case of the

hexahydrate the invariant solution was richer in CaCl2 than
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the compound disappearing, the solution was a eutectic, and the

compound had a congruent melting point. The solution at

this invariant point contains 56.4 per cent CaCl2, while the

tetrahydrate contains 60.6 per cent CaCl2; substitution of these

values in equation (8) gives

dp _ (v" - V) + 0.606 - 0.564
^^' ~ ^^

dt (t;" - I'O 4- 13.4 (v - v')

The positive entropy of vaporization is larger than the negative

entropy of fusion multiplied by its coefficient, dp/dt is still

positive, and both temperature and pressure are increasing

along the solubility curve of the tetrahydrate at the invariant

point. This solubility curve differs from the preceding in that

solid and liquid do not have the same composition at any point

;

calcium chloride tetrahydrate has an incongruent melting point

and the invariant point is not a eutectic but a transition point.

Pure hexahydrate, when heated, melts to form a liquid of its

own composition
;
pure tetrahydrate decomposes into dihydrate

and saturated solution of the composition of the solution at the

invariant point.

From this invariant point three other univariant equilibria

can be obtained. One of them is the condensed system, whose

p-t curve is almost vertical; a second is the dissociation-

pressure curve of the tetrahydrate, the univariant equilibrium,

tetrahydrate + dihydrate + vapor; the third is the solubility

curve of the dihydrate. The curves representing these equilib-

ria are shown in Fig. 3.

22. Types of Invariant Points and Univariant Systems.

While the preceding discussion has dealt primarily with the

application of the Phase Rule to simple systems having only

one phase of variable composition, with especial reference to

the direct application of equation (1) [97], the modifications

necessary to include additional phases of variable composition

have been indicated. In a binary system, coexistence of three

phases constitutes a univariant system, of four phases, an

invariant system, and the possible types of such equilibria are

the possible permutations of solid, liquid, and vapor, with the
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additional empirical restrictions that there can be but one vapor

phase, and, in a binary system, but two liquid phases. The

possible types, representing vapor, liquid, and soUd by V,

L, and S, are as follows:

Types of Invariant Points; Four Coexisting Phases

No.
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compound formed between the two components will not be con-

sidered. It is not readily formed; metastable equilibria be-

tween phenol and water in which it is not formed are more

easUy realized than the stable ones, with formation of the

compound; and its consideration would involve no new prin-

ciples. On addition of phenol to water, the ice curve is first

traced, down to the eutectic between ice and phenol crystals.

The invariant point at which both ice and phenol can coexist,

7<?

I

in

-^
,i,^2l-.

30 £0 70 90
COMPOSir/ON

A
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liquid immiscible with the first and containing about 36 per

cent of phenol, and a vapor phase containing so small an

amount of phenol that we may consider it as pure water.

Four univariant equilibria proceed from this invariant point.

The equilibrium, solid phenol + solution + vapor, the solubil-

ity curve of solid phenol; and the equilibrium, solid phenol +
two liquids, a condensed system giving the change with pressure

in the composition of the two layers in equilibrium with solid;

present no new features, and will not be considered. The

equilibrium between vapor, the water-rich liquid, and the

phenol-rich liquid is of greater interest. At the invariant

point equation (8) becomes

dp _ rc'^ — x''

(^« — v^^) — (y'^ — v^')

x^' — x^'

Substituting the values 0, 0.018 and 0.36 for the composition of

the vapor, the water-rich hquid and the phenol-rich hquid,

respectively, gives us

(t?" - tjO - W'-v^')
dp ^ 0.36 - 0.018

dt (v'' - v^) - 0.053 (y'^ - i;'')

and in this case also the entropy and volume of the water are the

dominating factors. The p-f curve accordingly is concave

upward. As the temperature is increased, the two liquids

approach each other in composition, the water-rich layer chang-

ing less than the phenol-rich layer. But at the same time their

specific entropies and specific volumes approach each other,

since both are liquids composed of the same components and

increasingly close to each other in composition. For this reason

the increasing value of the coefficient of the second term is

offset by the decrease in the second term itself, and no maximum
pressure is found. Finally, the two phases becomiC identical in

composition and properties. At the same time that the differ-

ence in composition becomes zero the difference in entropy and
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the difference in volume become zero, and the equation becomes

indeterminate. This is as should be expected; the three-phase

system was univariant because there were three equations

between the three quantities, pressure, temperature, and com-

position. When the two liquid phases become identical, not

only in composition but also in properties, there are no longer

three phases, but two only, and the system is no longer uni-

variant but divariant. In the case of calcium chloride hexa-

hydrate, when the liquid and solid phases had the same com-

position at the minimum melting point, there was still an

entropy difference, since it takes heat to melt a solid, and a

volume difference. At the temperature at which the two liquids

merge into one another, all distinctions between the phases

disappear, and there are but two phases, liquid and vapor. At

this temperature there may be not only the critical solution,

but also any other mixture of liquid phenol and water; the

composition of the solution or the vapor pressure must be fixed

in order to completely determine the system.

The critical Hquid itself is, however, completely determined.

At a temperature very near to the critical solution temperature

of the mixture, there are still three equations, and the critical

solution is determined by the additional condition that the two

phases become identical. We have, then, four equations; three

of the type of (1) [97], and the additional equation expressing

the condition of identity between the two liquids, so this solu-

tion is uniquely determined.

If from the invariant point, solid phenol + two liquids -\-

vapor, the water-rich layer disappears, we have the univariant

equilibrium, solid phenol + a phenol-rich Uquid + vapor.

This equilibrium will be realized if the total phenol content of

the mixture be greater than that of the phenol-rich liquid, and

constitutes another branch of the solubility curve of phenol in

water, or of the melting-point curve of phenol-water mixtures

along which the solubility of phenol in water increases uni-

formly, until the melting point of phenol is reached. This

curve does not differ in any important respect from the upper

portion of the H2O-KNO3 curve, except that the melting point
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of phenol is so much lower than that of KNO3 that the vapor

pressure of the solutions probably decreases, without first rising

to a maximum.

V. Application of Equation [97] to Systems of Three Components

24. Transformation and Interpretation of Equations. Prob-

lems involving a greater number of components may be solved

by the same analytical method of treatment, but it will not be

possible to elaborate the discussion for systems of more than

three components, or to give a complete treatment of ternary

systems. *When equation (6) [129] is applied to a three-

component system it becomes

H' mi m2 mz

dp

dt

H" mi" m^" W
W2'" ms'"

V mi'

V" mi"

Y"' m^"

mi mz

W2" mz"

nh"' mr
IV IV

vrh mz

in which the composition of the phases is represented by the

actual masses of the components, mi, m^, and W3, and the

volume and entropy refer to the total mass. By setting

mi + m2 + mz = \, X = mi/inii + W2 -|- W3),

y = mn/{mi + 7^2 + mz), we getj

* From this point to the end of section (28), and again from (30),

third paragraph (p. 281), to the bottom of p. 291, the text is taken,

with some omissions, alterations and additions, from the article of

G. W. Morey and E. D. Williamson, Jour. Am. Chem. Soc, 40, 59-84

(1917).

t This equation has been used in the form of a determinant because of

the great convenience of that form of notation. For those not familiar

with determinants it may be said that this constitutes a shorthand

method of indicating the familiar operation of elimination by cross

multiplication. When dealing with systems of more than three com-

ponents such a notation becomes almost indispensable.
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dp _
dt

7,' 1 X'

v" 1

y
x" y"

n'" 1 x'" y'"

ly ^ jy r,jy
T) i. X y

v' 1

v" 1

'"I

y

V

V
ly

X

x" y"

x'" y'"

1 x^'^y'"'

in which composition is represented by the weight fractions

a:, ?/, and \ — x — y oi the three components. Expansion of the

right-hand side of this equation gives

(15)

r?'
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It is easy to show that

1 x' y'

269

1
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mined pressure-temperature curves; and Fig. 8, a diagrammatic

representation of the same curves. When equation (16) is

applied to the ternary equilibrium K2O • SiOj • 5H2O +
KzOSiOz

^20Si<^y2^2

/fsOSiO^H^ H20 2SfOg

K20-4Si'02

HzO SiOp

Fig. 5. The ternary system, H2O-K2O • SiOz-SiOa. The full lines are the

isothermal polybaric saturation curves at the temperatures indicated.

The broken curves are the boundary curves between the various fields.

K2O -28102 + L + V (curve 6c, Figs. 5-8), the curve which pro-

ceeds from the quintuple point Q2to quintuple point Qx, it becomes

di
(t;' - V) -\- \

— W - v^) - -— {v" - v^)
i-121 U2I

in which S' and S" represent the compounds K2O • Si02 • ^H20

and K20-2Si02- At Q2, the terms (n^ - 17") and (v^ - V), both

of which are negative and much larger than the other terms,

preponderate; dp/dt is positive. As with increasing tem-
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A^syci\^/io

/^OS/Cjr/VpO fe02Si0a

t^O^Qt-MiO

/^gO s/a,

Fig. 6. The ternary system, H2O-K2O -8102-8102. This diagram
shows the various boundary curves, which give the locus of the com-
position of the liquid phase in the various univariant equilibria. The
mvariant (quintuple) points are designated by the letter Q; the numbers
on the curves are the same in Figs. 6, 7, and 8. Following is a list of

phases stable along each curve.
Curve 2. V -f L -f- K20-48i02-H20 + SiOj

-I- K20-28i02-H20 + KjO- 48102 -HiO
-I- K20-2Si02 -I- K20-4S102-H20
+ KjOSiOi-HjO + K20-2S102H20
-I- K20-S102-^H20 + K20-28i02-H20
+ K20-8i02-^H20 + K20-28102
-I- KjO-SlOj + KjO- 28102

+ K20Si024H20 + KjO- 28102 HjO -|- K20-2810,
7b. V + L -f- K20- 28102 •H2O + K20-28i0j

Curve
Curve
Curve
Curve
Curve
Curve
Curve
Curve

4a.
4b.
6a.

6b.
6c.

6d.
7a.

7a

V
V
V
V
V
V
V
4-

L
L
L
L
L
L

-1- KjO^SiOjHsO
Curve 7b + 7c. V + L + K20-2Si02H20 + K20- 28102
Curve 7a -I- 7b 4- 7c. V -f- K20-28102-H20 -|- K20- 28102, in binary

system, HjO-KzO- 28102
Curve 8a. V -f K20- 8102- H2O -f K20- 8102- §H20 -|- KjO- 28102 -HzO
Curve 8b. V + L -f- K20-8i02H20 + K20-8102-^H20
Curve 8a -|- 8b. V -f- K20-8i02-H20 -}- K20-8102-^H20, in binary

system, H20-K20-8102
Curve 9. V + KzO- 48102 •H2O -|- K2O -48102 -|- 8iOj
Curve 10a. V -|- K20-8102-§H20 + K2O-8IO2 -f K20-28i02
Curve 10b. V -i- L + K20-8i02-§H20 + K2O-8IO2
Curve 10a -|- 10b. V -|- K20-8102-iH20 + K2O-SIO2, in binary sys-

tem, H20-K20-8i02
Curve 11. V + L -h K2O-28IO2 -|- K20-48102
Curve 12. V + L -f- KjO-48102 + 810,
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perature the liquid traces the curve Q2Q1, the triangle A^i
becomes smaller, while the triangles A21V and Anv become larger.

The values of the coefficients of (7?' — 7/O and (r?" — v^) in the

I7S
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the value of the numerator only. As the Uquid follows the

curve Q2Q1 the value of the last two terms of the numerator

soon becomes equal to the value of the first term. The numer-

ator then becomes zero, dp/dt becomes zero, and the curve

has a horizontal* tangent. It will be observed that such a

point of maxunum pressure is found on many of the p-t curves

Fig. 8. The ternary system, H20-K20-Si02-Si02. A diagrammatic
representation of the p-l curves shown in Fig. 7; the numbers on the

curves are the same in Figs. 6, 7, and 8. The invariant points Q^a.

and Qih are shown as point Qs, and the curves 11 and 12 are not shown.

representing univariant equilibrium between two soUds, liquid

and vapor in the system. It is most pronounced in the uni-

variant equilibrium, K2O • 4Si02 • H2O + SiOa + L -1- V.

On further increase in temperature the numerator becomes

* Cf. footnote, page 257: -— takes the place of -7- of analytical
at dx

geometry.
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positive, the denominator remains negative, hence dp/dt is

negative. This continues until, in the case we are considering,

the phase K20-Si02 makes its appearance at the quintuple

point Qi. Consider the metastable continuation of the curve,

KaO-SiOs-^HaO + K2O -28102 + L + V (curve 6c).

Beyond Qi, on further increase in temperature the triangle

Am approaches zero, the coefficients of (y' — v^) and (v" — v^

in the denominator increase rapidly, reaching such a value that

the sum of the last two terms in the denominator becomes

numerically equal to the first, in spite of the large value of

(v' — «"). The denominator then approaches zero, and dp/dt

becomes infinite. At this point the p-t curve has a vertical

tangent. Beyond this point dp/dt again becomes positive.

An illustration of this case is found in the p-t curves of the

univariant systems, K2O -28102 + K2O - 48102 - H2O + L + V
(curve 46), and 8i02 + K2O - 48102 • H2O + L + V (curve 2), which

proceed from Qs to higher temperature and pressure.

26. Coincidence Theorem. On further increase in tempera-

ture the hquid will He on the fine, K2O • 8102 - ^H20-K20 - 28102,

the area Ani becomes zero, and equation (16) becomes

^ _ A21V iv' - 7?') - Ally iv" - >?0

dt
~

A21V W - uO - Aiiv iv" - v^)

'

At this point the curve has the same slope as the common
melting-point curve of (K2O • 8102 • IH2O + K2O -28102), an

illustration of the general relation that when a linear relation

exists between the composition of n or fewer phases, the p-t

curves of all univariant systems containing these phases coin-

cide. When all the reacting phases have a constant composi-

tion, the curves will coincide throughout their course; when

the compositions of some or all of them are variable, and they

only casually have such a composition that the above linear

relation is possible, then the curves are tangent.*

Let us prove this in detail for three phases lying on a straight

line in a three-component system. Consider the p-t curves

* F. A. H. Schreinemakers (Proc. Acad. Sci. Amsterdam, 19, 514-27,

(1916) and subsequent papers in the same journal) mentions some special

cases of this general theorem.
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of the univariant equilibria, P' + P" + P'" + P^^ and P' +
P" + -P^^ + P^ , which proceed from the quintuple point,

P' + P" + P'" + P^^ + P^. The equation of the first of these

is

H' m/ W/i niz

H" m/' W2" ms"

dp _
dt F' w/ m^' rriz

V" my" m," m,"

V" m,'" m^'" m,"'
IV IV IV IV

mi 7712 W3F

Now assume that P', P", P'" lie on a straight line in the com-

position diagram,* We then have the relation

and hence also

and

A'P' = A"P" + A"'P"',

nt in
nil

>AW = A'W + A
AW = A'W' + A"W'\

AW = A'W' + A

By substituting these values of mi ', ma', W3' in the above deter-

minants, and subtracting A" times the second row and A'"

times the third row from A' times the first row, we get
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iA'R' - A"R" - A"'R"')

dp

dt

mi" rrii" m"
m{" m^" m,'"

IV IV IV
mi Mi W3

(A'V'-A"V"-A"'V"')
mi" m-l' m"
m{" mr mz"'

IV IV IV
mi m2 mz

or

^ A'R'- A"R" - A"'R"'

dt
~ A'V - A"V" - A"'V"'

'

Similarly, the relation between the variations of p and t in the

second of the above univariant equilibria, P' + P" + P"' +
P^, reduces to the same expression. It will be observed that the

coefficients A', A", A"' are those that occur in the reaction

equation

A'P' = A"P" + A"'P"'.

Hence we see that whenever three phases lie on a straight line

in the composition diagram, the p-t curves of all ternary

equilibria containing these three phases coincide with each other

and with the p-t curve of the univariant binary equihbrium

between the three phases alone.

27. Equilibrium, K20-2Si02-H20 + KiO-SSiO^ + Solution +
Vapor. We will now consider the application of our equation

to a different type of equilibrium between two soUds, liquid and

vapor. Consider the equilibrium, K2O • 2Si02 • H2O + K2O • 2Si02

+ L + V (curve 76 + 7c). In the concentration diagram

the course of this equilibrium is the curve Q2Q4, the boundary

curve between the fields of K2O -28102 and K2O -28102 -1120.

Since the two solid phases and vapor lie on a straight line, the

equation becomes

dp^ _ Aivi iv' - v") - Aui (v" - 77")

dt ~ A2VI W - 2;") - Am {v" - v")'

in which P' and P" represent K20-2Si02 and K2O -28102 •H2O,

respectively. This is the equation of the dissociation-pressure
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curve of K20-2Si02-H20- Hence, as we saw before, the p-t

curves of the equUibrium, K2O • 2Si02 • H2O + K2O -28102 +
L + V, coincide with the dissociation-pressure curve of

K2O • 2Si02 • H2O, The slope of this curve will remain positive as

we go along the boundary curve, K20-2Si02-K20 -28102 -1120,

and will not show anything special until the liquid phase falls on

the line, V-K2O-28IO2. But here the two triangles A234 and

A 134 become zero at the same time, and the equation becomes

meaningless. This point corresponds to the termination of

the curve at the quadruple point, K20- 28102 + K2O - 28102 •H2O

•f L + V in the binary system, H2O-K2O • 28IO2. When the

liquid has crossed the line, H2O-K2O • 28102 the areas of all the

triangles change sign, hence dp/dt remains positive, and with

decreasing temperature we retrace the same p-t curve to the

quintuple point Q4. This portion of the curve also corre-

sponds to the equilibrium, K2O - 4SIO2 • H2O + K2O -28102 +
K20-28102-H20 -f V.

In the first equihbrium considered, the univariant equilib-

rium, K20-8i02-^H20 -\- K2O-8IO2 + L + V, the assumption

that the vapor phase is pure H2O was practically without

Influence; the vapor phase might contain appreciable quantities

of either K2O or SIO2 or both without appreciably affecting the

course of the p-t curve. The only effect would be a slight

diminution of the areas Auv and A21V, the coefficients of (77" — 77O

and (v" — v^), and of {-q' - v^) and {v' - v^), respectively. In

the second case, however, the assumption is of Importance;

only in the Improbable case that the ratio of 8102/K2O in the

vapor is the same as in the solid, i.e., 2/1, would it still be true

that the equilibrium, K2O -28102 + K2O • 28IO2 - H2O + L -f V,

coincides with the equilibria K2O-28IO2 + K2O - 28IO2 - H2O +
K20-8i02-|H20 + V and K2O -28102 + K2O • 28102 • H2O \-

K2O- 48102 -1120 + V, and with the dissociation-pressure curve

of K2O -28102-1120. In case the vapor contained a small

amount of K2O, the curve, K2O-2SIO2 + K2O • 28IO2 - H2O + L

-f V, would consist of two parts, one on one side, the other

on the other side, of the dissociation-pressure curve, and the

two parts would join at the top in a smooth curve, whose point

of maximum temperature would be found at the point where
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the entropy change in the reaction passes through zero, hence

on the K2O side of the hne, K20-2Si02 - K20-2Si02-H20.

But unless the K2O content of the vapor is large, which is

improbable, the effect will be small; the area, K2O -28102

-

K2O • 2Si02 • H2O - V, instead of being zero, will be a very-

small quantity which will have but a shght influence on the

above relations; the curves, instead of coinciding, would lie

very close to each other.

28. Equilibrium, KiO-SiOi-^H^O + KiO-SiO^ + Solution +
Vapor. All the p-t curves so far discussed have had their

end-points inside the component triangle ; all of them have gone

from one quintuple point to another. Let us now consider

one which goes from a quintuple point to a quadruple point in

one of the limiting binary systems, e.g., the curve, K20-Si02 +
K2O • Si02 • ^H20 + L + V (curve 106), which goes from quintuple

point Qi to the quadruple point, K20-Si02 + K2O • Si02 • ^H20

+ L + V, in the binary system, H2O-K2O • Si02. Since the

phases, V, K2O -8102 -^1120, and K20Si02, lie on a straight

line, the area of the triangle, V-K2O • Si02 • IH2O-K2O • Si02, is

zero, and the equation of the p-t curve reduces to

dp _ A,„i (V - v") - Au, (V - v")

dt A^viiv' -v") - A,,i {v' - v")
'

in which the accents (') and (") refer to the solid phases,

K2O • Si02 and K2O • Si02 • IH2O, respectively. This is evidently

the dissociation-pressure curve of K2O • Si02 • ^H20 ; in harmony
with our previous conclusions, the slope of the curve, K2O • Si02 -|-

K20-Si02-^H20 + L + V (106), is the same as that of the

dissociation-pressure curve of K2O • Si02 • IH2O (10a + 106).

At the quintuple point it is evident that both numerator and

denominator are negative, dp/dt therefore positive. Also,

the denominator being much larger than the numerator, the

numerical value of dp/dt is less than unity. As the liquid

approaches the side of the component triangle along the bound-

ary curve, both the triangles A2VI and Aivi diminish in size in

about the same proportion, and the value of dp/dt will not

change materially. When the liquid gets on the line, H2O-
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K20-Si02, both triangles become zero simultaneously, and the

equation becomes indeterminate; the curve is at its end point

at the quadruple point in the binary system.

It is evident that when the phases have the composition

indicated above, no maximum is possible in the p-t curve of

the univariant equilibrium. However, if the vapor phase, in-

stead of being pure H2O, contained a small amount of Si02, the

curve would have a horizontal tangent before the phases, L,

K2O -8102 41120, and K20-Si02 fell on a straight line, as can

readily be seen from the equation of the curve.

29. Equilibrium, KiO-^SiOi + K^O-J^SiOi-H^O + Solution

+ Vapor. In the discussion of binary systems, it was seen

that when a volatile component is considered, the maximum
temperature is not at the composition of a compound, as in

condensed systems, but is displaced in the direction of the

more volatile component. A similar condition is found in the

general case; an example in a ternary system is found along

the curve, K2O -28102 + K2O - 48102 - H2O + L + V (curve 46),

which goes from Q4 to Qsa. The equation of this curve is

dp Am Ani

dt ,
,

. , Aiiv , ,
. A.\\.o .

{v^ - v^) + -r- {v' - v'-) - -r~ (^ " " )
A\2i Am

in which the accents (') and (") refer to the phases, K2O- 28102

and K2O- 48102 -H2O, respectively. The condition for a

temperature maximum is that the denominator of this expres-

sion shall approach zero as a limit; dp/dt becomes infinite.

Since the volume difference between vapor and liquid is far

greater than that between solid and liquid, the denominator

will approach zero as a limit only when the coefficients of the

last two volume differences become very large, hence when

the area of the triangle, K2O - 2Si02-K20 • 48102 • H2O-L,

becomes very small. This point will be reached slightly before

the liquid phase lies on the line, K2O - 28i02-K20 - 48102 • H2O,

hence the point of maximum temperature has been displaced

sUghtly in the direction of the volatile component.
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30. The Order of p-t Curves around an Invariant Point.

In the general consideration of phase equihbria it is convenient

to proceed from a consideration of the invariant points to the

various univarlant equihbria which proceed therefrom, and to

consider the sequence of the p-t curves around the invariant

point. Such a course is often of great value in determining the

stable phases in an investigation of complex systems. The
order* of the p-t curves may be deduced from the theorem that

whenever a linear relation exists between n of the n -f 1 phases

in a univariant equilibrium, the p-t curves of all the univariant

systems containing these phases coincide. But these curves

extend in both directions from the invariant point ; in one direc-

tion the equilibrium under consideration will be stable, in the

other, metastable, and to tell the actual position of any curve,

or to distinguish between the stable and metastable portions of

any one curve, a knowledge of the entropy and volume changes

is necessary. However, it will be shown that two adjoining

curves, i.e., curves that are not separated by either the stable

or metastable portions of other curves, e.g., the p-t curves of

the univariant ternary equilibria, P' + P" + P'" + P^^ and
pi

_|_
pii

_|_
pni

_|_
pv

^ ^^jj coincide in their stable portions, that

is, are stable in the same direction from the invariant point,

when the phases P^^ and P^ lie on opposite sides of the straight

hne P'P"P"', and vice versa. With the aid of these theorems

and general considerations to be discussed later the actual

position of the p-t curves may be fixed within certain limits.

The above theorem may be proved as follows. From the

definition of the chemical potential n, if the ^i of a substance

in a given phase is greater than the n of the same substance in

another phase, the two phases are not in equilibrium with

respect to that substance and it will tend to pass from the

phase in which its chemical potential is the greater into that

phase in which its chemical potential is the less. At the triple

point, ice + water + vapor in the one-component system,

* By "the order of the p-i curves" is meant the sequence in which we
shall cut the curves as we circle around the invariant point, with the

stipulation that reversing the direction of rotation reverses the sequence

but not the order.
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H2O, the chemical potential of H2O in all three phases is the

same. If we simultaneously change the pressure and tem-

perature so as to proceed along any one of the three 'p-t curves

that intersect at the triple point, one of the phases will dis-

appear. By making these changes we have given greater incre-

ments to the chemical potential of the phase that disappears

than to the chemical potentials of the other two phases; the

chemical potential of water remains equal in these two phases

since we, by hypothesis, have made such changes of pressure

and temperature as to proceed along the -p-t curve of stable

coincidence of these phases.

The fundamental equations of the form of (1) [97] for the three

phases that coexist at the triple point are

Vdj) = Wdt + m\l^\

V'dp = H'rfi + w'^m',

V'dp = R'dt + m'dij.%

in which the indices v, I, s refer to the vapor, liquid, and solid

phases. Each of these equations may be divided by the mass m
of the phase; in the resulting equations

v^dp = rj^dt -f- dn",

v^dp = rj^dt + djjL^,

v'dp = ri'dt + dn',

the volume and entropy terms refer to the specific volume and

entropy of each phase.

Now if, as stated above, we proceed along the p-t curve of

the condensed system, ice-liquid, which is one of the p-t curves

that intersect at the triple point, we can obtain a value for dn,

the differential of the chemical potential, from the two equations

of the type of (1) [97] referring to the liquid and solid phases,

by solving the two equations for dt in terms of dp, which will

give us

yl _ y»

dt = -j
, dp,

and substituting this value of dt in one of the original equations
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Substituting in the equation referring to the Uquid phase, we get

[v'- — v'~\

Similarly, the value of d^y in the stable direction of the curve,

is given by

r v^-v'l
dp.

Now since, by hypothesis, we have proceeded in the direction of

the stable portion of the curve, ice + Hquid,

(Zm" > dyiK

Hence

which reduces to

dp [{V - v^)W - V') - (v^ - v')(v'' - v^)]

7}^ — t]'

>0,

one form of the condition for stability of the equilibrium solid +
liquid.

When we consider the actual magnitude of the various terms

in this equation we see that the coefficient of dp in the numer-

ator is necessarily positive. All the individual terms {v" — v^),

W ~ v'), iff — V^) a-iid (^' ~ V') are of necessity positive except

the last one, the volume change of melting of ice, which is

negative. But the last term is affected by the negative sign,

hence the term as a whole is positive, and the coefficient of

dp has a positive sign.* The equilibrium in question will then

be stable as the pressure is increased from the invariant point

* The case that (v^ — v') is negative is, of course, exceptional. But
in any case, the coefficient of dp is positive, since the two entropy

changes are of the same order of magnitude, while the volume change on

evaporation is many times larger than the volume change on melting.
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when the denominator is positive; (tj' — rj') is of necessity-

positive, hence the equilibrium, ice + Hquid, is stable with

increasing pressure from the invariant point; on decreasing the

pressure we pass on to the metastable portion of the curve, into

a region where vapor is stable.

By solving for dp in the above equations of the type of (1) [97]

referring to the solid and liquid phases, v/e get a similar in-

equality,

Jjl _
J^,»

>o,

which gives the condition for stability with change in tem-

perature. It will be observed that the condition for tempera-

ture stability differs from the condition for pressure stability in

having dt in place of dp in the numerator, and in having

(v^ — V) in place of (r?' — rj*) in the denominator. Since the

coefficient in the numerator is unchanged, it is always positive

;

the equilibrium, solid -\- liquid, is stable with increasing tempera-

ture when the denominator is positive, and is stable with de-

creasing temperature when the denominator is negative. In

the exceptional case of H2O, this volume change is negative,

hence the equilibrium, ice + liquid, is stable with decreasing

temperature from the triple point; on increasing the temperature

we pass on to the metastable portion of the curve, into a region

in which vapor is stable.

SI. Generalized Theorem Concerning the Order of p-t Curves

around an Invariant Point. The above reasoning may be

generalized as follows. At an invariant point, if the differentials

satisfy the (n + 1) equations of the type of (1) [97] for the

univariant equilibrium, P' + P'" -\- P^^ ... + P"+i +
pn+2

(jjj which phase P" is missing), we will move along the

p-t curve of this equilibrium. In one direction from the in-

variant point the missing phase P" will be stable, in the other

direction phase P" will be unstable. In the first case, we will

be on the metastable prolongation of the p-t curve, in the

second case, we will be on the stable portion of the p-t curve.

The condition that a given phase in a one-component system is

unstable was found to be that its chemical potential is greater
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than the chemical potential of the stable coexisting set of

phases, which condition is represented by the inequality

Vdjp — 'S.dt > midiii + niidni . . . + nindfXn.

Similarly, the condition that the equilibrium

P" + P'" + P^^ . . . + P" + i + P"+'

is stable is that the missing phase P' is unstable.

By solving the (n + 1) equations of the type of (1) [97],

referring to the (n + 1) coexisting phases of the equilibrium

in which P" is the missing phase, for dm, dixz, dm, and dt in

terms of djp, and substituting in the above inequahty, (the

quantities F, H, Wi, mz, . . . rUn referring to phase P") the

stability is found to depend upon the sign of the following ex-

pression :

dp

H" V"
H'" V'"
jjIV ylV

mi

mi

II

IV

mi

m<i

mi

mi

II

IV

mz

mz

mz

mz

II

III

IV

Jjn+l yn+1 fyi^n+l '^^n+l ^g^+l

JJn+2 yn+2 ^,"+2 f}i^^+^ 7^3"+^

mr,

mnII

mn
m'7

m
m

n+l
t

n+2

(A)
H' m\

m\

miIV

m2

m2

m-i

III

IV

mz

mz

mi
IV

Jjn+l ^n+l ^^n+1 ^^n+l

H"+2 ,/j^n+2 rn2"+^ m3"+2

mn
mn
mnIV

m
mn

n+l
I

n+2

The equilibrium, P' + P"' + P^^ . . . + P"+i + P^+\

will be stable if this expression is negative, and vice versa.

Also the univariant equilibrium, P" + P'" . . . + P"+i + P"+^

in which P' is the missing phase, is stable when the expression
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dp

H' V
H" V"
H'" V'"
jlV
Y^y VIV

mi

mi
77

?W2

mi

It

III

IV

ms

W3'

ma
IV

Jjn+l yn+l ^^n+1 ^^"+1 m3"+l

JJn+2 7n+2 ^^71+2 ^^"+2 m3"+2

mn
mn
mn

III

IV

mn
mn

n+1

n+2

HIV

mi
m
mi

//

///

IV

m2

m2

m2

///

IV

m3

m3'

ms
/y

Jjn+l r/ijn+l m2"+^ m3"+^

JJn+2 ^jn+2 ^^"+2 m3"+2

m
m„
mn

II

III

IV

mn
m,

n+l

n+2

(B)

is positive.

The numerators of the two expressions given above are

identical. When a Hnear relation exists between the phases,
pill pIV pn+i^ pn+2^ ^YiQ denominators reduce to

AH

mi

mi'

m2

m2///

ms

ms
///

mi"+^ m2"+^ m3"+^

mi"+2 m2"+2 m3"+2

and

AH

mi

mi

n

III

mi

mi

If mz

mz

n

mi"+^ m2"+^ m3"+^

mi"+2 ^2"+^ W3"+2

m^

m.

m„n+l

n+2

(C)

m,

m„

//

///

m,,

mn

n+l

n+2

(D)

in which AH denotes the entropy change which takes place

when these n phases, P'", P'^, . . .
P"+i, P"+2, react.
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It will be observed that these two expressions are identical

except for the first row of the determinants, which in (C) con-

tains the composition terms of phase P' , and in (D) contains

the composition terms of phase P". Hence it is evident that

the numerical values of expressions (A) and (B) will be the

same, i.e., the two curves will be stable in the same direction

from the invariant point, when (C) and (D) have opposite

signs (since (A) and (B) have opposite signs). But (C) and (D)

will have opposite signs only when phases P' and P" lie on

opposite sides of the onefold P'", P'^, . . . P"+\ P"+\ In a

two-component system this onefold is a point; in a three-

component system, a line; in a four-component system, a plane,

etc.

The above may be summarized as follows: When two adjoin-

ing p-t curves (which represent the relation between the

variations in pressure and temperature in two different uni-

variant equilibria between 7i -\- 1 phases in a system of n com-

ponents) coincide, owing to a linear relation being possible

between the compositions of the n phases common to both

equilibria, i.e., to these n phases lying on the onefold n, whose

position is determined by the above Hnear relation, these

equilibria are stable in the same direction from the invariant

point, i.e., their stable portions coincide, when the other two

phases lie on opposite sides of the onefold n. By "the other

two phases" is meant the phases, one in each of the univariant

equilibria, which do not lie on the onefold n. In a two-com-

ponent system, the onefold n is a point; in a three-component

system, a line; in a four-component system, a plane, etc. This

has been proved for the case that a linear relation exists

between the compositions of n of the (n + 2) phases that

coexist at the invariant point. The cases where a linear relation

exists between the composition of (n — 1), {n — 2), ... {n — a),

phases may be regarded as special cases.

3S. Generalizations Concerning p-t Curves. Before illus-

trating the application of the above principles to actual cases,

certain generalizations will be made concerning the p-t curves

from the state of aggregation of the phases. The actual

value of dp/dt for any univariant equilibrium is given by
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equation (6) [129], which, as will be shown later, is equivalent to

dp _ AH
dt

~ AF

'

in which AH is the entropy change, AF the volume change of the

reaction in question. Whenever we have a reaction in which

the vapor does not take part, e.g., the reaction

S' + S'" = S" + L,

the slope of the p-f curve is always very great, because of the

small value of AF. In other words, the p-t curves of all con-

densed systems are almost vertical, and go from the invariant

point to regions of higher pressure, and in almost all cases,

higher temperature. W^ien the reaction is one between solid

phases and vapor, e.g., the dissociation-pressure curve of S',

S' = S" + V,

the 'p-t curve always goes from the invariant point to regions of

lower temperature and pressure; since AF is large (except under

high pressure), the slope of the curve is comparatively small.

In reactions of the type

S' + L = S" + V,

in which both liquid and vapor take part, d-p/dt may be large

or small, positive or negative. We will consider this case in

detail later.

Consider now the application of the above principles to the

determination of the sequence of -p-t curves around an invariant

point.* The method used is based on the fact that the order

of the slopes dp/dt of the various curves at the invariant point

is determined by the masses of the phases which take part in

* The question of the sequence of p-t curves around an invariant

point has been discussed by A. Smits (Proc. Acad. Sci. Amsterdayn,

18, 800-804 (1916)), and by F. A. H. Schreinemakers in the series of

papers beginning with Proc. Acad. Sci. Amsterdam, 18, 116-26 (1916),

and by G. W. Morey and E. D. Williamson, /. Am. Chem. Soc, 40, 59

(1918).
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the various univariant reactions. This is evident from equation

[129] or from the expanded form of (6) [129] given below. The

method of applying this criterion is by considering what

curves will coincide when we vary the composition of different

phases. If by varying the composition of one phase in a

certain direction n phases get on the onefold (n), then, as proved

above, the p-t curves of the two univariant equilibria formed

by these n phases with each of the other two phases will coin-

cide; these two curves must be adjoining curves, and no other

curves can be between them. By repeating this reasoning,

assuming the composition of the same phase to change in other

directions, or assuming the composition of another phase to

change, the relative positions of the p-t curves, i.e., the order

in which they succeed one another around the invariant point,

can be deduced. The stable and metastable portions can be

distinguished by means of the theorems previously given.

33. Order of the p-t Curves in the Ternary System, H2O-

K2O • SiO^-SiOi. Let us apply the above considerations to the

quintuple points in the ternary system, H2O-K2O • Si02-Si02,

and pay particular attention to the question of the sequence of

the p-t curves around the invariant (quintuple) point. For the

purpose of this discussion, we will combine the above theorems

in regard to the conditions under which p-t curves coincide, and

in regard to the factors which determine whether the curves

coincide stable to stable or stable to metastable, in the following

rule: Whenever in a ternary system three phases lie on a

straight line, the p-t curves of all the ternary univariant

equilibria containing these three phases coincide with each other

and with the p-t curve of the univariant binary equilibrium

between the three phases alone. When the other two phases at

the quintuple point lie on the same side of the line on which

lie the compositions of the three reacting phases, the curves

coincide stable to metastable ; when the other two phases lie on

opposite sides of the line on which lie the compositions of the

three reacting phases, the curves coincide stable to stable.

The compositions of all the phases which are met with in

the ternary system, H2O-K2O • Si02-Si02, are shown in Fig. 6.

In treating this system we will assume that the vapor phase
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contains H2O only. The presence of K2O in the vapor has been

detected,* but the amount was very small. The boundary

curves show the change in composition of the liquid phase in

the univariant equilibria, S' + S" + L + V, as we pass from

quintuple point to quintuple point, or from quintuple point to

quadruple point, in the limiting binary systems. The com-

position of the liquid phase at each quintuple point is given by

the point of intersection of three boundary curves; these points

are designated by the letters Qi, Q2, etc. The p-t curves

experimentally determined are shown in Fig. 7. Figure 8 is a

diagrammatic representation of the jp-t curves, which is

easier to follow.

At quintuple point Qi we have the three solid phases, K2O • Si02,

K2O • Si02 • ^H20, and K2O -28102, the liquid phase whose com-

position is given by the point Qi, and the vapor phase, whose com-

position is given by the H2O apex of the component triangle (Figs,

5, 6) . Since K2O • SiOa, K2O • SiOa • IH2O and V lie on a straight

line, the curves, K2O • 2Si02 + K2O • SiOs + K2O • Si02 • ^H20 + V
(curve 10a) t and K20-Si02 + KaO-SiOz- h^20 + L + V (curve

106), will coincide; metastably, since the phases, K2O -28102 and

L, lie on the same side of the Hne, V-K20-8i02. These two

curves also coincide with the dissociation-pressure curve of

K2O • 8i02 • IH2O in the binary system, H20-K20-8i02 (curve

10a + 106), Fig. 7, hence their position is as shown.

If the compositions of the phases were such that V, L, and

K2O - 28102 lay on a straight line, the y-t curves of the univariant

equilibrium, KaO-SiOa + KgO- 28102 + L + V (curve 6d), would

coincide, metastably, with the y-t curve, K20-8i02-^H20 +
K2O- 28102 + L + V (curve 6c); if the phases V, L, KgO-SiOg

lay on a straight line, the curve, K2O • 8102 + K2O - 28102 + L
+ V (curve 6d), would coincide, stably, with the curve,

KjO-SiOa + K20-8i02-^H20 + L -f- V (curve 106). Hence

curve, K20-8i02 + K2O- 28102 4- L -|- V {<6d), must lie be-

* Consult the discussion of this point on p. 1210 of the paper: G. W.
Morey and C. N. Fenner, J. Am. Chem. Soc, 39, 1173 (1917).

t The curves are numbered as in Figs. 5, 6, 7, and 8. In Fig. 6 only

curves of the type S' + S" + L+ V are shown. In Fig. 8 the p-t curves

of the condensed systems are not numbered; their position is obvious.
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tween the metastable prolongation of curve, K2O • Si02 • ^H20

+ K2O -28102 + L + V (6c), and the stable portion of KsO-SiOs

+ K20-Si02-|H20 + L + V (10&). The position of the latter

curve being fixed, the position of the curves, K2O-Si02 +
K2O -28102 + L + V (6c/) and K2O • SiOg • IH2O + K20- 28102 +
L + V (6c), must either be as shown at Qi, Fig. 7, or the position

of these curves in regard to the curves, K2O • 28102 + K2O • 8102

+ K20-8102-IH20 + V (10a) and K2O-8IO2 + K2O - 8102 • ^HgO

+ L + V (106), must be reversed. That the latter arrangement

cannot be correct is shown by the fact that If K2O • 8102 - IH2O
- L - K2O • 28IO2 all lay upon a straight line, the curve,

K20-8i02-|H20 + K.O- 28102 + L + V (6c), would comcide

with the curve, K20-8i02 + K2O • 8102 • iH20 + KgO- 28102 + L,

the p-t curve of the condensed system. But such a coincidence is

possible only with the arrangement shown in Fig. 7 ; the reversed

arrangement cannot be the correct one.

In order to show further the relation between the composition

diagram and the p-t diagram, let us consider under what con-

ditions the curves, K2O-SIO2 + K2O - 8102 • JH2O + K2O- 28102

+ L (the p-t curve of the condensed system) and K20-Si02

+ KsO- 28102 + L + V (6d), will coincide stably. For

this coincidence to take place, it is necessary that the

phases, L, K20-8i02 and K20- 28102, lie on a straight line in

the composition diagram (Fig. 6), which Intersects internally

the line, V-K20-8i02-|H20. On reference to Fig. 6 we see

that before the phases can take on the position mentioned above,

it will be necessary for the phases, K20-8i02, K2O • 8102 • IH2O
and K20- 28102, then the phases, V, L, and K20-Si02, to

fall on straight lines. But in the y-t diagram, the first of these

will result in the curves, KsO-SiOg + K2O • 8102 • IH2O +
K2O • 28102 + L and K2O • SiOs + K2O • 8102 • IH2O + K2O • 28102

+ V (10a), approaching each other, coinciding, then again

diverging, having changed places. 8imilarly, as a result of

the second triplet of phases getting on a straight line, the

curves, K20-8i02 + K20- 28102 + L + V {M) and K20-8i02 +
K20-8102-IH20 + L + V (10a) will change places. The

curves, K20-8102 + K20-8102-^H20 + K2O 28102 + Land
K20-Si02 + K2O -28102 + L + V {M), now lie next to each
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other, their stable portions adjoining, and when the phases, L,

K20-Si02, and K20-2Si02, fall on a straight line these two

curves will coincide in their stable portions.

The quintuple point Qz is exactly similar to Qi, but in-

stead of KzO-SiOa-^HsO, KaO-SiOz, and K2O -28102 we have

K20-Si02-H20, KaO-SiOs-IHaO, and K20-2Si02-H20, respec-

tively. Making these substitutions, the discussion of Qi will

apply to Q3.

Quintuple points Q2 and Q4 also are similar to each other.

Both contain the same three phases, V, K2O -28102 -1120, and

K2O • 28102 • At Q2 we also have the liquid represented by the

point Q2 and the solid phase, K2O • 8i02 • IH2O; at Qi we have the

liquid represented by the point Qi and the solid phase,

K2O • 48102 • H2O. Since in both systems the phases, V,

K2O • 28102 • H2O, and K2O • 28102, He on a straight line, the curve,

V-f K2O • 28102 • H2O + K2O • 28102 + K2O • 8102 • IH2O (7a),which

proceeds from Q2 to lower temperatures and pressures, and the

curve, V + K2O • 28102 • H2O + K20- 28102 + K2O • 48102 • H2O

(76 + 7a), which proceeds from Q4 to lower temperature

and pressure, and the curve, V + L + K2O • 28102 • H2O +
K20- 28102 (76 + 7c), which proceeds from both Q2 and Qa

to higher temperatures and pressures, coincide with each other

and with the dissociation-pressure curve of K2O • 28102 • H2O in

the binary system, HgO-KaO- 28102 (curve 7a + 76 + 7c).

The positions of the other curves that proceed from Qo and Q4

are easily found by the same mode of reasoning as that applied

to the curves at Qi.

The quintuple points Qsa and Qsb* differ from the preceding

* The compound, K2O -48102, was not met with in the original study

of the ternary system, by Morey and Fenner {J. Am. Chem. Soc, 39,

1173 (1917)), but was found later in the study of the anhydrous binary

system by Kracek, Bowen, and Morey (/. Phys. Chem., 33, 1857 (1929)).

The evidence in both studies makes it probable, though not certain,

that K20-4Si02-H20 has a congruent melting point. The relations

around quintuple points Qoa and Qiu are thus in part hypothetical, and

in Fig. 8 the two invariant points are not separated, nor are the two

curves from Qsa and Q&h to the sides of the diagram. The eutectics

containing K2O -48102 in the binary system, K20-8i02, are at 752° and

69 weight per cent silica, and at 764° and 72 per cent silica.
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ones in that in each the hquicl phase hes inside the triangle formed

by the coexisting soUd phases, and hence they are both eutec-

tics. At Qsa the coexisting phases are V + L + K2O • 4Si02 • H2O
+ K2O • 2Si02 + K2O • 4Si02, and the Uquid hes within the triangle,

K20-4Si02 - K20-4Si02-H20 - K2O -28102; and, similarly, at

Qsb the liquid lies within the triangle, K2O -48102 -1120 —
K2O • 48102 — 8102. 8ince the liquid is symmetrically placed with

regard to the three solid phases, the four univariant equilibria

containing liquid will be stable in the same direction from the

invariant point. 8ince V - K2O • 48102 - H2O - K2O- 48102

is a straight line, the p-t curves of the equilibria, V + L +
K2O- 48102 -HzO + K20- 48102 and V + K2O- 48102 •H2O +
K20- 28102 + K20- 48102, will coincide metastably with each

other, and will coincide with the binary equilibrium, V +
K2O - 48102 - H2O + K20- 48102, the dissociation-pressure curve

of K20- 48102 -HaO. Hence the p-t curve of V + L +
K2O • 48102 - H2O + K2O- 48102, and therefore of all those con-

taining liquid, will go to higher temperatures and pressures. 8ince

only a small change in liquid composition will make K2O - 28102

- L - K2O • 48102 • 520 a straight line, with V and K2O • 48102 on

opposite sides, the curves,V + L + K2O - 28102 + K2O - 48102 • H2O
and L + K2O -28102 + K2O- 48102 + K2O • 48102 • H2O (the

condensed system), will coincide stable to stable, and with a

continuous change in the same direction in the liquid composi-

tion the curves will cross. 8imilar reasoning applied to the

phases, liquid, K20- 48102, and K20- 48102 -1120, shows that the

curve, V + L + K2O -28102 + KaO- 48102 -HaO, must lie

between the curves, L + K20- 28102 + K2O - 48102 - H2O +
K20- 48102 and V + L + K2O - 48102 • H2O + K20- 48102,- and

the latter curve must coincide with the dissociation-pressure

curve of K2O - 48102 - H2O, the equilibrium, V + K2O - 48102 • H2O

H- KsO- 48102.

8imilar reasoning will serve to place the sequence of p-t

curves around the other eutectic, the invariant point Q^h-

The noteworthy feature of the curves proceeding from Qsb is

the rapid rise in pressure in the univariant equilibrium, V + L -F

K20- 48102 •H2O + 8102.

In the preceding discussion it has been shown how the funda-
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mental thermodynamic equations developed by Gibbs not only

lead to the qualitative generalization known as the Phase Rule,

but also afford a direct and detailed treatment of problems of

heterogeneous equilibrium. Such an analj^tical treatment is

illustrated for systems of two and three components. In

simpler systems it has the advantage of stressing the funda-

mental relationships that determine the course of equilibrium,

in contrast to the graphical method in which these fundamentals

may be overlooked in a geometrical maze. With increasing

number of components the geometrical methods become in-

creasingly involved, and the analytical method outlined above

offers the most hopeful procedure for developing the theory of

phase equilibrium in multi-component systems.





H

THE GRAPHICAL REPRESENTATION OF EQUI-
LIBRIA IN BINARY SYSTEMS BY MEANS OF
THE ZETA (FREE ENERGY) FUNCTION

[Gibbs, I, pp. 115-129]

F. A. H. SCHREINEMAKERS

I. Introduction

1. In the section entitled Geometrical Illustrations (pp. 115-

129 of the "EquiUbrium of Heterogeneous Substances") Gibbs

indicates how a general geometrical treatment of phase equilib-

ria can be based on the properties of the thermodynamic func-

tions. A full account of this geometrical method and its sub-

sequent developments would require an exposition of the whole

subject of generalised graphical thermodynamics. Since such a

comprehensive treatment is not possible in this Commentary,

it is hoped that the following discussion of certain equilibria in

two-component (binary) systems will serve to illustrate and

explain the important geometrical method initiated by Gibbs,

and introduce the student to the study of graphical thermo-

dynamics based on the properties of the free energy function ^.

II. The r-x Diagram and the f-Curve (Free Energy Curve)

2. Let us represent the composition of a phase containing the

two components W and X thus: x mols X + (1 — x) mols W.

We shall call this quantity, which contains in toto 1 mol, the

unit quantity of the phase. Then m unit quantities of the phase

contain mx mols X and m{l — x) mols W. Now the f-value of a

phase is determined by its temperature t, its pressure p, its

composition x, and its quantity m (units). Unless mentioned

otherwise, however, we shall mean by the f of a phase the ^ of

unit quantity of this phase. The f of w units will then be m^,

provided that the total energy, total entropy and total volume

295
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of the phase are first degree homogeneous functions of the

mass variables. This proviso means that we assume we can

neglect the surface effects which enter into the consideration

of micro-heterogeneous systems. For given t and p, the f of a

phase will depend, therefore, only on its composition. In the

case of a binary system this composition is defined by the

value of X (the composition parameter).

Fig. 1

In Fig. 1, in which WX = 1, the point a represents a phase

containing Wa{= x) mols X and aX(= 1 — a;) mols W. If we

now draw the ordinate aa' equal to the ^ of this phase, we shall

call the point a' the f-point of the phase a. If we give all

compositions, from pure W to pure X, to the phase a, then the

point a runs along the line WX, whilst the point a' traverses a

curve W'a'X', which, at constant t and p is called the f-curve

(free energy curve). Clearly W is the f-point of the pure

substance W and X' the f-point of the pure substance X. It

can be shown that the f-curve touches the lines WW and XX'
at the points W' and X' respectively (for proof see note at the

end of this article).

When all points of WX represent liquids, then W'a'X' is the

f-curve of these hquids, whilst W' and X' are the ^-points of the

pure liquids and a' that of liquid a. When the points of WX
represent vapors (gases), then W'a'X' is the f-curve of these

vapors, whilst W' and X' are the respective f-points of the pure



REPRESENTATION BY ZETA FUNCTION 297

vapors W and X and a' that of the binary vapor a. When
the points of WX represent homogeneous mLxed crystals, then

W'a'X' is the ^-curve of these mixed crystals, whilst W and X'
are the respective ^-points of the pure solid substances W and X
and a' that of the mixed crystalline phase a.

3. We now take two phases A and B with the compositions

Xi mols X + (1 — Xi) mols W, X2 mols X -\- {\ — x^) mols W.
If we bring together mi units of A and nii units of B, and if we
suppose that they continue to exist unchanged beside one

another, then we have a system or phase complex

miA + ?W2-B, (1)

which may be stable or not. Let its total composition be

represented by x mols X + (1 — x) mols W. Since this system

contains in toto (mi + m2) mols and contains mia;i + 711.2X2 mols

X, we have

X = mjXi + 702X2

mi + W2

From this follows

7ni{x — x^ = 7n2{x2 — x). (2)

If we imagine the phases A and B and the system represented

in Fig. 2 by the points a, h and s, then we have Xx = Wa,
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a-2 = Wb, X = Ws; and x — Xi ^ as, Xo — x = sb. From (2) it

follows that

mi X as = mn X sb. (3)

If we put (compare Fig. 2) sb = ab — as, or as = ah — sb, then

nij mi
as = ; ab, sb = ; ab. (4)

m.i -\- nii ' mi + m2

Thus the position of the point s depends upon the ratio rui'.m^.

When mi = m2, as = sb, so that point s is situated in the middle

of ab; when mi > m2, as < sb, so that s is closer to point a; when

mi < nh, s is situated closer to point b.

If we imagine a mass mi in point a and a mass m2 in point b,

then it follows from (3) that point s is the centre of gravity of

these masses. If we denote the f 's of the phases A and B by

f] and ^2, then the total ^ of system (1) is yriiti + m2^2- If we

call the i'
of a unit quantity of this system ^s, then we have

mi Ti + m2 ^2 ,_>,

ts = T (^)
m.i + m2

We now take aa' = fi and bb' = ^2 (see Fig. 2). Then f, = ss'.

This can easily be proved. For

ss' ^ sp + ps' = f1 + ps\ (6)

But from the similarity of the triangles a'ps', a'qb' it follows that

ps' a'p as m2 ,„.

qb a q ab mi + m2

and from (7) follows

m2
,

m2 , ,

ps' =—r~ X qb' =——- X (r2 - ri).^ mi + m2 mi + m2

Substituting this value of ps' in (6),

mi Ti + ^2 12 ,„x
ss =

,

Co;
mi + m2

From (5) and (8) we see that f « = 8s'

.
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If we now call s' the f-point of the system, then we can state

that the f-point of system (1) is represented by the centre of

gravity of masses nii and m2 at the f-points a' and h'. From
this it appears that each point of the line a'b' represents the

f-point of a system (1) ; the closer this point lies to a' the greater

the value of Wi:w2, the closer to h' the smaller the value of

mi : rrii. For this reason we shall call a'b' the f-line of the two-

phase system or phase complex A -}- B.

4. According to a theorem of Gibbs, at constant t and p
a given quantity of substance arranges itself in such a way that

the total ^ is a minimum. Or, of all systems (phases) at con-

stant t and p with the same total composition (in regard to the

independent components), that is the most stable one which

/K

Fig. 3

has the smallest f . In order to apply this in the graphical repre-

sentation, we take a point e (Fig. 3). This point e may repre-

sent a single phase, e.g., a liquid, a vapor, a mixed crystal, or

possibly a compound. The point e may represent also various

phase-complexes or systems, e.g., of the phases a and h, or z and u

(see Fig. 4). We shall represent all these possible or conceivable

phases and systems, which have the same composition e, by

El, E2, Ez etc., and their ^-points by e', e" , e'" etc. It is clear

that all these ^-points are situated on a vertical line (ordinate)

through the point e. Since each of the phases or phase-

complexes denoted by Ei, E2, Ez etc. contains in toto one mol of

the components W and X and has the same composition with

respect to these components, it foUows that each of these phases
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or phase-complexes (systems) contains the same amounts of the

components W and X. As we have taken ee' < ee" < ee'",

and consequently Ei has the smallest f , Ei is the most stable,

according to the theorem of Gibbs mentioned above. Therefore

Es and E2 may change into Ei, but the opposite transformation,

i.e., of El into E2 or Es, is not possible. So in general we may
say: of all phases and systems, the f-points of which are situated

perpendicularly above one another in the (f, a;)-diagram at

constant temperature and pressure, that one is the most stable

l¥ z
Fig. 4

which possesses the lowest ^-point. In the following con-

siderations we shall make frequent use of this principle.

5. We now assume that the curve W'X' of Figs. 4 and 5

represents the f-curve of a series of liquids. This curve may be,

as in Fig. 4, at all points convex towards the composition axis,

or, as in Fig. 5, partly convex and partly concave. A point e

of Fig. 4 may represent not only the single liquid phase e but

also an infinite number of systems of two liquids, e.g., of the

Hquids a and 6, or of z and u, etc. We call these the systems

L(a) + L{b), or L(z) + L(u), etc. The ^point of liquid e is

represented by the point e' of the ^--curve, that of L(a) + L(6)

by the point e" of the hne a'b\ and that of L(z) + L{u) by the
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point e'" of the line z'u'. So the transformations

L{a) + L{b) -^ L{e)

Liz) + Liu) -> Lie)

are possible, namely a mixing of the liquids a and b or of z and u

to give e. But the opposite changes, i.e., a separation of the

liquid e into liquids a and h or into liquids 2 and u, are not

possible. Since these considerations apply equally to every

liquid e of Fig. 4, it follows that: when the ^-curve is wholly

W

w
Fig. 5

convex towards the composition axis, all the liquids are stable and

miscible with one another in all proportions.

6. In Fig. 5 we can draw a double tangent line, touching the

f-curve in points a' and b'. Since the f-point e" of the system

Lia) + L{b) now lies below the f-point e' of the liquid phase e,

the conversion L(e) —^ Lia) + L{b) may occur, i.e., a separation

of liquid e into the liquids a and b. Conversely, the liquids a

and b cannot mix to give the liquid e. Hence we have the

following result for Fig. 5. All the liquids of Wa and bX are

stable; all the liquids between a and b are metastable or un-

stable, and separate or tend to separate into the stable system

Lia) + Lib). Let us take at ordinary temperature and pressure

W = water, X = ether. If we now add so little ether to the
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water that the former is completely dissolved, we get a solution

of ether in water represented by a point of Wa. If we add so

little water to ether that the water completely dissolves, we

get a solution of water in ether represented by a point of bX.

If, however, we bring ether and water together in such a propor-

tion that their mixture is represented by a point between a and b,

then no homogeneous liquid is formed, but on the contrary

the system, or phase-complex, L(a) + L(b), i.e., a liquid a

containing much water and little ether, and a liquid b containing

much ether and httle water.

7. In relation to the further discussion we shall deduce the

foregoing results also in the following way. Every chord we

may draw in Figs. 4 and 5 is also the ^-line of a conceivable

two-phase system. Thus each point of a'b' represents the

f-point of a system L{a) -\- L{b), each point of z'u' the ^-point

of a system L{z) -{- L{u), etc. So we may imagine an infinite

number of ^-points on every arbitrary vertical line; the lowest

f-point of every vertical line represents a stable state. Of all

the f-points we can imagine in Fig. 4 on a vertical line, the point

of intersection with the f-curve is lowest, and hence it follows

that of all conceivable ^-points of Fig. 4 only those of the f-curve

represent stable states. Of all chords which we may imagine

to be drawn in Fig. 5, one, a'b', touches the ^-curve in two

points. The part a'e'b' of the f-curve Ues above this chord a'b'.

If we now imagine vertical lines drawn through the points

between W and a, between a and 6, and between b and X, we

see that of all conceivable ^-points of Fig. 5 only those of the

parts Wa' and b'X' of the f-curve and those of the double

tangent a'b' represent stable states. This means that only the

liquids of Wa and bX and the system L{a) -\- L{b) are stable.

8. We now assume that the points of WX represent mixed

crystals. Then their f-curve may also have the form shown

in Fig. 4 or Fig. 5. When Fig. 4 obtains, it follows that the

two solid components W and X are miscible with each other in

all proportions and form an unbroken series of mixed crystals.

When Fig. 5 obtains, then only the mixed crystals of Wa and

bX are stable; all others (namely between a and 6) are meta-

stable or unstable, and separate or tend to separate into the
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stable system M{a) + M{b), i.e., into a mixture of the mixed

crystals M(a) and M{h). In this case no continuous series of

mixed crystals exists and consequently the two solid components

W and X are not miscible with each other in all proportions.

9. Since vapors (gases) are miscible with one another in all

proportions their f-curve always has the form shown in Fig. 4.

10. If we represent the entropy and volume of a phase by

Tj and V respectively, then we have in accordance with Gibbs the

following relations:

d{^)p = -ndt, d(Ot = vdp, (9)

for de = tdr] — pdv, and differentiation oi ^ = e — t-q -\- pv gives

d^ = de — tdr] — 7]dt + pdv + vdp,

whence

d^ = vdp — -qdt.

This means that the f of a phase decreases when the temperature

(at constant pressure) increases, and increases when the pressure

(at constant temperature) increases.* If we apply this to

every point of a f-curve in our diagrams we see that every

point of a f-curve sinks towards the a:-axis with increase of t.

As, however, all phases do not possess the same entropy and

consequently all f-points do not sink at the same rate, it

follows that with increase of temperature the ^-curve sinks, with

decrease of temperature it rises, its form changing at the same time.

If we represent the f-points of solid W and solid X by (W) and

(X) respectively, then they also will sink with rise of tem-

perature and rise with fall of temperature. Since the liquids

W and X have greater entropies (at a given temperature) than

the corresponding solid substances W and X, the points W and

X' sink with rise of temperature and rise with fall of tempera-

ture, but in each case at a faster rate than the corresponding

points (T^') and (X).

* When the phases are closed and the components independent,

'Lfidm = 0.
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III. Binary Systems in Which Besides Liquids Only the Solid

Components W and X Can Occur

11. In a system formed from the components W and X,

liquids, vapors and solid substances may occur, viz.: the pure

substances W and X and their compounds or mixed crystals.

It depends on the values of t and p, and on the nature of the com-

ponents, which of these phases are formed. At first we take a

system in which neither compounds nor mixed crystals occur.

If now we make the pressure so high that no vapor can be

formed, then the only types of phases possible will be liquids

and solids W and X. We have therefore only to deal with the

f-curve and the points (W) and (X). Furthermore, we shall

assume in the first place that the f-curve is wholly convex

towards the composition axis (Fig. 4, Figs. 6-9).

If we lower the temperature for which Fig. 4 obtains, then, as

we have seen, the points (W) and (X) and the whole f-curve will

rise. Since X' rises more rapidly than (X), these points will

first become coincident, after which X' will rise above (X).

When this is the case, but W is still below (W), we get Fig. 6.

With further fall of temperature W also rises above (W) and

we get Fig. 7. Thus with continued decrease of temperature

we have the succession of diagrams: Fig. 4—Fig. 6—Fig. 7

—

Fig. 8—Fig. 9.

We now represent the melting-points* of solidsW and X (under

a definite pressure) by T{W) and T{X), and for the sake of

definiteness we take T{X) > T(W), e.g., X = a salt and W =

water. We call the T for which Fig. 8 holds good T{e). Later

on we shall see that this is the eutectic temperature of the

system. We can now distinguish the following cases for the

temperature T:

(i) T > TiX) > T(W) > T(e). As T now is higher than

the melting-points of each of the components X and W, these

are stable only in the liquid state and hence W is lower than

(W), X' lower than (Z), (case of Fig. 4).

(ii) T{X) > T > T(JV) > T{e). The stable state of X is

*From this point onwards in the present article, and in the corre-

sponding figures, temperature is denoted by T.
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the solid state, hence (X) is lower than X'. The point W is,

however, still below (W) (case of Fig. 6).

Fig. 7

(iii) T(X) > T(W) > T > T{e). Since now, by simUar

reasoning, (X) lies below X' and (TF) below W, we have one of
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the Figs. 7, 8, and 9. As we take T > T{e), we get the case of

Fig. 7.

Fig. 9

(iv) TiX) > T(W) > T = T(e) (case of Fig. 8).

(v) T(X) > T(W) > Tie) > T (case of Fig. 9).

12. We shall now deduce which phases and systems (phase-
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complexes) are stable in each of these five cases. We shall

represent them in Fig. 10, in which temperature has been taken

as the ordinate (isobaric T-x diagram). The points T(W)

and T(X) in this figure represent the respective melting-points

of the substances W and X.

(i) T > T{X) > T{W) > T(e) (Fig. 4). We have already

seen that in this case the stable states for W and X are the

liquid state, and that all liquids are stable. We represent these

liquids in Fig. 10 by the points of a line 1.1' situated above T{X).

(ii) T{X) > T > T{W) > Tie) (Fig. 6). Every straight

line uniting an arbitrary point z' of the f-curve with the point

(X) is the f-line of a system

L{z) + solid X, (10)

consisting of the two phases, liquid z and solid X. If we take,

for example, the line a'{X), then every point of this line (e.g.,

h", c", etc.) represents the f-point of a system, L{a) + solid X.

Similarly every point of the fine c'{X) represents the f-point of a

system L{c) -f solid X. So we may imagine an infinite number of

lines z'iX), of which in Fig. 6 only a'{X), c'{X) and d'{X) have

been drawn. Of all these conceivable lines, the line c'{X),

touching the f-curve in c', plays a great part. It is clear from

the diagram that the f-points of all phase-complexes whose

compositions lie between W and c lie above the corresponding

points of the f-curve (f-points of the hquids of corresponding

composition), whilst the f-points of all hquids whose composi-

tions lie between c and X lie above the corresponding ^-points of

the phase-complex L{c) + solid X. Hence of all conceivable

f-points of Fig. 6 only those of the part W'a'h'c' of the ^-curve

and those of the tangent c'{X) represent stable states. Thus of

all conceivable systems of the type (10) only the system

L{c) + solid X (11)

is stable. Thus L(c) represents the liquid saturated with respect

to solid X and therefore in equilibrium with it. All liquids

between c and X are supersaturated and tend to pass into (11)

with separation of solid X, whilst all liquids between W and c



308 SCHREINEMAKERS AKT. H

are unsaturated. If we imagine the liquid c represented by

point c in Fig. 10, then the points of 2-c represent unsaturated

hquids, whilst the points of c-2' represent supersaturated liquids

which pass into the system (11).

(iii) T{X) > T(W) > T > T{e) (case of Fig. 7). Since

Fig. 10

both the substances W and X are now solid we may imagine

the systems

L{u) + solid W, L(z) + solid X,]

solid W + sohd X.
(12)

Besides the lines z'iX) discussed above, we must now imagine

in Fig. 7 also the lines u'(W) and {W)(X), and we can now

draw a tangent to the f-curve through each of the points (W)

and (X). If g' and h' are the respective points of contact, we

see that of all conceivable f-points of Fig. 7 only those of the

tangents (W)g' and h'(X), and those of the part g'h' of the

^-curve, represent stable states. From this it follows that of all
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conceivable systems (12), only L(g) + solid W and L(h) +
solid X are stable.

Liquid g is saturated with respect to solid W, and liquid h

with respect to solid X. All liquids between W and g are

supersaturated with respect to solid W, all liquids between h

and X with respect to solid X. All liquids between g and h

are unsaturated. In Fig. 10 the liquids g and h are repre-

sented by the points g and h of the line 3.3'.

(iv) T{X) > T{W) > T = T{e) (case of Fig. 8). When
the points of contact g' and h' of Fig. 7 coincide we obtain Fig.

8, in which the f-curve and the straight line (W)(X) touch

one another in the point e'. In this case we see that of all

conceivable ^-points of Fig. 8 only those of the line (W)e'{X)

represent stable states. Since the point e' lies not only on this

straight line but also on the f-curve, the point e' may now
represent not only solid W + solid X but also the liquid of

composition e. We now have a f-line of which not only the

two end points but also a third point e' represent stable phases.

Every point of the hne {W)(X) can represent therefore a system

soHd W + solid X, whilst each point of the part (W)e' can

represent also a system L{e) + solid W, and each point of the

part e'(X) also a system L(e) + soUd X. From this it follows

that of all liquids only the liquid e is now stable, whilst of all

conceivable systems (12) only the systems

:

L(e) + solid W, L{e) + solid X,

solid W + solid X,
(13)

are stable. Since L(e) is saturated with respect both to W and

X, therefore also the three-phase system

L(e) + solid W + solid X (14)

can exist, in which the reaction

solid W + solid X ^ L(e) (15)

can occur. For we have already seen that the liquid e has the

same f as a system, solid W -f- soHd X, with the composition e
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(i.e., f = ee'). The f of the three-phase system (14) remains

unchanged, therefore, whether the reaction (15) occurs in the

one or the other direction. When this reaction proceeds from

left to right, heat is absorbed; when it proceeds from right to

left, heat is produced. Given a unit system of composition e

at temperature T(e) (and the given pressure) we cannot predict

its phase structure without further information (e.g., concerning

its past history, or its behavior on adding or abstracting heat

energy, etc.).

The hquid e is represented in Fig. 10 by the point e, and the

systems discussed by points on the line 4 • e • 4'.

(v) T{X) > TiW) > T{e) > T (case of Fig. 9). Since the

line {W){X) now lies wholly below the f-curve (the free energy

liquidus curve), all the liquids are metastable and tend to pass

into the mixture, solid W + solid X. From this discussion it

follows that T{e) is the lowest temperature for the existence

of a stable liquid phase. T{e) is therefore the eutectic tem-

perature and L{e) the eutectic liquid of the (W, X) system. If

we take W = water, so that the three-phase system (14) be-

comes L(e) -\r ice + solid X, then we call T{e) also the cryo-

hydrate temperature.

13. From the preceding considerations we can now make
the following statements about Fig. 10. The liquids saturated

with solid W are represented by the points of a curve eT{W),

the saturation curve of W, whilst the liquids saturated with

solid X are represented by the points of a curve eT(X), the

saturation curve of X. These two curves and the line 4-e-4'

divide Fig. 10 into four fields. Each point of field I represents

an unsaturated liquid. Each point of field II represents a

system L(z) + solid X, or alternatively a liquid which is super-

saturated with respect to solid A^. Similarly each point of

field III represents a system L(u) + solid W, or a liquid super-

saturated with respect to solid W, whilst finally each point of

field IV represents a mixture of solid W and solid X.

The two saturation curves do not terminate in e but are

prolonged into field IV, in which they represent metastable

states. We find the points of these prolongations, and we see

also that they represent metastable states, when we imagine
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tangents to the f-curve drawn from the points (W) and (X) of

Fig. 9 (and similar figures).

14. When the sohd substance X can exist in the two modifi-

cations a and /?, we may suppose the f-point of soHd a in Fig. 6

represented by (X) and that of soHd /3 by ^', so that the modifica-

tion )8 is metastable with respect to a. If we draw a tangent

to the f-curve from 13', the point of contact, which is situated

somewhere between c' and X', represents the f-point of the

liquid saturated with respect to solid /?, whilst the liquid itself

lies somewhere between c and X. From this it follows that,

fr

1'

w e

Fig. 11

u

when a substance X exists in two or more modifications, the

most stable form has the smallest solubility.

15. In Fig. 11, in which the f-curve has a part concave to the

composition axis, the point of intersection of the double tangent

z'u' with the line XX' has been represented by the point s. If

we take T = T{X), then (Z), i.e., the f-point of solid X, coin-

cides with X'. If we lower the temperature, then the point

{X) and the f-curve rise, whilst the latter also changes its form.

Since, however, X' rises more rapidly than (Z), the point {X)

comes to fall below X', and the lower the temperature the lower
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it becomes. Hence the point (X) lies at first between X' and

s; then it coincides with s at a definite temperature, which we
shall call T{s), and afterwards it lies below s. If we leave out

of consideration the occurrence of solid W, we may now dis-

tinguish the following three cases.

(i) T{X) > T > T(s). We imagine the point (X), which is

now situated between X' and s, represented by p' in Fig. 5.

If we now draw the tangent p'd', we see that of all conceivable

f-points of Fig. 5, only those of the parts TF'a' and h'd' of the

f-curve and those of the lines a'b' and d'p' represent stable

states. From this follows: all liquids of Wa and hd (Fig. 5)

are stable; all liquids between a and h separate into the system

L{a) + L{b); all liquids between d and X are supersaturated

and pass into the system L(d) + solid X. Consequently, of

all conceivable systems, only L(a) + L(b) and L(d) + solid X
can occur in a stable state. We imagine these liquids a, h,

and d represented by the points a, b and d of the line 1.1' in

Fig. 12.

(ii) TiX) > T = T{s). Now we imagine the point (X) at

the point s of Fig. 11. We see that, of all conceivable f-points

of Fig. 11, only those of the part W'z' of the ^-curve and those of

the line z'u's represent stable states. This line z'u's, just like

the line {W)e'(X) of Fig. 8, has a special property, namely

that not two but three of its points represent stable phases,

i.e., z' and u' represent the liquids z and u, and s the solid sub-

stance X. From this follows: of all liquids, only those of Wz
and the liquid u are stable (Fig. 11). Of all conceivable systems,

only

Liz) -f- solid X, L{u) + solid X, L(z) + L{u), (16)

and the three-phase system

L{z) + L{u) + solid X (17)

are stable. We see that two liquids now exist, namely z and u,

both of which are saturated with respect to solid X.

In the same way that we deduced reaction (15) for the three-
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phase system (14) of Fig. 8, we now find that in the three-phase

system (17) the reaction

L{z) + solid X :^ L(u) (18)

can occur. On addition of heat L(z) passes into L(u) with

solution of sohd X, whilst on removal of heat L{u) breaks up

into L{z) and solid X. If in Fig. 12 we represent the Hquids z

and u by the points z and u, then the systems discussed above

are all represented by the points of the portion zu2' of the

line 2.2'.

(iii) T(X) > T{s) > T. The point (X) must now be situated

below the point s. Although the f-curve has now a somewhat

different form and is also situated higher than in Fig. 11,

nevertheless we may imagine it as represented in this figure,

and call the latter now Fig. 11a. We suppose the point {X)

to be at q'. Imagine a line through q' touching the f-curve in a

point h' between W and z'. It is then clear that of all conceiv-

able f-points of Fig. 11a only those of the part W'h' of the

f-curve and those of the tangent h'q' represent stable states.

From this follows for Fig. 11a: all liquids of Wh are stable,

whilst all other liquids, i.e., those of hX, pass into the system

LQi) + solid X (19)

with separation of solid X. If in Fig. 11 we imagine z' and u'

substituted by m' and n', we see that the system

L{m) + L{n) (20)

also exists, but only in a metastable state. When the stable

state is attained, these two liquids disappear, with formation

of the system (19). In Fig. 12 the liquids h, m and n, are

represented by points of the line 3.3'.

When we raise the temperature, the f-curve not only shifts

downwards but also changes its form. As the points of contact

a' and h' in Fig. 5 are moved with respect to one another the

liquids a and h also change their composition. When a' and h'

coincide in a point c' at a definite temperature T{c), the liquids

become identical in composition. We call c a critical liquid and
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T(c) a critical solution temperature. This temperature may be

higher or lower than T{X).

16. The line zu2' and the curves hz, zcu and uT{X) divide

Fig. 12 into fields, the meaning of which follows from the

preceding considerations. At the same time it is apparent

that the field zcu, i.e., the heterogeneous two-liquid phase field,

does not end at the line zu but extends farther downwards,

although in a metastable condition. As the liquids saturated

Fig. 12

with respect to X are represented by the curves hz and uT(X),

the solubihty of X at T(s) does not change continuously but

jumps from z to u. If, however, we also consider metastable

and unstable states, then a continuous transition from z to u

exists. The saturation curve of X consists, as we shall presently

show, of a curve hzgekuT{X) having a maximum temperature

in g and a minimum temperature in k.

In order to prove this, we at first imagine T = T(s), so that

(X) in Fig. 11 coincides with s. Besides the two coincident
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tangents z'(X) and u'{X) we may also draw a third tangent

e'(X). Consequently, besides the liquids z and u there exists

also a third liquid e which is saturated with respect to X. So

in Fig. 12 there is possible, between z and u, a liquid e saturated

with respect to X which is not stable (as appears from Fig. 11).

We now take a temperature somewhat higher than T(s), so that

(X) in Fig. 11 is situated a little above s. We may now draw

three tangents through (X), which we shall call zi{X), ei(X)

and Ui{X). Then point Zi is situated a little to the right of

z', ex a little to the left of e' and w/ a little to the right of u'

.

Of the three liquids saturated with respect to X, which we call

2i, ei and U\, now only Wi is stable, as appears from Fig. 11. In

Fig. 12 we represent them by the points 2i, ei and d (i.e., d = u-).

If we raise the temperature still higher, then, as follows from

Fig. 11, the pomts z^ and ex of Fig. 12 coincide finally in a point

g. In a corresponding manner we may prove that in Fig. 12

there exists also the metastable-unstable branch eku. From

this it appears that the saturation curve of X is a continuous

curve with a maximum and a minimum temperature. Only

the parts hz and uT{X) which lie outside the heterogeneous

two-Hquid field represent stable liquids. The other liquids are

metastable (viz., zg and ku) or unstable (viz., gh).

IV. Binary Systems in Which Besides Liquids Only the Solid

Components W and X and a Solid Compound May Occur.

n. When W and X form a compound fl", we may imagine

the systems

:

solid W + solid X, (21)

solid W + solid R, solid X + sohd H, (22)

solid W + solid X + solid H, (23)

when we leave liquid phases out of account. The compound

and its f-point are represented by B. and (//) in Figs. 13, 14,

and 16. If in Fig. 14 we imagine the curves omitted and

consider only the f-points (W), (//) and (X), together with

their conjugation lines, we may distinguish three cases.
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(i) Point (H) is situated below {W){X) (as in Fig. 14). It is

clear that only the points of (W){H) and of {H){X) represent

stable states, so that both the systems (22) are stable whilst

(21) is metastable. From this it follows that the solid sub-

stances W and X cannot exist next to each other in stable

equilibrium, and that the reaction

solid W + sohd X -^ solid H (24)

will tend to occur.

(ii) Point (H) is situated above {W)iX). It is clear that now

only the points of (W){X) represent stable states; in other

words, system (21) is stable, whilst both the systems (22) are

metastable. Thus the compound H is now metastable and

tends to separate into its components according to the reaction

solid W + solid X ^ solid H. . (25)

(iii) Point {H) is situated on the line {W){X). We have now

again the special case that three points of a line represent stable

phases (compare also {W)e'{X) in Fig. 8 and z'u's in Fig. 11).

It is clear that all the systems (21), (22) and (23) are now stable

and that the reaction

solid W + solid X :f± solid H (26)

can occur. The direction of the reaction on addition of heat

will depend on whether the compound is endothermic or

exothermic. It depends on the temperature and the pressure

which of the three cases mentioned above will occur. In the

considerations that follow we shall suppose that (H) always lies

below (W){X).

18. In Fig. 13 the point H' of the f-curve is the f-point of a

liquid which has the same composition as the solid compound,

i.e., H' is the f-point of liquid H. Denoting the melting-point

of H (under the pressure p) by T(H), then T < T{H). If we

draw the two tangents z'{H) and u'{H) we see that they repre-

sent more stable systems than the points on the part z'H'u' of

the f-curve. From this follows: liquids between z and u (Fig.

13) are supersaturated; those between z and H separate into
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L(z) + solid H, those between u and H into L(u) + solid H,

whilst liquid H solidifies to solid H. Thus two liquids, z and u,

exist, both saturated with respect to solid H; z has a smaller, u a

greater amount of X than the compound. In Fig. 15 these

liquids are represented by the points z and u. As {H) and H'

approach one another with increase of temperature and finally

coincide at T' = T(H), so also z' and u' coincide at this tem-

perature. Consequently the saturation curve of H will have

the shape amq, shown in Figs. 15 and 17, with a temperature

maximum at T{H), shown at point m.

Fig. 15

We now imagine the f-curve of Figs. 14 and 16 at first totally

above the lines {W){H) and {H){X). Since with increase of

temperature the ^-curve approaches the composition axis WX
more rapidly than these lines, it will lie totally below them at a

sufficiently high temperature. Consequently the f-curve will

touch the line {W){H) in a point a' at a definite temperature

T{a), and will touch the line {H){X) in a point h' at a definite

temperature T{h). If we take T{a) < T{h), then a' lies

between (W) and (//); the point h', however, may then be
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situated as in Fig. 14 or as in Fig. 16. We shall now deduce

that the equilibria resulting from Fig. 14 may be represented

by Fig. 15, and those resulting from Fig. 16 by Fig. 17.

19. AtT = T(a) three points of the line (TF)a'(i/) of Fig. 14

represent stable phases. So at T = T(a) the reaction

solid X + solid H ^ L{a) (27)

can occur. We represent L{a) in Fig. 15 by the point a. At a

temperature a little higher than T{a) the f-curve intersects the

line {W){H)', we may now draw tangents from {W) and (//),

the points of contact representing liquids saturated with

respect to W and H respectively. At a temperature a little

lower than T{a) the f-curve lies above {W){H), so that only

solid W and solid H exist as stable states. The tangents drawn

from {W) and (H) now represent metastable systems only.

From Fig. 14 we may therefore make the following deductions

regarding Fig. 15. A field, solid W + solid H, must be situated

below point a (Field I) ; two saturation curves, namely those of

W and H, must run through the point a, their parts proceeding

towards higher temperatures representing stable liquids, whilst

the parts situated in Field I represent metastable liquids.

In a corresponding manner it is apparent that at T = T(b)

the reaction

solid H + solid X ^ L(6) (28)

can occur. If in Fig. 15 we represent L(6) by point 6, we find

that the saturation curves running through h must be situated

as shown, whilst Field II represents solid H + solid X.

Since we have already proved that the saturation curve of H
must have a maximum at T = T{H) in point m, it follows that

we can represent by Fig. 15 all the equilibria resulting from

Fig. 14.

20. ki T = T{a) in Fig. 16 the same obtains for the line

{W)a'{H) as in Fig. 14. ki T = T{h), however, in Fig. 16 the

point (H) is situated between b' and (X). Instead of reaction

(28) we must now have

sohd H ^ L(6) + solid X. (29)
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If we represent, in Fig. 17, L{b) by b, then this point must now
He to the left of Une Hm and not to the right, as in Fig. 15.

iW)

w H
Fig. 16

fX)

Fig. 17
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At a temperature a little higher than T{b) the f-curve inter-

sects the line {H){X) (Fig. 18). We may now draw the

lines h'{H) and x'(X) which touch the f-curve in the points h'

and x' (not shown). Hence point h' is the f-point of a liquid h,

saturated with respect to H and x' that of a liquid saturated

with respect to X. Thus at this temperature the systems

L(h) + solid H, L{x) + solid X, (30)

exist. It appears from the position of these points of contact

in Fig. 18 that h'{H) and (H){X) are situated above x'{X).

Therefore the first one of the systems (30) is metastable, the

second one stable. From this it follows that at T > T(h) the

saturation curve of H is metastable, that of X stable.

Fig. 18

If we take T < T(h), the f-curve lies above (H)(X) (Fig. 18).

If we now also imagine the tangents h'(H) and x'(X) drawn,

then we see that h'(H) and {H){X) now lie below x'{X). From
this follows: at 7^ < T(b) the saturation curve of H is

stable, but that of X metastable; also solid H + solid X (Field

II) is a stable system. We can now make the following deduc-

tions from Fig. 16 as regards Fig. 17. Two saturation curves,

namely those of H and X, must go through point h of Fig. 17.

Towards higher temperatures that of H is metastable and that

of X stable, whilst towards lower temperatures the reverse holds

good.

In Fig. 15, at r = T(b), reaction (28) occurs, so that T{b) is

the common melting point or the eutectic temperature of H
and X. In Fig. 17, at r = T{h) reaction (29) occurs. Then

T(b) is, as appears also from Fig. 17, the highest temperature at

which solid // can exist, or the temperature at which solid H
decomposes with formation of a liquid and separation of solid X.
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V. Note by F. G. Donnan. (Analytical Addendum to the

Geometry)

It can be proved in the following manner that the f-curve

touches the lines WW and XX' at the points W and X'
respectively (see page 296 of Professor Schreinemakers' article).

Denoting by f„ the zeta function (free energy) for a liquid

phase containing ni mols of X and 712 mols of W, where

rii -{- rii = n, then it follows from Euler's theorem that

/afA , /afn\
tn = ni[-—] + ^2 I r~ I ,

since f„ is a homogeneous function of the first degree in rii and
712. This expression may be written in the convenient form

tn = W]fi + 722^2, when f 1 and ^2 are termed the partial molar

free energies of X and W respectively. Since fi = ni, ^2 = M2,

we shall follow the notation of Gibbs and write f„ = n^ui +
n2iU2, where /xi and 1x2 are the 'potentials (per mol) of the com-

ponents A" and W respectively. For unit (molar) phase we
must divide by rii + n2, and write therefore

——— = f = a:/ii + (1 - x) 112,
Hi ~X~ 102

where

X =
;

' 1 — a; =
ni + W2 ni -j- 712

This expresses the f of unit phase in terms of the composition

parameter x and the potentials. At constant temperature and

pressure jui and ju2 are functions of x only.

Differentiating the expression f„ = 7i\ni -\- 7121x2 for a change

of rii and 712 at constant temperature and pressure (change of

composition),

d^n = Uidni + /i]fZn] + 'n2C?yU2 + ii2d7i2.

But

d^n — (JildTli + IJi2d7l2
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under like conditions. Hence,

nidni -\- UidfXi = 0, or x j- -\- [l — x) — = 0.

Differentiation of f = Xfxi + (1 — x)n2 with respect to x (at

constant temperature and pressure) gives

d^ dfjLi diJL2

Tx= ''d^ + ^' -^ ^'^ - ""^ dx
- ^' = ^' - ^"

from the preceding result. Thus at any x-point of the f-curve,

we can determine both ni and ^2 by means of the two equations

f = a^Mi + (1 — x) fjL2,

dX

^ = ^^ - '^^'

whence we deduce the results

Ml = fi = r + (1 - x) -,

^^ = ^^ = f-^^'

Consider now the state of affairs for x = (pure W). From
the preceding results we have

(mi)x =o= (f)i = +
\dz/x^i

It is clear that (r)x = o is the f (free energy) of 1 mol of pure W.
Now fxi is the increase of free energy of an inj&nite phase of

composition x on the addition (at constant pressure and tem-

perature) of one mol of X, whilst (jui)x = o is the limiting value

to which Ml approaches as x approaches zero.

Let pi denote the partial vapor pressure of X in equilibrium

with the liquid phase of composition x at the given pressure

and temperature, and let (pi)o denote the vapor pressure of X
in equilibrium with pure liquid X at the same temperature
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and pressure. Also let (mi)o denote the free energy (poten-

tial) of 1 mol of pure liquid A" under the same conditions.

Then (/i:)o — Mi = total diminution of free energy resulting

from the transference of 1 mol of X from the pure liquid

state (as above defined) to an infinite mass of liquid of

composition x (as above defined). It is easy to show that
/•(pOo

(mi)o — Ml = / vdp, where v = volume of one mol of the vapor
J pi

of X at the given temperature. Now y is a function of p, and
for X = 0, pi = 0, and v = + co . Hence when x = the

ripih

value of / vdp becomes + oo
, so that (mi)x=o = — °o. From

J pi

the preceding results it follows therefore that
\dx/t

= — 00.

Hence the f-curve touches the line WW at the point W. Sim-

ilarly the f-curve touches the line XX' at the point X'.

From the preceding analysis it is also evident that at the

minimum point of the f-curve, mi = M2 = (f)inin.

An analytical and a graphical treatment of solid-liquid phase

equilibria in binary systems was given by A. C, van Rijn van
Alkemade {Verhand. Akad. Wetensch. Amsterdam, 1, 1 Sec, No. 5,

(1892); Zeitsch. f. physikal. Chemie, 11, 289 (1893)), who based

his discussion on the properties of Gibbs' f-function. In his

graphical treatment van Alkemade employed a ratio instead of a

fractional composition parameter, so that the part of the dia-

gram referring to one pure component is situated at infinity.

The method employed by Schreinemakers avoids this defect,

and is therefore much more general.

It may be remarked in conclusion that the preceding analysis

establishes very simply the geometrical method for determining

the point on the f-curve which corresponds to a liquid in

equilibrium with a pure solid phase, say pure solid W, for

example. Let Piiti, ^1) and ^2(^2, X2) be two points on the

^-curve. The equation of the straight line P1P2 is

^2 ~ r _ ^2 ~ Ti

Xz — X X2 — X]'
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Suppose this line cuts the WW axis in the point Po(fo,0).

Then

^2 "To f2 ~ f1

X2 X2 ~ Xi

Allow the points Pi and P2 to coalesce in the tangent point

Qmi^m, Xm), the tangcut line passing through Pq. Then we get

or

U/.
fo — r»n ~" ^"i I J )

— (M2)x = z^.

This result shows that the pure solid phase corresponding to the

point Po on WW is in equilibrium with the liquid x^ determined

by the tangent from Po to the f-curve. It is to be observed

that Po is {W) in the notation of Schreinemakers.





THE CONDITIONS OF EQUILIBRIUM FOR HET-
EROGENEOUS MASSES UNDER THE INFLU-
ENCE OF GRAVITY AND OF CENTRIFUGAL
FORCE

[Gibbs, I, pp. lU-150]

DONALD H. ANDREWS

The effect of gravity on the equilibrium of fluids has interested

physicists and chemists for many hundreds of years. A Hst of

those who have contributed observation and theory to this field

includes many famous names such as Galileo, Laplace and

Boltzmann. It is Gibbs' characteristic role to have shown how
these special relations of gravity and fluid equilibrium fit into

the general scheme of thermodynamics in a way that permits

of the widest sort of application.

Little comment is needed on the actual derivation of the

equations.* The usual thermodynamic system is postulated,

including in this case the force of gravity. The laws of thermo-

dynamics and the various equations of condition then lead to

the equations which define the state of the system.

Temperature must be constant throughout, i.e.,

t = const.; [228]

and the pressure must vary with the height,i.e.,

dp = -gydh. [233]

The chemical potentials (mi, . . . m^) of the individual com-

ponents (essentially the partial pressures if the system is not

far from ideal) must satisfy the equations

*Compare Section XIII of Article L of this volume.
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Hi -{• gh = const.

Mm + 9'A = const.

[234]

It is emphasized in the text that we must distinguish the

/xi, ... f^m, intr-insic potentials, from the general potentials of the

components which include the action of gravity and are anal-

ogous to the partial molal free energies. These latter are of

course constant throughout the system.

In the second part of this section (Gibbs, I, 147-150), Method

of treating the preceding problem, in which the elements of volume

are regarded as fixed, more detailed attention is given to the fac-

tors introduced by the discontinuities between phases in a sys-

tem under the influence of gravity. The condition of equilib-

rium is found to be that "the pressure at any point must be as

great as that of any phase of the same components for which

the temperature and the potentials have the same values as

at the point."

The deduction which has had the widest application is that

summarized in equation [233]. If we apply this to a component

which is obeying the laws for an ideal gas we can relate density

to pressure as follows

pv = nRT, *(1)

nM , ^

M being the molecular weight of the component, so that

1=V^' (3)

If po be the pressure at some horizontal plane, the reference

zero point from which we measure the height h, we can sub-

stitute in equation [233], integrate and obtain the famous

* Since the temperature which appears explicitly in equations (1) to

(10) of this article is in all cases the absolute temperature it seems best

to conform to current usage by representing it by T

.
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hypsometric or barometric formula

_Mg_

p = Poe «^ ' (4)

which gives us pressure as a variable depending only on height.

The most famous application of this equation is in the study

of variations in pressure of the earth's atmosphere with height,

Galileo first pointed out that the atmosphere created pressure,

and P^rier proved that the pressure varied with height by
means of his famous ascent of the Puy de Dome, barometer in

hand. Laplace^ deduced the correct formula for the varia-

tion of pressure with height in his celebrated Mecanique Celeste

and Gibbs showed that it took its place as part of the gen-

eral thermodynamic scheme. As an example, substituting

the numerical values M = 29 gm/mol, g = 980 cm/sec^,

72 = 8.31 X 107 erg/mol deg, T = 300°K, we find that at

a height of 5000 meters the pressure has dropped to 56.5% of

its value at the earth's surface.

It was also appreciated at rather an early date that the con-

centration of solute in a solution should vary with the height

because of the influence of gravity. In the early part of the

last century Beudant^ claimed experimental evidence of this

effect. Gay Lussac,^ however, definitely proved that it was

too small to be observed. He placed cylinders of various solu-

tions in the cellar of the Paris observatory, and after a year's

time analyzed the top and bottom portions, finding no differ-

ences in concentration. Many years later Gouy and Chaperon^

showed by calculations that for solutes of ordinary molecular

weight the effect is negligibly small.

Though ordinary solutions failed to show the effect, the advent

of colloidal solutions opened up new possibilities in this dir-

ection. Einstein^ pointed out that a colloidal suspension should

obey the same kinetic laws as an ordinary solute, and a starthng

experimental confirmation was provided by Perrin.^ He al-

lowed a suspension of gamboge to come to equilibrium after

settling for some time and then actually counted the number of

particles of a given radius (i.e., similar molecular weight)

occurring at different levels. In order to test his result it is
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convenient to modify equation (4) slightly. Since the osmotic

pressure p will be related to the number of particles per

cu. cm n by

RT
(5)

in which N is Avogadro's number, we may substitute n for p,

and no for po- We must also bear in mind that in this case the

force of gravity enters because of the difference in density of

the particles and the solvent. The depressant force will

therefore be not Mg but f irr^Nipp - Ps)g, where r is the ra-

dius of the particle and Pp and p<, the densities of the particle

TABLE I

Sedimentation Equilibrium in a Gamboge Suspension

X
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Bredig^ was the first to show that centrifugal force does

produce changes in pressure. By centrifuging gases in a tube

containing several chambers joined by capillary tubes, he

showed that the pressure in the outermost chamber was greatest.

Lobry de Bruyn and van Calcar^ produced the same sort of

effect in solutions, showing that solute is driven away from the

axis of rotation. They were able by centrifuging to crystallize

out a third of the solute from a saturated solution of sodium

TABLE II

Sedimentation Equilibrium in a Gold Sol

Radius of Particles: 21m/i
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long enough to bring about equilibrium. In calculating their

distribution in the ultra-centrifuge where forces 5000 times

that of gravity are encountered, one cannot consider the force

as constant but must take into account the variation of force

with distance from the axis of rotation. Using concentration

c instead of pressure, the distance x from the axis of rota-

tion instead of height, and the force due to the difference in

density between particle and solvent instead of gy, equation

[233] becomes

N
dc = — r— i irr^ (pp — ps) co^c xdx, (7)

where co represents the angular velocity.

If we wish to get the concentration at different points in a tube

such as might be placed in the ultra-centrifuge, we may let x^

represent the end of the tube furthest from the axis, i.e., the

bottom of the cell. Then on integrating we obtain

,. = ,,, -S I '<—>-(^) (8)

Figure 1 shows the distribution for various particle sizes as

calculated by Svedberg from this equation, letting x^ = 5.2

cm. and co = IQOtt per sec.

We may write equation (7) also in the form

— = - ^—^ ^2 x dx, (9)

where V is the partial specific volume of the solute. Integrat-

ing and solving for M, we get

2 RT In (ci/c2) .

^,

CO-'il — Vps) {Xi — X2)

In this way the measurements of concentration at equihbrium

may serve as a means of calculating the molecular weight of

the particles.

Svedberg and Fahraeus'" made observations of this sort

on hemoglobin. The solution of hemoglobin was placed in the
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centrifuge tube and photographs were made after various

intervals of time showing the density of the solute at various

distances from the axis of rotation. By analyzing these photo-

graphs with a photo-densitometer very accurate measurements

of concentration were secured. Table III shows how the

molecular weight was calculated from the change in concentra-

tion with distance for one set of experiments.

During the course of the investigation the initial concentra-

tion was varied from 0.5 to 3.0 gm. of hemoglobin per 100 cc. of

solution, the length of the column from 0.25 cm. to 0.8 cm.

and the speed of revolution from 7200 to 10,000 r.p.m. without

0/ OZ 03 O.* OS 06 01 O.B 0? J.O CfTt

r= radius of particles in millimicrons (10-' cm).

Fig. 1

producing any marked change in the calculated molecular

weight.*

* An important contribution to this subject has recently been made

by Kai O. Pedersen, Z. physik. Chem. 170A,41 (1934). It consists of a

study of the radial variation of the concentration of salts in aqueous

solution at equilibrium in a centrifugal field of force of the order of

2 X 10^ times the earth's gravitational field. The change in concentra-

tion is measured by photographing the distortion of the image of a scale

observed through the column of liquid rotated at a speed of 55000 r.p.m.

in the usual manner. From the displacement of the scale lines due to

the change in the index of refraction, one can calculate the radial varia-

tion in concentration due to the force field. A thorough discussion is

given of the thermodynamic relations involved, and an equation is

derived relating the molecular weight to the concentration changes

observed and the activity coefficients. The average error of the molec-

ular weights so determined is about ten per cent. If it is possible to

obtain accurate values of the absolute concentration changes this may
be a valuable means of calculating activity coefficients.
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In addition to these experiments, which have involved true

equihbrium, mention should be made of the interesting deter-

minations of the effect of gravity on the electromotive force of

cells.

Tolman^^ has shown that much valuable information on
the nature of solutions can be obtained by studying the electro-

motive force which is produced when a solution of uniform con-

centration is placed in a centrifugal force field. This e.m.f. is

due, of course, to the fact that the concentration is uniform,

and would disappear if diffusion were allowed to bring the

concentration to the equilibrium values, such as we have been

calculating from the above equations.

The same principles have also been applied to particles in

TABLE III

The Molecular Weight of Hemoglobin as Determined by Sedi-

mentation Equilibrium

Xl
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FUNDAMENTAL EQUATIONS OF IDEAL GASES
AND GAS MIXTURES

[Gibbs, I, pp. 150-184; 372-403]

F. G. KEYES

I. General Considerations {Gihhs, I, 150-164)

1. Pure Ideal Gases. The response of gases to changes of

pressure, temperature and volume was a subject of the greatest

interest during the latter half of the 17th century and con-

tinuing through the 18th and 19th centuries. Boyle's work,

appearing in 1660, and Mariotte's investigations (1676) estab-

lished as a property of several gases the constancy of the pres-

sure-volume product at constant temperature. Not until the

beginning of the 19th century, however, was definite and

sufficiently exact information secured regarding the volume-

expansion law with temperature for constant pressure, and the

pressure-increase law with temperature for constant volume.

A knowledge of the latter laws, now known under the name

of Gay-Lussac^'2 as well as the Boyle-Mariotte law, was

necessary to understand experiments on the relations of the

volumes of chemically combining gases,—experiments the

interpretation of which proved of such incisive importance to

chemistry as a whole. It remained for Amed^o Avogadro^

to draw the important inference from these investigations that

the number of particles or molecules is the same for different

gases of equal volume, the temperature and pressure being the

same for all. There results then the remarkably simple expres-

sion for the physical behavior of pure gases

— = universal constant, (1)
Q
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where v is the volume of a "gram molecule" and would have

referred in the first half of the last century, to the absolute tem-

perature as measured by a mercury thermometer. The upper

limit of pressures was low and the precision of measurement,

moreover, hardly sufficient to make evident the limits of vahdity

of the relation (I) for describing the behavior of actual gases.

The extraordinarily ingenious and precise measurements of Reg-
nault were the first which showed the degree of inexactness

which must be accepted. Thus for the gases air, nitrogen,

carbon dioxide and hydrogen, compressed to a twentieth of the

volume at zero degrees and one atmosphere, the following

pressures were found

:

Air N2 CO2 H2
Vn

Pressure at — atm 19.72 19.79 16.71 20.27

Percent deviation from

Equation (I) -1.4 -1.1 -16.45 +1.4

At one-fifth of the volume, however, the magnitudes of the

deviations reduce to —0.4, —0.3, —3.4 and +0.24 percent,

respectively. Thus with respect to pressures at constant tem-

perature Regnault's classical investigations, of which the fore-

going is but a fragment, make it clear that equation (I) is to be

regarded strictly as the expression of a limiting law to which

actual gases may be expected to conform as the pressure is

indefinitely reduced. The gas-thermometric investigations of

Regnault^ and subsequently others'^ showed that the volume-

temperature coefficient at constant pressure, and similarly the

pressure-temperature coefficient at constant volume, tend to

an identical constant with diminishing pressure, thereby estab-

lishing the universality of the temperature scale definable by
equation (I) for p -^ 0. In addition, researches of Joule and

later of Joule and Thomson proved that the internal energy of

a gas at very low pressures is a temperature function only.

The investigations of the heat capacities of gases had, moreover,

shown in many cases, particularly for the gases whose critical

temperatures were low, that the temperature coefficients were

very small indeed.
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The complete concept, therefore, of the perfect gas, accepted

by Clausius and here taken by Gibbs, is defined by the first

three equations of this section. For convenience of reference

they will be designated as follows

:

pv = at, (II)

de = c dt, (III)

€ = ct + E. (IV)

It is noted that the heat capacity employed is that at constant

volume rather than that at constant pressure. There is wisdom

in the choice, for the former is the simpler quantity, and while

it must usually be derived from measurements at constant

pressure in default of direct measurements at constant volume,

nevertheless this reduction may be carried out once for all as a

special operation in preparing heat capacity data for use in the

applications of thermodynamics where gases are involved.

It is, moreover, not difficult to show that many applications of

thermodynamics involving liquids and solids proceed very

advantageously where the constant-volume heat capacity is

employed.

2. Mixtures of Ideal Gases. The question of greatest impor-

tance in all detailed applications of thermodynamics is that of

determining the laws to be employed in representing the physical

behavior of mixtures of gases. Until the various aspects of

this problem are resolved no real progress with applications of

the general theory becomes possible, and it is for this reason

that Gibbs took the greatest care to investigate all ramifica-

tions of this far from simple matter. It also seems evident

from the statements and form of this section that Gibbs was

seeking for a principle which would carry further than the

popularly phrased statement of Dalton's law or rule for mixtures

of gases. Indeed he found a statement of Dalton's law ("Gibbs-

Dalton law") which he showed to be "consistent and possible"

for mixtures of gases which are not ideal.*

S. Ideal Gas Concept as Related to the Behavior of Actual

Gases under Diminishing Pressure. Because (II), (III), (IV)

A test of this law has recently been made. See reference (6).
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are believed to be limiting laws valid for infinitely extended

volumes it is desirable to review briefly the circumstances

surrounding the behavior of important functions along the

path by which reduction of pressure to zero takes place. Con-

sider in this connection, for example, the Joule-Thomson ex-

periment. The effect is given by the thermodynamic equation,

where Cp designates the constant-pressure heat capacity, x the

"heat content" (e + pv) and t = t~^. The existing data show

that the right hand member does not vanish as p goes to zero

but on the contrary becomes constant and independent of the

pressure. Joule and Thomson deduced, however, that the

effect varied inversely as f at low pressures, which requires the

following relation between p, v, and t:

V = fip)t -
J,

(VI)

or

p)t -y^ th)fiv)t

Clearly the condition that (II) be applicable at every tem-

perature is that /(p), as is possible, may be taken to be R/p

for t; -^ 00

.

On the other hand, the change of energy with volume,

\dv/t \ Bt /v

has been shown in the case of one substance'' to vary as the

density squared (at low pressures), which may be regarded as

a verification by experiment of equation (IV) since {de/dv)t —>

as the density diminishes. The consequence of this is that

6 = f{t) and that p = f(v)t. Taking into account the validity

of Boyle's law as an exact expression of physical behavior for

p -^ the latter relation leads to equation (II). The quantity



FUNDAMENTAL EQUATIONS OF IDEAL GASES 341

(-f) is also well known ^-^ to proceed to a finite limit for

p —> 0. The quantity is in fact never zero except at a unique

temperature, characteristic of each pure substance (Boyle

—

point). It follows, therefore, that (pv — Rt) vanishes at all

temperatures when p —* 0.*

4. Constancy of Specific Heat. The justification for defining

a perfect gas by means of equations (II), (III) and (IV) is

complete except as regards the absolute constancy of specific

heat. Experiment has proved to a high degree of precision

that the constant-volume heat capacities of monatomic gases,

at low pressures, are independent of temperature. Thus c for

argon is very closely 2.98 from below zero degrees to about

2000°C. However, in the case of diatomic gases the tem-

perature dependence, while small at ordinary temperatures, is

significant and the modern quantum theory is eminently satis-

factory in the account it provides of the course of c for hydrogen

from a value of 2.98 at low temperatures to a value of 4.98 at

room temperatures. Molecules of a higher order of complexity

have a correspondingly large positive temperature coefficient

above zero centigrade.

6. Concluding Statement. We may therefore sum up the

present position with respect to the validity of the relations

(II), (III) and (IV) by stating that (II) may be assumed to

have been abundantly shown by experiment to correspond

with reality as a limiting law for computing pressures for all

pure gases. The independence of c with respect to tempera-

ture is, however, only true on the basis of present experience for

monatomic gases, and the magnitude of the temperature coef-

ficient of the heat capacity for all higher order molecules is large

according to the order of complexity.

6. Comment on Gas Law for Real Gases. A discussion of the

section might be carried forward from this point without

explicit reference to an equation of state of greater complexity

than (II). Gibbs has, however, adopted a definite hypothesis.

* It should be understood that temperatures greater than absolute

zero are referred to throughout in the considerations above.
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the Gibbs-Dalton law (Gibbs, I, 155, beginning line 7), the
implications of which can only be fully developed by using an
equation connecting p, v, t and the mass, which is valid at

sensible pressures (one atm. for example). Such an equation
may be readily obtained by the use of equation [92] of Gibbs'
Statistical Mechanics^'^, viz.,

V = ^7^7^' B = -2x71 I (e-'^'' - 1) rW. (VII)

Employing the van der Waals' model," for example, there

is obtained the following simple equation for B at low pressures

^ = ^-^
/ aiA atA" \

It is true that the van der Waals model is often inadequate
(case of helium, neon) but it gives results sufficiently in

accord with fact for the purposes of this section to make it

unnecessary to deal with the considerably more involved expres-

sion following from a model more in accord with contemporary
ideas of atomic and molecular structure '- i3. i4, 15, le, 17. is 'pjjg

quantity B of (Vila) is a pure temperature function in which
/?, -A, ai and ai are constants.

Gases, it is apropos to state, may be sorted into two classes,

those which have a permanent electric moment in the sense of

the dielectric constant theory and those which have not. In
the former class^^ are found water, ammonia, the hydro-
halogen acids, sulphur dioxide, the alcohols, etc., while the
noble gases, nitrogen, hydrogen, oxygen, methane have no
moments. The simpler more symmetrical structure of the

latter substances is reflected in their physical and quasi-chemical

behavior (adsorption for example). Thus the departure from
relation (II) for the latter gases is less, and it is not necessary

to retain many terms of the bracketed part of (Vila). Mole-
cules having permanent moments exhibit on the contrary great

departure from relation (II).*

* At zero degrees and one atmosphere nitrogen has a pressure less than
that calculable from (II) by about one twentieth of one percent. Am-
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In many cases of interest in the application of Gibbs' theory to

gaseous equiUbria, the temperature of measureable reaction

rate and practically significant concentrations of the products

of the reaction are sufficiently high to enable an equation of

essentially the type of (VII), (Vila), to be used without involv-

ing too serious error -•'• ^^' ^^- ^^. Every purpose will be served in

what follows by omitting all terms in the brackets in (Vila)

following the one having the coefficient ai.

7. Choice of Units of Mass arid Energy. The equations (II)

to (IV) of Gibbs refer to "a unit" of gas and the gram or gram

mol might equally well be employed. We will consider one

gram as the unit quantity in what immediately follows and

the gram mol in those instances where convenience is thereby

better served. The unit of energy will be the mean gram-calorie

equal to 4.186 abs. joules where practical applications require

specification of the unit. The temperature scale will be that

of the centigrade scale given by the platinum resistance ther-

mometer plus 273.16, and the pressure unit the international

atmosphere, volumes being taken in cubic centimeters per gram

or gram mol.

8. Definition of Temperature. It is noted that the tempera-

ture is defined by the perfect gas (Gibbs, 1, 12-15) or quite simply,

if the heat capacity c is assumed an invariable constant, by the

energy equation. Taking equation [11] (Gibbs, I, 63) for the

energy, de = tdrj — pdv, temperature and pressure may be

expressed in terms of the energy e, the volume, and the appro-

priate constants. From (IV) and (II) there result

€ - E
t = —^> (1) [257]

V = '

(2) 258
V c

monia under the same conditions of temperature and pressure has a

pressure less than that given by (II) by one and one-half percent, and
in conformity with the modern theory of cohesive and repulsive forces

the bracketed expression on the basis of a van der Waals model be-

comes more complicated. However, in the case of dipole gases at ever

higher temperatures (VII) tends to a simpler form on account of the

diminishing relative importance of those terms arising from the presence

of the permanent dipole.
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and substitution in [11] leads to a relation in which the variables

separate. Integration then results in equation [255]. Evidently

since c, except for the monatomic gases, is in general a quite

complex function of the temperature it is not practical to write

t as a function of the energy in a fundamental equation* in the

variables energy, entropy and volume.f If c is taken as a

function of temperature, f{t), the equation for the entropy may
be readily obtained from [11] for

de + pdv fit)dt + pdv
<'" = —r~ =

—
i

—
or

fit) -j + alogv + H. (3)

The forms of f{t) which are known, as for hydrogen, make it

practically impossible to eliminate t to give an equation in

the variables e, rj and v.

9. Constants of Energy and Entropy. The remarks following

equation [255] are important, for the assigning of the constants

of entropy, H, and of energy, E, is a matter of importance in all

cases of chemically interacting components. The conventions

which have been used are, however, somewhat varied; thus

Lewis and Randall ^^ define a standard state in terms of unit

fugacity of the elements; and 0° on the absolute or Kelvin scale

and one atmosphere ^^ has also been proposed. There is much

advantage ^^ in adopting the actual state of the gas at 0° and

one atmosphere, but any of the proposed systems is a possible

one so long as interest centers on the treatment of ordinary

chemical reactions by the two empirical principles of thermo-

dynamics. J

* See footnote, Gibbs, I, 88.

t Gibbs has discussed the advantages of volume and entropy as inde-

pendent variables (Gibbs, I, 20).

t The statistical mechanics analogue of the entropy may for example

be easily computed from equation [92] of Gibbs' Statistical Mechanics

(Gibbs, II, Part 1, 33) for the simple case of a gas assumed to be composed

of structureless mass points. Before making the computation, note

should be taken of the fact that equation [92] may be dimensionally

satisfied by dividing the right hand member under the logarithm by

Planck's constant h raised to the 3nth power.
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10. \p Function for an Ideal Gas. On substituting its equiva-
e — Em

lent t for • in [255], and solving for rj there results,
cm

m
r} = mc log t — ma log — + mH, (4) [255]

07-/-"^ = — Q log {
—

1 I
. . . j e ' dxi dyi dzi, dxi dy\ dzi. (a)

TTl

If 6 IS given by ~ (i^ + y* + 2^) there results

v^
= -elogf-^ j»-t;». (b)

Applying the operation ——at constant volume and assuming n0 given
ot

by at the following analogue of the entropy results

:

17 =
I
a log i + o log y + I

a log ,, . (c)

Here a definite value of the constant of entropy appears which bears a

direct relation to the Nernst Heat Theorem and the so-called chemical

constant ^^^'^^. Differentiation of equation (b) with respect to the

volume at constant temperature and changing the sign gives the fol-

lowing expression for the pressure:

\ovJ V V

which is equation (II). Again, forming the energy by the operation

in-
where t represents kQ~^ — t~^, k being the Boltzmann constant

(1.37 X 10-« ergs/deg.) we obtain

©.-' == -' =
I

n/c< =
I

c't. (e)

Here no constant of energy is assigned nor should a constant appear in

view of the properties of a system of structureless mass points treated by
classical statistical mechanics.
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as the expression for the entropy of a mass m of the pure gas.

Using this entropy equation and (IV) and substituting in [87]

there is obtained

V

yp = md + mE — met log t — mat log — — mUt, (5) [260]

which is identical except for slight rearrangements with [260].

Differentiation with respect to t at constant volume and

applying a change of sign gives

/9A V
I —

I
= mc log f + ma log — + mH = n,

\at/v,m ^ (6) [262]

which is the entropy of the pure gas. The pressure is given

likewise by changing the sign and differentiating with respect

to volume at constant temperature, i.e.,

\dV/t,m

"^ = p. (7) 12631
V

The energy and heat capacity are formed by operating on

^f-i = xpT, where r represents reciprocal temperature, as

follows

:

c = r-f^) = md + mE, (8)
\ OT /v.m

\ OT^ /v.m

t2

Finally the chemical potential may be found by differentia-

tion with respect to m, keeping v and t constant,

(

aA
, , ^—

• )
= u = d — dlogt — atiog-

dm/v. t
m

-}- at - Ht-\- E. (10) [264]

Thus every quantity of thermodynamic interest may be

obtained from the Helmholtz free energy function (\J/
= e — trj)



FUNDAMENTAL EQUATIONS OF IDEAL GASES 347

by simple differentiation. Gibbs has obtained the same result

by comparing the terms of the total differential of ip,

drp = ( -^ ) dt + ( 4- ) dv + (^ ) dm,
\dt/v,m \dv/t.rn \dm/v.t

'

and

# = - vdt - pdv + fidm, (11) [88]

with equation [261].

11. f Function for an Ideal Gas. Turning to the zeta

function* [91], f = e + pv — trj, we may form the function in

terms of pressure, temperature and the mass of a pure perfect

gas with the following result

:

f = met + mE + "inat — met log t — mat log —

- mHt. (12) [265]

By differentiation the following equations are obtained:

/9f\ ,
.at

, r ,- h;7 = V = mclogt -\- ma log— + mH, (13) [266]
\ot/p,m V

if) " mat , . r

(14) [267]
P

I
~-

I = met + niE + mat = we + mat, (IVb)
\ OT /pm

~
(^ ) = c + a

,m \dtdT/p^m

/d^\
, , at

I
7~~

I = n = ct — ct log t — at log
—

\dm/p, t

^ *^
p

-\- at - Ht + E. (15) [268]

* This function is called the "Free Energy" by Lewis and Randall
in their treatise Thermodynamics and the Free Energy of Chemical Sub-
stances.
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The latter equation for /x is, as it should be,* identical with

(10) [264], since at/p is equal to v/m.

/H - c \ , /c\
By setting I ~ ^) ^^^

V /
~^ '" ^^^^^ ^^ ^^^ constants

Ki and K2, (15) [268] may be written

n - E

p = a e' f' e
"'

, (16) [270]

or the density p is given by

p = e'^t^-'e
"'

. (17) [270]

12. X Function for an Ideal Gas. The equation for xt is

likewise readilyformed from equations (II) and (IV). Thus

X = e + py = m(c + a)« + mE, (18) [89]

and on differentiating this equation there results, using [86],

dx = tdv -\-vdp-^Z udm, (19) [90]

showing that the independent variables are the entropy, pressure

X — fnE
and mass. From (18) [89] there is obtained t = —,—;—r, and

w(c + a)

using the total differential of [89], with tdr\ replacing de. + pdv,

we have

X — mE X — mE adp
dx = "7

I ^
• d'O +

mic + a) (c + a) P

or

m(c + a) ;; = ^77 + am —

,

(20)
X - mE p'

which on integration, and using the entropy constant H, gives

[271], or

* See equations [104], Gibbs, I, 89.

t This quantity is frequently referred to as the "total heat," a

somewhat misleading term. It is also often designated by the symbol, H.



FUNDAMENTAL EQUATIONS OF IDEAL GASES 349

77
— mH a

X = mE + mic + a)e
""^^^

( ?Y~", (21)

mH
/dx\ _ »"(= + «) /p\ ma

7' (22)

but

1]— mH

e (2) =Z7rT^.=<, (23)

which gives

(

m{c + a)

dx\ fnat

dP/r,, m V
= V. (24)

It is also easily shown that (
~

)
= t, while {

~-
) gives

an equation for /x identical with [268],

13. Vapor Pressures of Liquids and Solids. The footnote

(Gibbs, I, 152) concerning the general problem of vapor pres-

sures is important, for not only is a relation between pressure

and temperature often required for pure liquids or solutions in

equilibrium with a vapor phase, but equally important is the

large class of compounds of solids with volatile components, as

for example the salt hydrates, salt compounds with ammonia,

sulphur dioxide, and numerous similar compounds. Innu-

merable formulae for the vapor pressure of liquids have been

suggested since the middle of the last century. Those that do

not have a purely empirical origin may be obtained from the

Clapeyron equation

dp

using various assumptions. Thus if the specific volume of the

liquid Vo is neglected, the vapor, Vi assumed a perfect gas, and

the heat of evaporation, X supposed a linear function of the

temperature, there results

dp at , ^

Xo + a< = i ir •
-' (25)

at p
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where X, the heat of evaporation, is expressed in terms of a

constant Xo and a. One obtains on solving (25)

Xo a
log p — — ~ + ~ log t + constant,

at a
(26)

which is of the same form as Gibbs' equation [269]. The
procedure adopted in the footnote, however, brings to the fore

the precise nature of the assumptions upon which the resulting

vapor pressure formula rests. Moreover, it is more direct than

the above treatment, as may be easily shown.

For the single accent phase (vapor) and the double accent

phase (condensed substance) we have*

-v' dp -\- ri' dt + m' dtx' = 0,1

-v"dp + r,"dt + m"d^" = 0.

(27)

Gibbs proceeds to solve these equations and, from the equilib-

rium condition d/j,' = dn", to extract the pressure as a function

of t. But on solving the above pair of equations subject to the

same equilibrium condition there results

v' m!

v" m"
dp =

-(]' m'

r," m"
dt. (28)

Expanding the determinants gives

Wm" - v" m') ^ = {-n'm" - v"m').
dt

(29)

If m' = 1 = m", and rj' — r\" is set equal to -, the entropy of

transfer from the first to the second phase, we have the Clapey-

ron equation

See equation [124], Gibbs, I, 97.
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from which the vapor pressure equation was obtained above.

Gibbs preferred to proceed directly with the /x equations in

estabhshing his vapor pressure relation.

It will be noted that Gibbs has assumed that the heat capac-

ity k of the liquid is independent of the temperature. In

addition it is assumed that the internal energy is a constant.

It is in this way that the simple expression for the entropy

1] = log t -\- H' is obtained. These assumptions are, however,

far from being true if a range of temperature is considered, as a

glance at the data for the heat capacities of liquids shows. As

compared with the vapor at moderate pressures most of the

internal energy of a liquid is molecular potential energy and

f
( —

) — p is very large. Ether, for example, at — 50 has a
\ot/v

/dp\
specificvolume of 1.265c.c.per gm., and t{—j ~ p, equivalent

to ( — 1 , amounts to 2780 atmospheres. The same quantity

for the vapor in equilibrium with the liquid at — 50 is not far

from 1.5 X 10~^ atm. For short ranges of temperature along

the saturation curve the Gibbs' assumption is in many cases

admissible where only modest accuracy is required. The

subject of vapor pressure representations on the lines of Gibbs'

treatment has recently been fully developed by L. J. Gillespie.^^

It is worth pointing out that Gibbs' treatment indicates

the role played by the entropy constants in the constant of the

vapor pressure relation. The heat theorem of Nernst is also

closely related to the constants of the vapor pressure-tem-

perature equation. To obtain, however, constants which are

really characteristic of pure substances requires very reliable

data at low pressures and skillful treatment of the data in

formulating an equation ^"^ ^^' ^^^ ^^' ^^- ^^

The treatment of the case where a gas is dissolved in a

liquid is also touched upon by Gibbs in the latter part of the

footnote. It is assumed that the vapor pressure of the liquid

absorbing the gas is small enough to be neglected. However,

while the latter approximation may be satisfactory, as for

example with carbon dioxide at one atmosphere dissolving in
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water at zero degrees (vapor pressure of water 0.006 atm.), in

many cases the solubility may be large enough to affect the

vapor pressure considerably. The solubility of carbon dioxide

in fact is sufficient to change the thermodynamic potential of

the water considerably as the pressure of the carbon dioxide

rises. There are several other factors to be considered if the

case is to be treated with some degree of completeness, but for

this a more extensive knowledge would be required than is at

present available of the potentials of the components in the

liquid mixture, and of the gas phase.

Nothing is very definitely known about the energy of mixtures

of liquids or the entropy of a liquid mixture as a function of the

entropies of the components. It may be assumed, however,

that f for a mixture of liquids is of the same general form as that

for the separate components. Moreover, if one or several

components are present in small quantity the coefficients of

the f equation of the mixture may be confidently assumed to be

linear in the masses of the soluble constituents, on the ground

that any continuous and differentiable function of a variable is

linear in the limit of small values. It is in this sense that the

second equation on p. 154 of the footnote should be understood

in its practical applications. The remaining steps lead easily

to the equation for the pressure of the dissolved gas as a func-

tion of the temperature. The values of the constants A, B, C
and D will be constant for an invariable composition of the

liquid solution. Differentiating the log (p/a) equation with re-

spect to temperature at constant composition, and neglecting the

term Dp/t which is small at low pressures, there is obtained

f C-^) = C-BL (30)(
d log p\

\ dt J

This quantity is proportional to the energy required to transfer

unit mass of the dissolved gas to the gas phase under equilibrium

conditions.

It is clear from the discussion above that a basis is here

indicated for a theory of dilute solutions, for the treatment is by

no means restricted to the case of gaseous substances which

dissolve. Moreover, it will be observed that the latter case is
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capable of a considerably more detailed treatment along the lines

laid down by Gibbs. Thus it would be easy to include in the dis-

cussion the effect of the dissolved gas, and the gas in the gas

phase, on the vapor concentration of the vapor emitted by the

solvent. For this purpose use would be made of the italicized

statement (Gibbs, I, top of page 155) together with an equation

for the gas and vapor, such, for example, as (Vila).

14. Effect of the Presence of a Neutral Gas on Vapor Pressure.

The paragraph beginning on p. 154 discusses the old obser-

vation that, for example, the vapor pressure of a mixture of

water and benzene is about the sum of the vapor pressures of

each pure liquid at the temperature of the mixture. Since,

however, the pressure on the liquid phase is greater than if

either were alone present the liquids must be compressed. The

nature of the effect of a pressure applied to the hquid phase and

its magnitude may be obtained by applying the equation [272]

obtained from equation [92] (Gibbs, I, 87). Taking the tem-

perature constant and assuming equilibrium conditions there

results

d^ = {vdp + nidmi)t. (31)

But

dt = (Pj dp + (f^) dm,, (32)

and, since p and Wi are independent variables,

(33)

Comparing equations (31) and (32) the latter may be written

(f^) =Cf) . (34) (2721

Similarly it may be shown from [88] that

/a^A ^_(^) . (35)
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The case of a pure liquid under pressure in excess of its vapor

pressure at constant temperature can be treated quite simply-

using equation [272], provided it is assumed that the neutral

ideal gas exerting the pressure on the liquid phase dissolves to a

negligible extent, and that it is at the same time completely

indifferent with respect to the vapor of the liquid. The latter

restriction means, of course, not only that there must be no

chemical action but also that the neutral gas must exert no

"solvent" action with respect to the vapor.

For the vapor phase

dv'\
(36) [272]

(37)

(38) [272]

(39)

But if equilibrium subsists, fx' = fx", and moreover for a single

pure phase, neglecting any possible complication due to the

dissolved neutral gas,

and for the liquid phase

\dm/p. dm
[{v"sat. + ap)m] = v"sat. + ap, (40)

where a is the compressibility of the liquid. Substituting

— for I
-— and mtegratmg from the normal saturation pres-

p \dm/p,t

sure to the vapor pressure arising as a consequence of the changed

potential of the compressed liquid in the case of the vapor, and

from the normal saturation pressure to the pressure p of the

neutral gas in the case of the right hand member, there is

obtained

log^ = ?^- (P - p,^,) + "1^ (P2 _ p2^„j . (41)

Psat. at 2a t



FUNDAMENTAL EQUATIONS OF IDEAL GASES 355

Clearly p > p,at. for P > psat- In the case of water at zero

degrees under a pressure of 100 atm. there is obtained from (41)

P/Psat. = 1.084.

The effect (Poynting effect) is small, but in exact determina-

tions of vapor pressure, as by the "streaming" method, the

effect must be considered (the vapor pressure of water at zero

degrees is altered by roughly one tenth percent per atmosphere

pressure).*

15. Defect in the Sum Rule for Vapor Pressures. The rule

that the total pressure over a liquid phase mixture of mutually

immiscible substances is given by summing the separate vapor

pressures suffers from the fact that the gases are actually not

ideal. Thus ammonia deviates at one atmosphere and zero

degrees by 1.6 per cent from the ideal pressure. A mixture of

nitrogen and ammonia in equal molal proportions, however,

exerts a pressure, at zero degrees and about one atmosphere.

* The method of passing a neutral gas over liquids and subsequently

absorbing the vapor out of a known volume of the gas mixture has been

much employed in determinations of vapor pressures where the latter

are small. In utilizing such data to compute vapor pressures the

relation of the mass of the vapor to the mass of the neutral gas must be

accurately known. Frequently the perfect gas laws have been invoked

to compute the pressure of the vapor in the neutral-gas-vapor mixture.

If, however, precise results are desired this procedure is inexact owing

to the fact that Dalton's rule of mixtures may not be as close an approxi-

mation as desirable. See Eli Lurie and L. J. Gillespie, J. Am. Chem.

Soc, 49, 1146, (1927), also Phys. Rev., 34, 1605, (1929) and Phijs. Rev., 36,

121, (1930). The disability of the method, due to the failure of Dalton's

law, might be avoided by passing the neutral gas through a saturation

apparatus containing pure water and then through a similar apparatus

in series with the first but containing the solution of interest. The
temperature of the latter could then be raised until suitable tests showed
that the content of water in the neutral gas was the same after each

saturation apparatus. Determinations at several temperatures would
then establish the vapor pressures of the solution from the known values

for pure water. It can be shown that strictly the "Dalton defect" is not

precisely the same in both saturations because of the temperature

difference, but the error thus made can be shown to be exceedingly

small.



356 KEYES ART. J

not far from that calculated by the ideal gas law for mixtures.

At higher or lower temperatures, nevertheless, the differences

may be greater or less than that given by the latter law. As a

general and approximate statement present knowledge warrants

the conclusion that as far as low pressures are concerned, the

order of accord of the actual behavior of pure gases and mixtures

with the prediction of the perfect gas laws does not often

exceed two percent from zero degrees to higher temperatures.

Below zero the actual behavior of gases may show larger depar-

ture from the idealized state in special cases.

16. Gihhs' Generalized Dalton's Law. The rule of pressures

stated in italics (Gibbs, 1, 155, 7th line) is one of very great inclu-

siveness.* It leads, for example, to a proposition relative to the

entropy of a gas in a mixture which is of very far reaching

theoretical significance and practical importance. It contains

and is also far more inclusive than Dalton's rule of partial

pressures as commonly stated, since its consequences involve

the proposition that the energy and all the thermodynamic

functions of gases in a mixture are of the same value as though

each gas alone occupied the same volume as the mixture, the

temperature remaining unchanged. In the formulation there is

incorporated also the idea of equilibrium, which does not appear

to be associated with the usual statement of Dalton's Law. The

significance of the equilibrium idea, both thermal and mechani-

cal, must be emphasized because of its extensive importance in

every application to which thermodynamics lends itself.

The Gibbs rule may be written, where the constants

— ^-
-^ and -—^—^ are represented by hi and Ci.

Ml - ^1'

aieH% "'
, (42) [273]

* Gillespie (P/iys. Rev., 36, 121, (1930)) has recently discussed in con-

siderable detail the implications contained in Gibbs' italicized state-

ment. It is shown that Gibbs' statement is, as would be expected,

an approximation. It is, however, a useful rule, and is analogous to

the Lewis and Randall rule of fugacities (Lewis and Randall, Thermo-

dynamics, p. 226, 1923). The Gibbs rule and the fugacity rule often

show deviations of opposite sign from the true pressures of binary

mixtures.
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but (/ii — El)/ait may be formed from [268] and expressed as

Jmi - El) /ait Pi

aieH^'
(43)

whence

or

iV = 2pi),

amit
(44) [277]

The former may apply even when the gases are not ideal.

17. Entropy of an Ideal Gas Mixture. Differentiating (42),

[273] and rearranging gives the following equations:

dp = 2
Ml -El

aieh'^'e
"''

(r ^iLJzZA

1 r" a^t )
dt

+ s
Ml — El

hi4Ci„ ait
aie'T'e

ait

dm, (45)

but by [98]

dt + S[S] ^^" (46)

dp = - dt {- / ,
— dfiu (47)

whence using the value of

Ml — El

ait
= - hi + log ('-9

from [269] there results

' = S [S {^' + <" + "^ '»«
'

-
"' "^ f}] ^''^ '''"
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mi ^ Pi

V a\t

m-i p2— = "~
' etc.

(49) [275]

and

r? = ^ (miHi + mi(ci + ai) log t + miai log — j-

Where v is the volume of the mixture the entropy becomes

ry = /, (miHi + wiCi log t + miai log — j- (50) [278]

The latter equation requires that the entropy of a gas in a

mixture of volume v and temperature t be the same as though

it existed alone at the volume v, the temperature remaining

unchanged. The result may be exhibited in another form.

The total volume v is given by the expression - 2aimi where y is

the total pressure of the mixture. Substituting in (50) [278]

there is obtained

rj = 2 (
^1^1 + ^1 ^1 ^og t + m,a, log —^^ y (51) [278]

\ HaimJ

but V is a quantity which is called the partial pressure for
ZaiTWi

the gas with subscript (1), i.e., pi, and 2pi = p, which is equa-

tion [273]. It follows then that if a gas exists in the pure

state at pressure p and temperature t its entropy in the gas

mixture of pressure p will differ from that in the pure state by

— miai log z , which is the same thing as — ri/C log Xi,
Zttimi

where Xi = —, the mol fraction, and C"^ = Miai (see equation

[298], Gibbs, I, 168), where Mi is the molecular weight.

18. Implications of Gihhs' Generalized Dalion's Laio Apart

from Ideal Gas Behavior. The discussion, Gibbs I, 156-157,
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beginning eleven lines from the bottom of 156 and ending at the

corresponding point on 157 comprises material and inferences

following quite directly and simply from equations [273] to

[278]. The last sentence is significant. "It is in this sense,

(equations [282], [283]) that we should understand the law of

Dalton, that every gas is as a vacuum to every other gas."

The statement that Gibbs' relations [282] and [283] are "con-

sistent and possible" for other than ideal gases refers evidently

to the belief that the relations in question, taken quite generally

and without reference to the idealized gas laws, might lead to

better accord with fact than would be possible with the latter.

Thus the pressure of the individual gases composing the sum
in the first of equations [282] may be any function of volume

and temperature. By the use of (VII) for example, the total

pressure would be written,

Saitnii

The energy, entropy and i/' function then become

+ Y^m.E,, (53)

V = 2j'^i= 2jm^
J^

ci* - + 2j^,a, log ^^

\l/
= //Wi / Ci*dt + / jTUiEi — f /.mi / Ci* dt/t

•^-\ V — Binii -^^— t / jMiai log — t / jViiHi. (55)

Equation (53) may be established by starting with either

of the equations

\dv)t \dt). p, (56)
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Taking the first we find, using (VII),

/*" amiH^ /dBi\ ^ , ,

€l =

where f(t) is a pure temperature function. The integral may be

taken from v = oo to y, resulting"^, if 5 is a pure temperature

function, in

n amiH^ /dBA
., = »,j_^o.'d<-„-^^_(-) + mA, (59)

where Ei is a constant of reference for energy, and c* is the heat

capacity for constant volume at infinitely low pressures,—a pure

temperature function.

The other equation of the pair gives for e

«i = mi
I

Ci*dt + /

J to J to

since

J '

— tfao (S) n '" "^ '"'^" '®*"

(g)/v, m = c*,

where c* is the heat capacity of a gas at infinitely low pressure

and is known to be a pure temperature function. But

'(S). = mKI).-p]'

whence the second integral above becomes
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using equation (VII). Finally the equation for e becomes

.. = ™,
|_

c..d(- ^-3^ (^) + ».£.. (62)

This equation is, as it should be, identical with the energy

/de\
equation obtained by starting directly with the (

—
j

differential

equation.

The entropy may be computed by solving the equations

©. = &).• @). =r ^^^^

The entropy expression, using (VII) in connection with the

first differential equation becomes, after adding and subtracting

V — Bitrhi .

aiTUi log '

mi

V — Bitrii

+ m,/i(0 + m,Hx. (64)

Integration gives finally

m = rmMt) + a^m, log^^^ - ^^T^^) Yt + ''''^'- ^^^^

Starting with the second differential equation there results,

again using (VII),

•ni
= wi

I
1 dt -\- mifiiv) + miHi = nii

j ci*
—

+ mi / / ti— 1 fit' y + mi/i(t;) + mj/fi

= mi / ci* y + / f— j
- y dy + mi/i(i;) + mi^i

P dt ai miH dBi
, ^ , ,^^,

= ^^ 1
''* 7 -

(. - 5imi) ~^ + ^^-^^^^^ + ^'^^- ^^^^



362 KEYES ART. J

Comparing the two entropy expressions gives for the final

entropy equation

f dt V — Bimi
Tji = mi / Ci* — + aiWi log

"^"^^^ '^^ + m./7. (67)
(v - Bimi) ai

The f function ei + piWi — ^771 may now be formed by sub-

stituting the energy and entropy, with the result

f1 = mi / ci* dt + miEi + aimit + miBipi

— mii /
^* T ~" ^1^1^ log — — miHit, (68)

and for a mixture, employing the rule of Gibbs,

f = 2 f1 ^ 2 *"'^ / ci* (^f + ^ mi^Ji + 2j ^1^1^

+ 2j ^1-^iPi — ^ mit
j

ttii— /, miOii log — — 2j 'f^iHit. (69)

The equations for ^ui, m, ... and Ci, C2, ... can be readily

obtained from the last equation by differentiation, i.e.,

/•' r dt

Ml = / ci* d^ + ^1 + pifii + ait - t ci* J

ait- ait log — - Hit, (70)
Pi

mici = mici* +
(^ _ 5^^^)^^^^^,'

(71)
\_dt \ dt J J

using (Vila) and neglecting higher terms in the reciprocal of



FUNDAMENTAL EQUATIONS OF IDEAL GASES 363

(v — BiiTii). Equation [280] now becomes

c =

11
+ higher terms in 7 and ~'

(72)
t V

19. Ideal Gas Mixture in a Potential Field. The paragraph

beginning Gibbs, I, 158, last line, is introduced to emphasize

the fact that in a mixture of gases, as in the atmosphere, each

gas may be assumed to react to the gravitational field inde-

pendently of the presence of the other gases". The point

is made use of by Lord Rayleigh to investigate the work of

separating gas mixtures and the reader is referred to Vol, I p.

242 of Scientific Papers, Lord Rayleigh, Camb. Univ. Press, 1899;

Phil. Mag., 49,311, (1875).

SO. Vapor Pressure of a Liquid under Pressure from a Neutral

Gas. The subject of the effect of an insoluble and neutral gas

on the vapor pressure of a liquid has been discussed earlier,

making use of [272] in connection with the comments on

the additive law of vapor pressures. The treatment taking

account of a finite solubility of the neutral gas in the liquid is

given in Gibbs, I, beginning p. 160, last paragraph. It will be

seen that the phenomena connected with Henry's law con-

stitute a special case of a binary mixture. Thus with carbon

dioxide at zero degrees the pressure may be increased to 34.4

atm. at which point carbonic acid would liquefy since this is the

saturation pressure. The temperature of the system may also

be above the critical temperature of the neutral gas as with

carbon dioxide above 31°, and in the process for separating

helium from the natural gas in Texas.

The general equations for the case of a two-phase binary

mixture are

— v' dp + r]' dt + mi 'dtii ' -j- m^ 'd^i ' = 0,1

-v"dp -f i)"dt -H mi"dMi" + m^'dii<l' = O.J

At equiUbrium d/x/ = diix' , dii-l = dix2" , whence, if m^'/mi = r'
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and 1712"/mi" = r",

(—, - -^^ dp = (^,- ^)dt +(h- T, ) dp,', (74)
\W2 W2 / \m2 m2 / \r r /

(—> - ^) dp = (—,
- ^) dt + (r' - r") dM2'. (75)

\mi mi / ^ \mi mi /

When r' is equal to r" the ratios of the components in both vapor

and Hquid phases are identical, and the system resembles a pure

substance in its thermodynamic behavior (mixture of constant

boiling point). To show this, add equations (74) and (75),

put (m/ + m2') = M' = 1, {mi" + m2") = M" = 1, and since

(76)

r' = r"



(79)

(6) a' = — wi'

a" = - mi'

(80)

{()
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(a) {—) = (—\
Kdmi'/p, I, mj' \dm-i') p, t, mi'

\dnii/p, t, TBj" \9w2 / p, t, mi"

' f—-\' 1\dmi / p, t, m^'

\dmi") p, t. tnj"
,

~;
I

dm\
l\ J p, t, mj'

(:;
—

-, )
dm2',

drrh /p. t, Tn,'

\a7n2 / p, t, m,'

The following equations may now be written, where Xi, X2 are

the quantities of heat required to evaporate a unit quantity of

constituent 1 or 2 from the mixture, and Aiv, 1^20 are the corre-

sponding changes in volume of a unit of components 1 or 2 in

passing into vapor:

dni = dyL\

+

\dmi

(81)

Xi

t

h
t

dt = Aivdp - a'dr' + a"dr",

dt
, dr' „ dr"

L^vdrt + a' — - Vi" —^^
r r

(82)

(83)

21. Application to "Gas-Streaming" Method of Measuring

Vapor Pressures. An instance of some practical importance in

the application of these equations will now be discussed. The

determination of vapor pressures by the "streaming method"

was referred to earlier in connection with the Poynting effect, '

but a fuller discussion was postponed until the Gibbs-Dalton
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rule and some of its consequences were developed. There are

essentially three effects which it is necessary to consider in order

to use the method for the exact determination of vapor pres-

sures. First, the effect of the pressure of the neutral gas on the

vapor pressure of the liquid must be determined. This is the

Poynting effect and has already been sufficiently discussed.

Second, the depression of the vapor pressure of the liquid due

to the dissolved gas must be computed. If, as usual, the

solubility is slight, as with water at zero degrees saturated with

air at atmospheric pressure, the change in vapor pressure due

to solubility is neghgible. Third, Dalton's law in the form

usually applied, pi = Xip or pi = -— p (Gibbs' notation, c.f

.

[298]), where x is the mol fraction, is inexact. The example to

follow will illustrate the use of the Gibbs-Dalton rule, p = 2pi.

The third correction may be made by using the latter rule,

or we require actual experimental data relative to the p, v, t

behavior for the mixtures of interest and the neutral gas.

Equivalent to the latter data is a knowledge of the constants of

the equation of state for the two gases (gas emitted by liquid

and neutral gas) together with the law of combination of the

constants of the equation of state^^ to give the properties of

mixtures. Enough knowledge of the latter sort is available to

be useful in many cases.

As a concrete problem, suppose an aqueous salt solution at

the fixed temperature 21.2° is in equilibrium with nitrogen, the

total pressure of the gaseous mixture being one atmosphere.

Let the water vapor be absorbed and weighed while the nitrogen

is passed along to be measured for pressure and volume at 25°C.

The weight of the water is 0.45 gram or 0.02498 mols, and the

nitrogen has a volume of 24000 c.c. at 1 atm., or 0.98111 mols.

The perfect gas law is suitable for computing the latter since

nitrogen is very nearly a perfect gas at 25° and 1 atm. The
constants jS and A of the equation of state (Vila) for water and

nitrogen* are

* The constants given for water are only approximate. Those for

nitrogen are valid for low pressures at ordinary temperatures. This is

not the place for a complete and exact exposition of the theory of reduc-
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^H.o = 81, ^H.o = 57 X 10«,

|3n, = 47.6, ^N: = 1.255 X 10«,

the units being c.c. per mol and atmospheres. Using the Gibbs-

Dalton rule that the total pressure is equal to the sum of the

pressures which each of the separate gases would manifest if

alone present in the total volume of the mixture we find

82.06 X 294.3 X 0.02482 82.06 X 294.3 X 0.97516

^
"

F + 56.6
"^

7 + 4.2

A few trials will be found to give 24144.4 c.c. as the volume

for the pressure of one atmosphere. The first term of the right

hand side becomes 0.02477 and the second 0.97523. But these

terms are the equilibrium pressures according to the Gibbs-

Dalton rule and hence the pressure of the water vapor is 18.825

mm. The application of the Dalton rule as usually applied

(pi = pxi) gives on the other hand 18.866 mm. ; a difference of

one part in 460. The actual vapor pressure of the solution is

18.820 mm.
A similar computation may be made using the fugacity

function^^'^''''*^'^. In the latter case the equilibrium fugacity,

as proposed by Lewis and Randall, is given by the rule /« = fpXi,

where fp is the fugacity of the gas of interest at the pressure p of

the mixture.

Finally the equilibrium pressure may be computed using

the equation of state constants for the gases of interest and

computing the equation of state constants for the mixtures by

combination rules for the constants known to hold for mixtures

of nitrogen and methane'*^. The latter method has met with

success in a number of applications.

S2. Heat of Evaporation of a Liquid under Constant Pressure.

The discussion (Gibbs, I) beginning at the bottom of page

161 and continuing to the top of page 163 contains an

elegant proof of the impossibility of an uncompensated change in

ing "gas-current" observations, especially since the procedure has been

given in detail recently by H. T. Gerry and L. J. Gillespie (Phys. Rev.,

40, 269 (1932)) for the case of the vapor pressures of iodine.
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vapor pressure when the emitting soHd or Hquid is compressed.

It will be recognized that the proof depends on the use of

[272] by which the change in vapor pressure with pressure

on the liquid or solid phases was computed. It may be well to

remark that the energy equation corresponding to this case may
be easily deduced from the general equations (73) applied to one

component. Thus,

u' dp = n' dt + m/ d^ii',
\ (84)

v"dP = q"dt + mi"dni".j

Here dp refers to the vapor pressure change of the pure substance

(single accent), but if the pressure P is maintained constant on

the liquid phase and equilibrium subsists we have

or

dp
. , ^

\p = t-^ v'. (85)
at

The latent heat of evaporation under conditions of constant

pressure on the liquid phase accordingly differs from the normal

heat under saturation conditions.

In a similar manner if a pressure P is applied to the solid

phase but not the liquid phase we find

Xp = < ^ v", (86)
dt

dt
where v" is the volume of the liquid. Evidently — , the change

in melting point with pressure, will be large compared with the

ordinary change of melting point with pressure where the same

pressure is applied to both phases. The equation aids inci-

dentally in understanding the extruding of metals, made possible

no doubt because of actual instantaneous creation of liquid

phases under the enormous pressures applied to the solid.
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£3. Fundamental Equations from Gibhs-Dalton Law. The

fundamental equations in the form given in [291], [292] and

[293] are easily obtained. The latter equation may also, how-

ever, be expressed in the form:

r = 2 ^'^^^^ '^ mit(ci + ai - Hi)]

- 2 ci^i^ log f - 2 «i^i^ log^> (87) [293]

where Xi, the mol fraction, is equal to r The content of the

paragraph following [293] should be carefully noted.

24. Case of Gas Mixtures Whose Components are Chemically

Reactive. Thus far only gas mixtures with independently

variable components have been considered. The material

following [293] (Gibbs, 1, 163) therefore emphasizes the distinction

which must be made between gas mixtures of the former kind, and

those with convertible or chemically reactive components. The

characteristic of the latter is of course that chemical changes

proceed by whole numbers or fixed ratios. Two molecules of

hydrogen always require one molecule of oxygen, never more

nor less, to form one molecule of water, and three molecules

disappear when two water molecules are formed. As a

consequence we need only be concerned, in our equations of

thermodynamics for chemically combining gases, with these

whole number ratios and not with actual masses. Thus it is

clear that, in so far as convenience is served, our equations for

gas mixtures could be expressed in units of mass proportional

to the masses of the molecules of the separate and distinct

chemical species. This, of course, is the almost universal custom

in chemistry at present, and in all the preceding formulae it is

merely required that n, the number of mols, be substituted for

m the masses. The constants ai, 02, . . . must also be expressed

in terms of the mol as the unit of mass. Thus (87) [293] would

be written

f = 2^^ r^i + tic + R- i7i)]

Rt
- 2 ^^1^1^ log f - 2 ^1^^ log '^' (88) ^293]
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where R, the universal gas constant, is equal to the product of

tti, 02, ... and the corresponding molecular weights. Here

El, Ci and Hi are also assumed to have been multiplied by the

corresponding molecular weights.

II. Inferences in Regard to the Potentials in Liquids and

Solids (Gihbs, I, 164, 165)

There might be included under this heading a large portion

of the principles and doctrine which have found application in

physical chemistry in the last half-century. The fact that a

comparatively simple basis of fact could have such general

applicability was well known to Gibbs, as is indicated by the last

sentence of the section (7th line from bottom, p. 165). Indeed a

few empirically discovered facts interrelated thermodynamically

suffice to form the theory of those liquid mixtures wherein the

masses of one or several constituents are very small relative to the

mass of one of the components*^. The principle of the equality

of the potentials of a component in equilibrium in the coexisting

gaseous and liquid or solid phases affords the means of deter-

mining the potentials of the condensed phases. Because of this a

full knowledge of the properties of pure gases and their mixtures

is of fundamental importance in extending the range of applica-

bility of the general theory. Thus it becomes clear that great im-

portance attaches to aknowledge of the constants of the equation

of state for different substances, and the rules for combining

these constants, in order that the constants for the equations

for mixtures may become available. On the other hand"
given sufficient data for pure substances and their mixtures, the

required thermodynamic quantities may be accurately com-

puted empirically, using the assumption that the ideal gas laws

hold rigorously in the limit of low pressures. It is evident,

however, that on this basis an almost prohibitive amount of

experimental data would be required to satisfy the needs of the

science, and therefore continuous effort should be made to

develop a rational form of equation of state with the aid of

statistical mechanics. It is, indeed, apropos to add that the

correlations of physico-chemical facts by thermodynamics can
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receive much independent assistance and support from the

theorems and results deducible from statistical mechanics.

It is also evident of course that, outside of the field of equilib-

rium states, thermodynamics is of no service and progress in

the theory of non-equilibrium states depends on the perfection

of statistical theory. Modern atomic and molecular theories

likewise have an important part to play in leading to an improved

knowledge of molecular constants and molecular encounters,

which is indispensable to the future progress of physical chem-

istry.

So. Henry's Law. The law that the concentration of the dis-

solved constituent is proportional to the pressure of the gaseous

constituent is to be regarded as applying strictly only in the limit

where the amount of dissolved gas is vanishingly small. The

deviation in the case of carbon dioxide and water, for example,

where it amounts over the interval 30 atm. to 37 percent at

zero degrees and 29 percent at 12.43 degrees^* is typical. The

pressure of the gas phase, in this case, increases more rapidly than

the amount of gas dissolved.

By way of accounting for the deviations from Henry's law

it may be noted that the gaseous mixture over a liquid is now
known to be far from a perfect gas. This particular aspect of

the problem has received recent attention, and the changes in

volume on formation of the mixture, together with the signifi-

cant thermodynamic formulae, have been developed '^^-^^'^ using

the fugacity function introduced by G.N. Lewis^^-^^-^^'^''^ This

convenient function in the case of a pure gas is related to the n

function of Gibbs as follows

:

'• [h ^' -
^'-^l

/= pexp.\ — (n - Mi)
I'

(89)

where ^ is the potential at pressure p and temperature t, and /x«

is the potential at the same pressure and temperature assuming

the ideal gas laws to hold. From the equation it is evident

that f —> p in the limit when the pressure approaches zero.

The equilibrium fugacity, /«, of one of the gases, 1, in a mixture

of gases, is given by the equation ^^' ^2

/.= "''' '^^- [h r('' ~ f) *]'
^'^°^
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where vi is the partial volume
(:

dv\

dmj p, t, m

ART. J

, and Xi the

mol fraction. The analogue of Henry's law in terms of fugacity

becomes for dilute solutions /« = kmi", where m/' is the mass of

the dissolved gas in the liquid phase. A glance at the expres-

sion above for/e makes evident that a part of the deviations from

Henry's law will be found in the failure of the equihbrium gas

mixture to conform to the ideal gas laws.

£6. RaoulVs Law of Vapor Pressure and the Thermodynamic

Theory of Dilute Solutions. Another principle in the same class

with Henry's law is Raoult's law, according to which the ratio

of the vapor pressure of a solution to the normal saturation

pressure is equal to the ratio of the number of molecules of the

solvent to the sum of those of the dissolved substance and the

solvent. Designate the salt with subscript 2 and the solvent

with subscript s.

V

Psat.

n.

Ua + n2

or

Psat. — P _ n2

Psat.

Psat. P

P

Us + ^2

W2

ns

(91)

The relation of this result to the general Gibbs theory is easily

established for dilute salt solutions. A salt solution may be

regarded as a special case of a binary mixture in which the

component in smallest amount is non-volatile. The second of

the pair of equations in a, equation (83), vanishes and there

remains, since m^' = 0,

Xi dp „ dr"

7 = ^^^^+^'V- (92)

Note in the first place that if m-l'jm-i' = r" is constant, and

we let

Xo = ^ "^ (vi - v^
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represent the heat of vaporization of the pure solvent, the heat

of dilution is obtained at once for the case where the vapor, of

volume vi, may be taken to be an ideal gas, and the liquid

volume V2 is negligible. We find

X. - X. = AX = a.^.P ^-^^\,: (93)

Taking the temperature as constant in the general equation,

n TYi f

assuming that v = ——— {m,' is the mass of vapor of solvent),

V
we drop the accent in a" and r". This gives

dr AiU aamst

Integrating the last equation there is obtained

/,

— = log = - 7, r. (95)
p.at. V P'at. asMst

But psat. — p may be put equal to Ap, and w/ may be taken to

be numerically equal to ilf/ the molecular weight of the vapor,

whence

^=i^'-
(96)

p,ai. at nis

Raoult's law in dilute solution may be expressed in the form

^p/Ps = Ui/n, when Ui is small relative to n«. By comparison

we find

\dmjp, t.

which is constant at constant temperature and depends only on

ilf, _ „ , .

the molecular weight ratio vr. Fmally we obtam
M.2[2

Ms
M2

/X2 = —-^Rt log rris + /(p, t, nh)

for the relation between ^2 and the masses of solvent and dis-

solved substance.
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Again for constant pressure there is obtained from the general

equation

^dt\ t a *

(97)
(;dr/p Xi

From the previous inference it is clear that a is a positive

quantity, hence dr and dt change in the same sense or for

increased concentration there is a proportionate rise in tem-

perature. Inserting the value of a found in the preceding

paragraph we find on integrating

:

i - fo = -7- -' 98

which is the usual equation for the elevation of the boiling point.

A similar equation of corresponding form gives the depression

of the freezing point for dilute solutions.

If Xi is assumed given by [Xo + ci\r we obtain

i — t{s , t n-2,
, ^Xo—— + clog- = R— (99)

to' to IT'S

Expanding log t/to in a series of powers of
—-— leads, as a first

fo

approximation, to equation (98); retaining however the second

term leads to the equation

Rtot 712 r. c^o~l

Xo Us L Xo J

From the foregoing discussion the nature of the deficiencies in

the formulae arising from the approximations used will be clear.

A more complete theory may be constructed in various ways,

but up to the present time no very systematic coordination of

the theoretical development and exact experimentation has

been undertaken. Recently a method has been discussed

* Note that Xi is the heat required to remove unit mass of solvent

vapor from the salt solution. We may assume that Xi is equal to the heat

of evaporation of the pure solvent, or better, that it is a function of

temperature of the form [Xi = Xo + cit]r where ci is a constant.
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by G. van Lerberghe^^ which has as a basis the develop-

ment of the function p = f(ti, Vi, mj, W2, . . . ) by Taylor's theorem.

That it is possible to develop a consistent and rational system

for the discussion of the properties of solutions on such a basis

has, in fact, been pointed out by Planck ^^ The method is

equivalent in some respects to the system of treating solutions

developed by G. N. Lewis and systematically presented by
Lewis and Randall in their Thermodynamics.

Methods of treating solutions along these lines have, however,

the limitations of procedures whose foundation is entirely

empirical. On the other hand any other procedure requires

much detailed knowledge pertaining to molecular interaction

and the surmounting of formidable mathematical difficulties*^.

Although the initial steps have been taken in acquiring the

requisite knowledge of the attractive and repulsive fields of

molecules, very much ground remains to be won before a

complete molecular statistical theory of solutions can be

achieved. The mathematical difficulties, forming an important

part of the problem, remain at the moment practically unsolved^^

except for the case of infinitely dilute solutions*'^. The case

of electrolytes at infinite dilution has been treated by Debye

and Hiickel ^^- *^, and the accord of their theory with the facts is

astonishinglygood in spite of important fundamental limitations.

III. Considerations Relating to the Increase of Entropy Due
to the Mixture of Gases by Diffusion (Gihbs, I, 165-168)

The entropy change on mixing gases has already been

mentioned with reference to the difference in entropy which

arises when pure gases mix at temperature, t, and constant

pressure, p. Thus we may imagine two perfect gases 1 and 2,

contained in the apparatus indicated in the diagram, Fig. 1.

Suppose that the pistons are permeable to the gases as

indicated and the usual assumptions made with regard to the

absence of frictional effects. Each gas is assumed to occupy its

portion of the cylinder at the same pressure and temperature

when the pistons are in contact. As the pistons are slowly

moved out each gas passes through its respective semi-per-
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meable membrane into the space between the pistons, constitut-

ing finally a mixture of the two gases originally in the pure state.

By moving the pistons together the separation can be effected.

With the gases in the pure state we have,

rji = ruiCi log t + Wiai log — + miHi,
Till

772 = W2C2 log t + wi2a2 log — + m2i/2.
W2

(101) [278]

But = Vi and = F2, while aimi + 02^2 = ( k 1 + 1^2) 7
p p t

pV
= —-, and after mixing each gas will occupy the total volume

V

F = Fi + F2, or

F
t;/ = viiCi log t + miai log — + rriiHi,

V
ri2 = W2C2 log t + m2a2 log — + niiHi.

7VL2

(102)

The difference between the respective entropies after and

before mixing is given, therefore, by the following equations:

Fi aimi
,,-,, = -m,a, log - = -rma^ log

^^^^ ^ ^^^;

F2
,

^2^2
172 — •'72 = —nhai log— = — ?W2a2 log

;

—'

(103)

since Fi/F = aiiui
and F2/F = aiVii

aitni + a2m2
by the

relations following (101) [278] above.

Each difference is positive since the mol fractions are neces-

sarily each less than unity, and therefore an increase of entropy

has attended the mixing. If each gas is present in equal

amount the total increase becomes

vV
{ami + a^rrii) log 2 = y log 2. (104) [297]
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The generalization of the above result follows easily, and if

Xi, Xi, ... Xi are the mol fractions we find

^ - V 1 = r^-iV Sri

2J (vi - vx) = 2j «i^i ^°g - = C'-i Zy '' l^s
'

^^^^^ ^^^^1
Xi Ti

where C~^ in Gibbs' notation is equal to the universal gas

constant, usually designated by R. The discussion following

equation [297] is too complete to require comment other than to

draw attention to the remark which admirably sums up the

import of the Gibbs theorem on entropies: "the impossibility

of an uncompensated decrease of entropy seems to be reduced to

improbability" (15th line from bottom p. 167). It is of addi-

tional interest to note that an entirely analogous theorem may

P/STOf^ 1 PERMEABLE TO &AS1

GASl V
z

GAS 1

a/x/

GAS Z

VA

GAS a

P/STOA/Z PERMEABLE TO GASZ

Fig. 1

be deduced by starting with equation [92] of Gibbs' Statistical

Mechanics (Gibbs, II, Part I, 33) and extending the equation

to include two or more molecular species.

IV. The Phases of Dissipated Energy of an Ideal Gas Mixture

with Components Which Are Chemically Related

(Gihhs, I, 168-172)

Before reading this section, the section on "Certain Points

relating to the Molecular Constitution of Bodies," pp. 138-144,

should be consulted. The immediate goal is to provide the

basis for treating the phenomena exhibited by mixtures of gases

which are capable of chemical interaction. What is sought is a

scheme whereby the equilibrium amounts of the different

distinct molecular species may be correlated as a function of
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the energy of interaction, the pressure or volume, and the tem-

perature. At least this is the goal which is of chief interest to

the chemist using thermodynamics as a means of correlating

equilibrium data, and some conceptions of a molecular nature

are required in practice notwithstanding the often repeated

statement that thermodynamics has no need of molecular

hypotheses. The latter dictum is really true only in a restricted

sense in the field of the applications of thermodynamics to the

extensive and varied phenomena of chemistry.

The term phases of dissipated energy may be assumed equiva-

lent to what is now generally called the equilibrium state. It is

for this state alone that the energy is a minimum and the

entropy a maximum (see Gibbs, I, 56, "Criteria of Equilibrium

and Stability'
'
) . Of course equilibrium states are not always easy

to realize, but in every case of doubt as to the establishment of

equilibrium in the case of chemically interacting components

the usual test in practice is to vary the independent variables,

pressures or temperature or both, at the supposed state of

equilibrium and to observe the displacement, finally verifying

the possibility of reproducing the original condition of true

equilibrium at the point in question.

Gibbs' treatment involves the masses of the components

instead of the mols now used. Equation [299] in the concrete

case of the formation of water from the elements would be

written,

1 g. (H2O) = 8/9 g. (O2) + 1/9 g. (H2). (106) [299]

But for the condition of equilibrium it has been proved that

Zfii8mi ^ 0,

and our knowledge of the principles of chemical combination

allows us to identify the variations 5wi, 8m2, ... as proportional

to the X coefficients as in (106) [299]. In equation [300], 8ms may
be replaced by —1 if water is assumed to disappear in the

reaction, whence 5w2 becomes 8/9 and 8mi 1/9, both reckoned

plus, i.e.,

^ Ml + I M2 = M3, (107) [301]
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In terms of v and t as independent variables [276] gives

1 mi 8 m2 m3 , , , ,- ai log— + - a2 log - - as log- (108) ]302]

= A+Blogt- c/t,

in which the values of ^, 5 and C are given by [303], [304], [305].

The mass law is contained in the left-hand member of (108)

[302]. For, on multiplying and dividing each term by the

respective molecular weights, there results

(1 , wi 8 , 1712 1 , wisN ,^^^^
rrr log — + rrr log — - — log — )• (109)
9ilf1 ^ V QMz * y Ms V / ^ '

Multiplying and dividing the bracketed member by ilf3 = 18,

and taking Mx = 2, M2 = 32, gives

-|_log-+-log--log-j (110)

but — ' etc., become —:' —:' ~~:' Using Dalton's law of par-
V Qit a2t azt

tial pressures in its usual form pi = pxi, we jQnd

The term in the partial pressures is the usual mass law expres-

sion, or Kp as the quantity is commonly designated, while the

remaining term in the a's is a constant. The case where /3i
-|-

/32 — 1 is zero corresponds to the case where the sum of the

exponents of the partial pressures vanishes. An example exists

in the case of the union of H2 and I2 to form 2HI, where the

total pressure does not enter the reaction equation.

27. Restatement of the Above in Different Notation. Em-
ploying mols as the unit of mass, and recognizing from the

foregoing that the variations of mass 5wi, bnii, . . . need only be

considered as ratios equal in value to the coefficients in the

chemical reaction, we write [300] as

Smii'i ^ 0, (112) [300]
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where v represents the coefficients, for example — 1, 1/2 and 1 in

the decomposition of water. Here the minus sign signifies that

a component vanishes while the positive sign signifies the

appearance of components formed from those having the

minus sign. Assume also that the heat capacities Ci, c^, ...

are not constants but functions of the temperature. Starting

with equations [265] and [283] there is finally obtained

2^= S'^i /
^1*^^ + ^n,Ex -h^n, Rt -Y^Uit

\
J to J to

- ^niRtlog—^ - ^nitHi,

whence

f r dt Rt
Ml = / ci*dt +E^-t \ c*-r -Rt\og-- + Rt- H,t. (113)

The equivalent of equation (2) [300] may now be easily formed,

and on rearrangement there results

2jVi log pxi = - + Zj""' ^°S Rt
-

^
Rt ' Z-V—-^"" Rt

't

^U'^*^'^' S^^^^-S^^^
+ -^ + -]f^ (114) [309]

This equation is perfectly general within the limits of appli-

cability of the perfect gas laws, and [282] and [283] apply. The
energy constants and the entropy constants may be adjusted to

suit practical convenience, but this has already been referred to

earlier and need not detain us here.

The case of the dissociation of water vapor and of the decom-
position of hydriodic acid will illustrate in detail the points

raised by Gibbs. For the former we have

H2O =^02 + H2,

1

Vz = —\, J/2 = 2' "1 ^ -^•

(115)
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In general the heat capacities are known over a Hmited range

of temperature, for H2 is the only gas whose heat capacity is

known at low temperatures. The question of whether the

heat capacity approaches 3/2 R or vanishes at zero Kelvin is,

moreover, not yet settled. In the case of water vapor values of

C3 are available to temperatures where water vapor is detectably

dissociated. Such values must, however, be corrected for heat

absorbed due to dissociation; a correction evidently impossible

to obtain until the dissociation data can be correlated, and then a

final and exact result is only possible by successive approxima-

tion. Above zero degrees the heat capacities of most gases

increase rather slowly, and in the absence of a generally appli-

cable theory of heat capacities of gases linear expressions, or at

most quadratic expansions, may be used. On this basis the

heat capacity terms become, when the linear form is used,

2^1 /
c,*dt = ^v,a, {t - to) + SV (^' - ^0')' (116)

J to

2)"! / ci*dt/t = ^via,\og{t/to) + ^vA (t - to). (117)
J to

The present custom is often to integrate the linear terms

between zero Kelvin and t, but such practice, as is frequently

the case, had its origin in the earlier erroneous belief that

the heat capacity dependence on temperature was as simple

below the ice point as it appeared to be above. Note should be

taken also of Gibbs' decision to express the reaction pressure-

temperature function in terms of the energy constant £"1, a

choice very likely induced by the somewhat simpler treatment

possible when non-ideal gases are involved.

When Zi'i vanishes in (114) [309] the mol fraction function

Si'i log xi becomes a function of temperature alone, and thus

pressure is without influence on the numbers of the different

kinds of molecules so long as the gases are ideal. A further

simplification would result if the terms

/ J vi
I

Ci*dt and 2j vx \ Ci*dt/t
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vanished, and this assumption is sometimes made when, as is

often the case, there is a practically complete lack of heat

capacity data. The leading term is of course ZvEi/Rt and is very

large in the usual case of gas reactions.

The equation (114) [309] contains the generalization set

forth in equations [311] to [318]. It includes also the case

referred to in the sentence following [318]; "graded" dissocia-

tion illustrated by the reaction HI ^ H2 + I2 -^ 2H + 21.

It is clear also that the presence of a neutral gas in the reaction

mixture is without influence on the value of the equilibrium

constant (114) [309] provided p is understood to be the total

pressure diminished by the pressure the neutral gas would
exert if it alone occupied the volume of the mixture. The
influence of a gravitational field of the magnitude available on

the earth is exceedingly small and equation [234], Gibbs, I, 146

provides the basis for investigating such effects.

V. Gas Mixtures with Convertible Components
{Gibbs, I, 172-184)

The equation (114) [309] of the previous section includes

the case of interest here developed. The term convertible com-
ponents refers to the formation of multiple molecules such as

(N02)2; a case which would also be included under the term
reversible polymerization or association. The painstaking

justification of the application of the principles established for

the treatment of mixtures of chemically related components
to the present case may seem unnecessary. On the other

hand it should be recalled that one of the former axioms of

chemistry was that substances of the same qualitative and
quantitative composition must possess the same physical

properties. Reference may be made to Liebig's discovery of

the identity of composition of silver fulminate and silver

cyanate as the first definite fact invalidating the axiom. Had
NO2 been colorless the explanation of the considerable change in

density of the gas with pressure would probably not have been

ascribed to association and dissociation for a long time. As a

matter of fact it was the change in color on change of pressure
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and temperature which prompted the supposition of a change in

molecular species, and the measurements of density were then

used as confirmatory evidence to establish the fact of the con-

version of NO2 into colorless N2O4 as the pressure increased or

the temperature diminished.

The assumption has often been made that the departure of

gases from the ideal state is to be ascribed generally to the

tendency to polymerization. The same idea appeared later in

modified form in the attempt to explain all departures from Van

der Waals' equation as due to an association collapse of the

molecular system, and again in the idea that the formation of

the liquid phase was conditioned upon such a collapse. It is

clear however that a distinct molecular species of the associated

type such as (N02)2 occurs comparatively rarely, and that the

formation of the liquid phase and the departure of gases from

the ideal state must in general be ascribed to quite different

causes.

The case of convertible components offers one point of

contrast with that of chemically related components, for the

latter is as a rule subject to passive resistance (Gibbs, I, 58)

whereas the former appears not to be limited in the rapidity

with which the ratio of the molecular species can adjust itself to

follow the fluctuations of pressure and temperature.^''

The test, that equation [309] be applicable to the case of con-

vertible components, rests on its successful application in inter-

preting the densities of N2O4 observed under various conditions

of temperature and pressure. Admittedly the dissociation of

the latter substance into two molecules, and similar chemical

reactions, form ideal examples to which the thermodynamic

principles of chemical interaction may be expected to apply.

Reactions of this class in the gaseous phase appear to be free

from the effects of passive resistance and are subject unquestion-

ably to the conditions of equilibrium discussed by Gibbs from

page 56 on. They present a problem exemplifying a wide

range of the interpretative possibilities latent in thermody-

namics.

Evidently it is difficult to provide specific heat data to use in

the reaction equation (114) [309] since the freedom of con-
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vertibility of the simple and complex molecules cannot be

arrested. The apparent heat capacity of the gas mixture will

therefore consist of the sum of the heat capacities of quantities of

the NO2 and N2O4 molecules dependent on the temperature and

pressure and on the heat absorbed in the shift of the molecular

species while the mixture is being changed in temperature. An
exact knowledge of the ratio of the number of mols of NO2 and

N2O4 as a function of temperature and pressure would of course

enable such apparent heat capacities to be operated upon with a

view to extracting the heat capacities of the separate molecular

species, but it is quite impossible to evaluate the terms of

equation (114) [309], for example, without the heat capacity

data. It might be supposed that (114) [309] could be evalu-

ated omitting the heat capacity terms as a first approximation,

and that with such a provisional relation between the amounts

of NO2 to N2O4 as a function of p and t one could treat the

apparent heat capacity data. The provisional values of the

heat capacities could then be used to secure a second approxi-

mation of the reaction equation, and this in turn would permit a

further refinement in computing the true heat capacities. But

this tedious process could not lead to an exact result since

in the treatment the perfect gas laws would be involved.

Of course, sufficiently precise measurements of the actual

density of the mixture would conceivably permit a semi-

empirical formulation with (114) [309] as a basis, provided the

composition of the mixture could be exactly determined. This

is, however, a matter of the greatest difficulty because of the

great reaction mobility so that, generally considered, the exact

interpretation of density data for mutually convertible com-

ponents in terms of the numbers of the reacting molecules, the

pressure and the temperature, must be admitted to be sur-

rounded with difficulties.

We proceed with the application of equation (114) [309] by

omitting all the heat capacity terms and writing for ZviEi

^viH\ — "EviR
AE, and for the symbol I, giving

K

l«S^r^= - ^+^- (118) [309]
Kt x^^Q lit
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This is the form adopted by Gibbs.* We proceed to examine a

few properties of this equation.

The equation of state of the gas mixture is assumed to be

pv = Rt(ni + 712), where ni is the number of mols of NO2 and ria

the number of N2O4, which permits the equation to be expressed

as

rii AE
log— = - — + /.

n^v Rt
(119) [309]

Setting p — equal to kp, and — equal to kc, and differentiat-
X2 ThP

ing (118) [309] with respect to t at constant pressure gives the

equation

'd log kp\ AE + Rt

c- dt /p Rf

But equation [89] on differentiation and substitution of

(120)

'(|),* + 'va(/.
dp + Cpdt for de + pdv,

where Cp is the heat capacity at constant pressure, gives

dx = Cpdt —
.dt,

— V dp, (121)

and

®r'- ©. = -['©.-"]
'dVT— ' (122)

where r = t"^. The summation principle [283] leads to the con-

clusion, however, using the first of the above pair of equations,

that

X = [S I'lXi + 2 viCp,dt]p. (123)

In (118) [309] the heat capacity terms have been assumed to

* See paragraph beginning line 4, Gibbs, I, 180.
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vanish, and application of the same condition to the last equation

leads to

y^ = 2^ix = Axi = A^ + i:viRt = AE -i- m. (124)

But this is the numerator of the expression (120) for the

derivative with respect to t of log kp, which is to be identified as

the heat of reaction at constant pressure subject to the condi-

tion that the specific heat capacities of the reacting gases are all

equal (i.e., 2viCi = 0).

The temperature derivative of log kc, taken for constant

volume, is

/8 log k,\ AE

and AE is the heat of reaction at constant volume. From [86] we

find {
—

) = c and integrating at constant volume using [283]
\ot/v

we have

'

^
(126)= \aE+ jY^ViCidt

which is the general equation for the energy at constant volume.

The above is the equivalent, with some elaboration of detail,

of the material of Gibbs, I, 180 and the first third of 181.

It remains to note that since we have defined log kp and log kc

as equal to 2j ^^ ^^^ P^i ^^^ Zj ^^ ^^^ ~'
V

—
^
—~

)
^^ ^^^°

and

(
d log fcA ^

^

from (114) [309]. If, however, we set S vi log xi equal to log kx,

then from (114) [309] it follows that

\ 8p 7, p

\ dv ), V
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31. A More General Application of the Gibhs-Dalton Rule.

A more general reaction equation than (114) [309] may be

readily obtained by applying the Gibbs-Dalton rule in the

form p = 2pi using the equation (VII) to compute the pi's.

The equations for energy (53), entropy (54), and \p (55), have

already been given, and from these the equation for 2 vim may
be formed and the equilibrium equation found, i.e.,

(129) [309]

2 ^1^1 = 0'

2j vi log kp = 2^vi log poXi - 2 y "-'bIhx

where Sj'i log pnXi is given by equation (114) [309]. The
second term of the right hand member of (129) [309] may be

written, using (Vila) and omitting ai, 0:2, • •

.

-is ''^^^^^ = i [S ''^^^ Rt-1^ '^''^^^ ^^30)

Substituting in (129) [309] there is obtained

2j vi log pxi — 2j^i log poXi
"^1^1X1Ai Si'i.riiSi

Rt V- (131)

Thus it is seen that at constant temperature the left hand mem-
ber, or the quantity log K^/Kq should vary with the pressure.

For the reaction N2O4 -^ 2NO2 we may write

log KJK, = - (2^1 + ^2) (2Ai + A,)

Rt (Rty ]
Xip

+
'§2

Rt
(132)

where /3i, (32, Ai, A2, are the constants of the equation of state

for the gases NO2 (mol fraction Xi) and N2O4 (mol fraction x^).

At constant temperature and low pressure, Xi the mol fraction

of the simple species is small, and log Kp/Ko depends more
largely on the second term of the right hand member, which is

independent of Xi but proportional to pressure. The coefficient
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of p, it should be noted, can be positive, negative or zero de-

pending on the temperature, and of course the coefficient of xip

has the same property although the temperature at which each

coefficient vanishes will not in general be the same.

Certain considerations may be shown to make plausible the

assumption that 2/3i = ^2, ^Ai = A2; where /3i, Ai, ^2, A2, are the

constants in mols of the equations of state. Under such an

assumption the last equation reduces to

log K,/Ko = [I
- ^J (x. - X,) V

'^2 A2

[Rt (my

1 - 3«

1 + a V, (133)

where a is the fraction of N2O4 dissociated.

A recent paper by Verhoek and Daniels " contains material

which affords a test of the formulation above. The measure-

ments show that the values of log Kp/K^ do actually vary

linearly with pressure over a range of pressure which however

does not exceed one atm. The data have been used to pre-

pare Fig. 2 illustrating the course of the experiments at three

temperatures. The slopes of the lines do not appear to be in

regular order as would be expected from the equation above.

However, if the equation above were capable of representing

the data, a line would start from the origin for every isothermal

series of experiments forming a "fan" composed of lines in both

the positive or upper part of the diagram and the lower or nega-

tive part. Eventually Kp will equal Kq independent of the

pressure but, as P increases, the sign of the right hand member

would come to depend upon {x2 — Xi). A continuation of the

exact investigation of this reaction evidently holds much of

interest. The reformulations of the data '^2, 63 q^ ^^ig reac-

tion, using the ideal gas laws, which have appeared since the

publication of Gibbs' papers, can add nothing to the thermo-

dynamic theory as applied to cases of convertible components.

29. General Conclusions and the Equation of State of an Ideal

Gas Mixture Having Convertible Components. The heat capacity

at constant volume for a real gas possessing a coefficient {dp/dt)v
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which is constant and independent of temperature is the same

as it would be for the gas in the ideal state at infinitely low

pressure. This may be proved by considering the two general

equations

and

/M ^ /dp\
^

\dv)t \dtjj

). =

©

[337]

aos

0.00

-0.05

-0.10

0.5 1.0

ATMOSPHERES PRESSURE

Fig. 2
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Performing the operations indicated in [338] the following

equation is deduced

:

Accordingly the right hand member of the latter vanishes for a

substance whose (dp/dt)v coefficient is constant, and the con-

clusion follows that Cy is a function of temperature only. But

no restriction has been put upon whether (dp/dt).^ is to be taken

at high pressures or low, for perfect or imperfect gases, and

therefore c^ is the same whether the fluid is of great density or

of vanishing density. A fluid following van der Waals' equation

would possess the latter quality. Comparison of the heat

capacity c» of ether, for example, in the liquid phase and the

gaseous phase will show that the heat capacities are equal for

the substance in the two phases. This, however, is not to be

taken as an indication that ether follows van der Waals' equa-

tion. As a matter of fact, however, {dp/dt)v is remarkably

independent of temperature in the case of many substances,

(in both the gaseous and liquid phases) •^* particularly non-

polar substances in the dielectric constant sense of the term.

Assuming the gases NO2 and N2O4 to be ideal the equation of

state may be written pv = Rt (ni + ^2) where rii and ^2 denote

the number of mols of the two gases. Assume that one mol of

N2O4 is dissociated to the extent a, the fraction dissociated.

The quantity Ui will be then given by 2a and 712 by (1 — a)

whence pv = Rt(l + a). On the other hand [333] in terms of a

becomes

or

log p : ^ Ao+ Bologt -
i — (X I

Ao' t^o e «
-' (136)

1 — a^ p

where Ao, Bo and Co are constants related to similar ones

appearing in [333]. By means of the latter an expression for p
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as a function of a and t is found and, using the equation for pv,

another equation giving v in terms of a and t. These are

1 - a2 _Co

p = — Ao't^ e ' ' (137)
a

a

1 -
2 Co

1 -B
a
Ao" r - ^° e ' ' (138)

R
where Aq" is -j-,. From the equations it is clear that (dp/dt)v

cannot be independent of temperature except in the strict hmit

oi p = or t = CO , for

/dp\ R
^ ^ Rt /da\

[Vtl = ; (1 + «) + 7 [m):

Equation [342] is the Gibbs-Dalton rule, p = 2pi, applied to

the case of binary mixtures assuming equilibrium to subsist at

Rt
,

all times. It is equivalent to the equation p = — (1 + a)

where mols are used instead of masses. The equation for v

above corresponds to [345]. Since the entropy and energy

conform to the summation rules, [282], [283] may be easily

formed in terms of mols from the foregoing, while the calcula-

tion of the specific heat capacity of the equilibrium mixture may
be carried out by differentiating the energy equation [346] of

Gibbs with respect to temperature at constant volume.

VI. On the Vapor-densities of Peroxide of Nitrogen, Formic

Acid, Acetic Acid, and Perchloride of Phosphorus

(Gihhs, /, 373-403)

This section comprises material examined with a view to

demonstrating the applicability of [309] or (114) [309]. Since

1879 a quantity of new density data for these substances has

appeared, but no new facts or inferences can be gleaned by

repeating Gibbs' treatment. In the case of the N2O4 —> 2NO2
reaction Verhoek and Daniels' work, already referred to, has

shown that the perfect gas laws are not sufficiently valid to
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warrant attempting a refined correlation on the usual basis.

There is no doubt whatever that the same statement will hold

true for the other gases or vapors listed in the heading of the

section.
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K
THE THERMODYNAMICS OF STRAINED

ELASTIC SOLIDS

The Conditions of Internal and External Equilib-

rium FOR Solids in Contact with Fluids with Regard
to all Possible States of Strain of the Solids

[Gibbs, I, pp. m-218]

JAMES RICE

Note. In order to follow this part of Gibbs' work the reader must know
Bomething about the mathematical treatment of the relations which

exist between the stresses set up in an elastic medium bj the action of

external forces on it, and the strains which accompany these stresses.

In the study of the thermodynamics of these media, such relations

take the place of the equation of state in the thermodynamics of a fluid

medium. The treatment of Gibbs is formally somewhat more compli-

cated than that usually employed, by reason of his desire at the outset

to make use of two sets of axes of reference which need not be regarded

as identical, although they are similar, i.e., capable of superposition

(p. 185). It will therefore be advisable to deal with these matters in

a less complicated manner at first. In consequence we shall have to

prefix to the commentary proper a rather long exposition of the analy-

sis of strain and stress, with some account of the thermodynamics of a

single strained body.

I. Exposition of Elastic Solid Theory So Far As Needed

for Following Gibbs' Treatment of the

Contact of Fluids and Solids

1. Analysis of Strain. When a body is deformed or strained,

its parts undergo a change of relative position. In order to

deal with this in the classical mathematical way, we conceive

the body to be constituted of particles each of which has in

any assigned state of strain definite coordinates with regard to

assigned axes of reference; and yet we compromise with these

395
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notions of molecular structure and also conceive that the

material of the body is "smoothed out" to become a continuous

medium. We picture a "physically small" element of the

body around a particle, i.e., an element of volume small enough

to be beyond our powers of handling experimentally and yet

large enough to contain a very great number of molecules; the

quotient of the mass of the molecules contained within this

element by its volume being regarded as the density at the

point.

If a body is strained, obviously some of its particles must be

displaced from the position previously occupied in the system of

reference. Yet displacement may not produce strain. Clearly

there is no strain if each particle receives a displacement equal

in magnitude and direction to that to which all the other

particles are subject. Again a simple rotation, or a motion

compounded of a simple translation and a simple rotation, will

produce no strain. In short, strain involves not only displace-

ment but also a difference of displacement for neighboring

particles (which is not compatible with a simple rotation), and

the business of the mathematician is to determine the most

convenient mathematical way of stating how this difference of

displacement varies for two neighboring particles P and Q
supposing that one of them, P, is kept in mind all the time while

the other one, Q, is conceived to be in turn any one of the other

particles in an element of volume around P. If this statement

when formulated turns out to be quantitatively the same for all

the elements of volume, we call the strain "homogeneous;"

otherwise it is "heterogeneous."

We will consider (with Gibbs) that the body is first in a "com-

pletely determined state of strain," which we shall call the

^'state of reference." Let P' be the position of a point or particle

of the body in this state. It is then strained from this state,

and we denote by P the position of the same particle. Consider

another particle, near to the former, whose position in the state

of reference is Q' and after the strain is Q. The mathematical

formulation of the nature of this strain will summarize all the

essential information concerning the elongation of the element

of length P'Q' and also its change of orientation when it is dis-
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placed to PQ, and this for all possible positions of Q' in the

neighborhood of P'; and this again, if the strain is heterogene-

ous, for all possible positions of P' in the body.

The use of the words "homogeneous" and "heterogeneous" in

connection with strain must not lead to confusion with their

use as referring to substances. A homogeneous material may-

very readily be subjected to a heterogeneous strain, as will

appear presently. It is as well also at this point to reahze what

is meant by an elastically isotropic material as distinct from

one which is elastically anisotropic (or aeolotropic). Thus we

suppose that the body is deformed from its state of reference

by a completely defined set of external forces acting on each

element of volume (gravitational, for example; or definite

mechanical pulls applied to definite elements of volume in the

periphery of the body). Each element of length P'Q' in the

body is subject to a definite change in length and direction.

Suppose now that all the external forces remain unchanged in

magnitude but all are changed by the same amount in direction,

then the strain in the linear element P'Q', i.e., its change in

magnitude and direction from the state of reference, will not in

general remain as before; but if the body is isotropic a linear

element P'R' which bears the same relation of direction to the

directionally changed forces as did P'Q' to the external forces

formerly, will experience the same strain as that to which P'Q'

was subject in the first case. But for an anisotropic (crystal-

line) body even this statement is not in general true. These

definitions in general terms will be more clearly stated in

precise mathematical form presently; but the fact mentioned

embodies the essence of the distinction between anisotropy and

isotropy.

Before proceeding to a general mathematical treatment of

strain it may be advisable to consider one or two special cases

where there are certain simplifying conditions. Imagine for

example that all points are displaced in one direction, parallel

to the axis OX' say, and that the displacement of the point

P'ix', y', z') is a function of x' only. Representing this dis-

placement by u{x') (or briefly by u), we have

X = x' -{ u{x'), y = y', z = z'y
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where the coordinates of the point P after the strain are x, y, z.

Let Q' be a point adjacent to P' whose coordinates in the state of

reference are x' + ^', y' , z'\ the coordinates of Q, i.e., the position

after the strain, are

a;' + £' + u{x' + r), 2/, 2,

where u{x' + ^') is the same function of the argument x' + ^
that w(x') is of x' . Hence the hnear element P'Q' has been

altered from a length |' to a length ^ + u{x' + ^') — w(a;'),

besides of course experiencing a bodily translation which is of no

importance in discussing the strain. Thus the alteration in

length of the linear element is

u{x' + r) - u{x'),

which by Taylor's theorem is equal to

du
^ ^

d^u

„/ ^ + 2 j„/2 ^ "T

If the differential coefficient du/dx' does not vary in value

appreciably over a range within which we choose the value of ^',

we may neglect the terms in ^'^ etc. (Thus if P'Q' is a range of

length extending over a few molecules in the actual body this

proviso is the same as that referred to by Gibbs on page 185,

line 20.) Under these circumstances the length of P'Q', viz., ^',

is altered to ^' (1 + du/dx'), and hence du/dx' is the fraction of

elongation of the body at P', viz., the ratio of the change in

length to the original length. Gibbs in his discussion actually

uses the differential coefficient dx/dx', but it is readily seen

that this is just 1 + du/dx', i.e., the ratio of elongation, or the

"variation" of the length in the strict meaning of "variation,"

viz., the ratio of the varied value of a quantity to its previous

value. If u(x') is a linear function of x' so that du/dx' is con-

stant over the whole body, the elongation has the same value

everywhere, and the strain is homogeneous. Otherwise du/dx'

varies from element to element of the body, and is in fact a

function of x' itself, so that the value of du/dx' depends on

where the point P' of the element is situated in the body,
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and the strain is "heterogeneous." Nevertheless, on account

of the proviso mentioned above, we can regard the strain as

being homogeneous throughout any assigned physically small

element of volume. If the length actually contracts, the

extension du/dx' is negative.

As another simple example consider again the case in which

all particles are displaced parallel to OX', but now taking the

displacement to be a function of y', the distance of the particle

from a plane parallel to which the displacement takes place.

Now choose Q', the neighbor of P', to be a point such that

P'Q' is perpendicular to the direction of the displacements.

M Q

Fig. 1

Thus if x', y', z' are the coordinates of P' and x, y, z are the

coordinates of its displaced position P,

X = x' + u(y'), y = y', z = z'.

Also if x', y' + t]', z' are the coordinates of the undisplaced

position Q' of the "neighbor," its displaced coordinates are

x' + u{y' + 7,0, y' + -n', z'-

The displacement P'P is u{y') and the displacement Q'Q is

u{y' + r]') or u{y') + (du/dy'W. Hence MQ in Fig. 1 is
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{du/dy')r}' and the angle QPM has for its trigonometrical

tangent the value du/dy'. The figure shows that this strain is

what is called a "shear." A bar shaped element of volume
which is extended parallel to the axis OZ' (perpendicular to the

plane of the paper) and whose section by the plane OX'Y' is

P'Q'R'S' (Fig. 2), is displaced to a position whose section is PQRS.
This is equivalent to a simple displacement of the bar as a

whole from P'Q'R'S' to PMNS and a real strain or change of

shape from PMNS to PQRS. This latter is the "shear" and
its magnitude is measured by the tangent of the angle QPM
(or simply by the angle itself when the strain is so small that the

tangent of the angle and its radian measure are practically

identical), i.e., by du/dy'. If w is a linear function of y', the

O'MO R'NR

Fig. 2

shear is homogeneous throughout the body; otherwise it is

heterogeneous and the amount of shearing varies from point to

point of the body.

When we undertake a general analysis of strain these special

cases give us a hint how to proceed. The point P' whose co-

ordinates are x', y', z' experiences a displacement whose com-

ponents we represent by u{x'
^
y', z'), v{x', y', z'), w{x', y', z'),

for the displacement must have some functional relationship

with the position of P' if analysis is to be possible at all.*

* Will the reader please note that we are, for the time being, referring

the body before and after the strain to the same axes OX', OY', OZ'.

Formally Gibbs' procedure is a little wider since he refers the body after
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Hence the coordinates of the point in its displaced position,

viz., P", are given by

x" =x' + u{x', y', z'), y" = y' + v{x'
,
y' , z'),

z" = 2' + w{x', y', z'). (1)

Consider a neighboring point whose undisplaced position is

Q' with the coordinates

x' + r, y' + V, z' + r.

After the displacement, the coordinates (of Q") are

a:' + r + u{x' + r, y' + V, 2' + r),

and two similar expressions. Neglecting as before and for the

same reason the differential coefficients higher than the first,

these become x" + ^", y" + r,", z" + f", where

du , du , du
,

dv , dv , dv
,

dw dw dw
,

(2)

(For convenience and brevity we drop the bracketed coordinates

after the symbols u, v, w; but it must not be forgotten that u

is to be understood as the function u{x', y', z'), etc).

It will be convenient to introduce single letter symbols to

the strain to a different set of axes OX, OY, OZ. The two sets of axes are

not necessarily identical, but he regards them as "similar, i.e., capable

of superposition" ; so that if one set is orthogonal, then also is the other.

At the outset, however, there is an element of simplification in keeping

the same set of axes; but in order that there may be no confusion later

when we adopt Gibbs' wider analysis we are now referring to the co-

ordinates of the displaced point as x", y", z" instead of x, xj, z, thus

keeping the latter triad of letters to represent, as Gibbs does, the coor-

dinates of the displaced point with reference to a second system of axes.
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replace the differential coefficients, so we shall write these

equations as

r' = enr + eW + Cut',]

v" = 621^ + 6227?' + e23r,(' (3)

r" = 631^ + 632^' + e33f'J

where*
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former position P'. This will bring the point Q" to R", where
Q"R" is parallel and equal to P"P'. The magnitude and
direction of the line Q'R" is the vector which, when estimated

for all Q' points in the neighborhood of P', would give us the

necessary information for calculating the strain. Now the

components of the vector length Q'R", the "differential dis-

placement" of Q' with reference to P', are ^" — ^', rj" — 7/',

^" — f ' and are therefore equal to the expressions

(en - l)r + e:2rj' + e^t',^

621^' + (622 - 1)^7' + e23r',[ (5)

631^' + 63271' + (633 - l)i'',,

which are linear functions of ^', t]'
, f ' if en, 612, 613, ... 633 are

constants.

H

P' P
Fig. 3

Let us impose for a moment a simplifying condition with

regard to these nine strain constants and assume that 612 = 621,

623 = 632, esi = ei3. It will be very convenient for a moment to

write a for en — \,h for 622 — 1, c for 633 — 1, / for 623 or 632, g

for 631 or en, h for 612 or 621. Thus

r' - r = ar + h' + gf',1

r," -v' = H' + hr,' -^n',} (6)

Taking P' as a local origin, and axes of reference through P'

parallel to OX', OY', OZ' ("local axes" at P'), let us suppose

the family of similar and similarly placed quadric surfaces con-
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structed, which are represented, in the "local" coordinates

^', r\
, f ', by the equation

where fc is a constant which has a definite value for each member
of the family. One member of this family will pass through Q'

and, if we recall the statements made concerning quadric sur-

faces in the author's Mathematical Note (this volume. Article

B, p. 15), it will be seen by reference to (6) that the dif-

ferential displacement Q'R" of the point Q! is normal to

this surface at this point. The result of this will be that

points originally on a straight line will still lie on a straight

line after the strain. (The expressions in (6) are linear in ^ , t]'

,

f '.) But in general the angle between two lines will be altered

in value; in particular two lines at right angles to each other

before the strain will not be at right angles after it. However,

there is an exception to this general statement. There are three

mutually orthogonal directions and any lines which are parallel

to these before the strain remain at right angles to each other

after the strain. These directions are in fact the directions of

the three principal axes of the quadric surface; for if Q! is on one

of these, then, since Q'W is normal to the surface at Q', R" is

on the axis too, and the lines F'Q! and F'R" are coincident.

But by construction F"Q," is parallel to P'R"; therefore it is

parallel to P'Q'. Hence the three principal axes are displaced

into three lines parallel to them respectively, and so are at right

angles to each other as before.

To prove this we apparently had to restrict our reasoning by
assuming that 623 = ez2, etc. We can remove this restriction

however and still arrive at the same result. To show this we
must resort to a simple artifice. Take the first expression in

(5), and treat it thus:

{en - 1) r + e,W + eisf '
= (eu - D ^' +

612 + 621

V

I

^31 + ei3 , 612 — 621 , 631 — en ,
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the so called "principal axes of strain," which are not only

mutually orthogonal before the strain, but remain so after it,

although in general they are not pointing in the same directions

after as before. This is a result used by Gibbs and demon-

strated by him in a different manner (Gibbs, I, 205 et seq). On
page 204 also occurs the sentence: "We have already had

occasion to remark that the state of strain of an element con-

sidered without reference to directions in space is capable of

only six independent variations." This remark is illustrated

by the result which we have just obtained, since although there

are nine strain-coefficients, the strain, apart from the rotation

which produces no relative displacement of neighboring parts,

depends on the six quantities

€l\, 622, 633,

^23 + ^32 631 + ei3 ei2 + 621.
, ,

Gibbs then continues: "Hence it must be possible to express

the state of strain of an element by six functions of dx/dx', . .

.

dz/dz', which are independent of the position of the element."

The functions chosen by Gibbs are not so formally simple as

those written above and have a certain appearance of arbitra-

riness about them. So we will address ourselves to the task of

explaining how the six functions defined in [418] and [419]

naturally arise in a further discussion of strain. Indeed,

the whole of the material treated in Gibbs, I, 205-211 may

prove troublesome to follow without some help over analytical

difficulties, which will now be given. The treatment which

follows will present the matter from a somewhat different angle

and at the same time bring out the physical nature of the er»

coefficients.

Let us revert to equations (3) and use them to determine the

length of P"Q" as a function of the local coordinates of Q', the

original position of Q", with reference to the axes through P',

the original position of P". It is easy to see that

p"Q" = r" + v'" + r'
= e,^" + e^v" + esf'^ + 2e,v't + 2e,^'^' + 266^^?', (8)
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where

ei = en^ + 621^ + e3l^

62 = 612^ + 622^ + e32S

63 = ei3^ + 623^ + essS

64 = 612613 + 622623 + 632633,

6b = 613611 + 623621 + 633631,

66 = 611612 + 621622 + 631632.

(9)

Choose for the moment a special case, letting the point Q' be

placed on the local axis of x' at P', so that its local coordinates

are ^', 0, 0. It follows from (8) that

P"Q" = ei^" = eiP'Q' •

Thus (61)
i is the "ratio of elongation" parallel to OX', and (62)^

and (63)* can be interpreted in a similar manner. It was men-

tioned above that two lines at right angles to each other before

the strain will not remain so after it. We shall show how this

fact is connected with the 64, 65, e^ quantities. For let us con-

sider Q' to be a point in the local plane of x' y' at P', its local

coordinates being ^' , r\ , 0. Drop perpendiculars Q'M'
, Q'N' on

the local axes of x' and y' at P'. Let Q", M", N" be the posi-

tions of these points after the strain. From the result obtained

just above

,2P"M" = eiP'M' ^,

P"N"^" = e2P'N'\

From (8) we obtain

PW' = ei^' + 6277'2 + 2e,^'v',

and so

(6162)^

But by the application of elementary trigonometry to the

parallelogram P"M"Q"N"

P"Q" = p"M" + P"N" + 2P"M"-P"N"-co& {N"P"M").
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cos {N"P"M") = 66

(6162)"
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(10)

and similar results can be obtained for the other pairs of axes.

A glance at Fig. 4 shows that the rectangle P'M'Q'N' has
suffered a shear to the shape P"M"Q"N". (It is in general

also subject to a rotation.) The shear is measured by the angle

L"P"N" whose sine is by equation (10) equal to 66/(^162)^ If

the strains are sufficiently small we can simplify this. Recalhng
the original definitions of the era coefficients in (4), we see that

^11 — 1, 622 — 1, 633 — 1, 623, 632, 631, ei3. 612, 621

X'
Fig. 4

are small compared to unity if the relative displacement of two
points is a small fraction of their distance apart. Hence, by

(9), ei, 62, ez each differ from unity by a small amount. Also in

the definition of ee the third term is the product of two small

quantities, the second term differs from 621 by a small fraction

of 621, and the first term differs from e^ by a small fraction of 612.

Thus, apart from a neghgible error, the sine of L"P"N" is equal

to 612 + 621. The angle being also small in this case, its value,

that is the shear of the lines originally parallel to OX' and OY',

is practically 612 + 621," this in fact measures very closely the

amount by which the angle between these lines has changed
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from a right angle. The shears of lines parallel originally to the

axes OY' and OZ', and of those parallel to the axes OZ' and OX',

are likewise given to a close approximation by 64 and e&, re-

spectively, or practically 623 + 632 and esi + 613.

Now we know that there is one set of axes of reference, for

which there is no shear. Suppose we had chosen them at the

outset and carried through the analysis just finished, then three

of six strain functions calculated as in (9) would be zero, viz.

the three indicated by the suffixes 4, 5, 6, To make this as

definite as possible let us indicate these three principal axes of

strain by OL', OM', ON', and let the coordinates of Q', relative

to three local axes through P' parallel to these, be denoted by
the letters X', ij.', v'. We should arrive at a result similar to (8)

viz.,

,2

P"Q'> = e,x'2 + e2^'2 +63 /2 + 2un'v' + 265/X' +2e,\'n',

where ei, €2, cs, etc., would be six strain functions such that

(ei)i would be the ratio of elongation parallel to OL', etc., and
also such that the cosine of the angle between two lines originally

parallel to OL' and OM' would be ee/Ceieo)*. But as this angle

still remains a right angle, ee would have to be zero and simi-

larly for €4 and €5. Hence we would arrive at the result

'2P"Q"" = e{K" + 62^'^ + e^v

In his discussion Gibbs indicates the three "principal ratios of

elongation" by the letters n, r2, n, so that his notation and ours

are connected by

ei = ri^, €2 = ra^, ea = n'^.

Certain relations, very necessary to our progress, between the

€r and the e^ symbols can now be obtained very elegantly by an
artifice depending on a theorem concerning quadric surfaces

quoted in the Mathematical Note. Keeping P' as our local

origin, allow Q' to move about on a locus of such a nature that

the corresponding positions of Q" lie on a sphere of radius h

around P" as centre. By (8) we see that the equation of this

locus in the ^', 77', f ' coordinates is

eir^ + eov" + e3f'- + 2eW^' + 2e,^'^' + 2e,^'rj' = h\
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It is an ellipsoid, and its position in the body is entirely independ-

ent of what axes of reference we choose. So the same surface

referred to the principal axes as axes of coordinates has the

equation

By a theorem on quadric surfaces quoted in the Mathematical

Note, observing that

^', T]' f

'

correspond to x, y, z in the note,

X', n', v' correspond to x'
,
y', z' in the note,

ei, 62, 63, 64, 65, 66 correspond to a, 6, c, /, g, h in the note,

ei, €2, €3 correspond to a', b', c' in the note,

we arrive at these three results:

6263 + 6361 + 6162

61 + 62 + 63 = €1 + C2 + f3,
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being essentially the third equation of [439]. Our equations dif-

fer from those of Gibbs in the greater generality which he adopts

concerning axes of reference before and after strain. But this

restriction we shall be able to eliminate presently, with no great

trouble. In the meantime let us continue with the other two

equations in (11). A glance at (9) shows that the first is just

en^ + ei2^ + ei3^ + 621^ + 622^ + ^23^ + eai^ + 632^ + 633^

= ri2 + Ti" + n\ (14)

The second of (11) gives a little more trouble; but the reader

may take it on faith, if he does not care to go through the

straightforward algebraic operations, that the following result

can be verified. If one squares the nine first minors of the

determinant (12) and adds them then the sum is equal to

€263 + 6361 + 61^2 — €4"^ — 65^ — e^,^.

(A less tedious method of showing this would have involved us

rather too deeply in the theory of determinants.) Hence, by

the second equation of (11),

En' + £"22' + i?33' + £"21' + £"22' + Eiz' + En' + ^32^

+ £33' = raVs^ + nW + nW, (15)

where we are representing the first minor of en in the determi-

nant of the ers by En, that of 612 by £'12, and so on. (The use of

this double suffix notation is obviously of great convenience at

the moment. The Ers used here must not be confused by the

reader with the symbol E used by Gibbs without any suffix, to

which we will be referring presently.) Equations (14) and (15)

are essentially the first two of the equations [439].

If we consider a rectangular parallelopiped whose sides are

parallel to the principal axes and each of unit length, we know

that it remains a parallelopiped after the strain (although it

may be rotated) and its sides become n, r^, rs, respectively.

Hence nriTs is the ratio of enlargement of volume, and so we

see that this is a physical interpretation of the determinant (12),

while the determinant in (11) is of course equal to the square of

that ratio. Further, the sum of the squares of the nine first
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minors of (12) is equal to the sum of the squares of the ratios of

enlargement of three bounded plane surfaces, respectively-

parallel to the three principal planes of the strain. Of course

the sum of the squares of the nine Crs coefficients is equal to the

sum of the squares of the three principal ratios of elongation.

The interpretation of these results in terms of ratios of en-

largement is of some importance. Equation (13), which is

really the third equation of (11), is an especially useful result and

is involved in Gibbs' equation [464]. The first equation of (11)

is perhaps the least important of the three for our purpose, but

the second result in the form of equation (15) plays a part at one

or two points of Gibbs' treatment, e.g., at equation [463] and still

earlier on pages 192, 193. It will be well to pause a moment
to consider the geometrical significance of the nine minor

determinants £"11, £"12, etc. To this end let us imagine a triangle

P'Qi'Qi in the unstrained state such that the local coordinates

of Qi, Q2, with reference to the local axes at P', are ^i, r;/, n'

and y, 772', ^2- After the strain the triangle will assume the

position P"Qi"Q2". If ki", Vi", Ti" and ^2", V2", h" are the co-

ordinates of Qi" and Q2" with reference to local axes at P"
parallel to the original axes we have by (3) the following rela-

tions:

ki" = en^i' + enm' + eM, y = eM + 612^72' + ei3f2',]

Vl" = €21^/ + 6227?/ + 623^/, 772" = 621^2' + e22r?2' + ^23^2', \ (16)

fi" = 631^/ + 63217/ + e33fi', h" = ez^y + e32i?2' + 633^2'.]

Denote the area of the triangle P'Qi'Qi by K' and that of

P"Qi"Q2" by K". The projection of the triangle P'Qx'Qi' on

the local plane of reference perpendicular to the axis of x' is a

triangle whose corners have the 77, f coordinates 0, 0; 7?/, f/;

772', ^2'. By a well known rule its area is livi^i — f]2^i), and

similar expressions hold for other projections. Now the area of

a projection is equal to the product of the projected area and the

cosine of the angle between the original plane and the plane of

the projection, which is the angle between the normals to the

planes. So if a, /3', 7' are the direction cosines of the normal
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to the plane of P'QiQi, and a", /3", 7" those of the normal to the

plane of P"Qi"Q2", we have the following results:

K'a' = KVf/ - 172'f/), K"a" = Km"r2" - ^2"h"l

K'p' = Kf:'^2' - f2'^/), K"^" = Kfi"e/' - r2"^/'),[ (17)

K't' = Ka'ri2' - ^2'm'), i^"7" = m"V2" - ^2"vn.j

If one now uses equations (16), and is careful to keep to the

convention about the signs of the first minors as explained in

the note, it is not very troublesome to prove that

m"^2" - W'^x" = Enim'h' - ^2'fi') + ^i2(fi'^2' - r2'^/)

+ £'13(^/^2' - ^2'm'),

and two similar results which can be succinctly written

K"cx" = K'(Ena' + E,ol3' + Enl'V,

K"fi" = K'iEW + ^22/3' + EnV),\ (18)

K"y" = K'(Ez,a' + ^32/3' + ^33t')..

These are essentially the steps by which one passes from

equation [381] to equation [382], K' and K" being the Ds' and Ds"

of Gibbs. (There is of course at the moment some restriction

on our Brs and E^ symbols, i.e., our differential coefficients and

the determinants constructed from them, due to our restriction

as to the axes chosen in the strained system; we have already

referred to this and it will be removed shortly; for the moment it

involves us in the use of doubly accented symbols such as ^",

K", a", etc., so as to avoid confusion later when we widen our

choice of axes.)

The interpretation of the quantities En as determining super-

ficial enlargement caused by the strain is very clearly indicated

in (18), and a very elegant analogy can be exhibited between

equations (18) and the equations (3) in which the ers quantities

obviously determine finear enlargement. To this end we

remind ourselves that an oriented plane area is a vector quantity,

and is therefore representable by a point such that the radius

vector to it is proportional to the area and is parallel to the

normal. Thus the triangle P'QiQ/ can be represented in

orientation and magnitude by a point whose coordinates are
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X', Y', Z' where X' = K'a', Y' = K'^', Z' = K'y'. Similarly a

point whose coordinates are X", Y", Z", where X" = K"a"

,

etc., can represent the triangle P"Q]"Qi". The equations (18)

can then be written

X" = EnX' + EnY' + ^i3Z',1

Y" = EnX' + EnY' + EnZ',)- (19)

Z' = EziX' -\- E32Y' + EzzZ'
.^

The reader will probably feel intuitively that, as can be estab-

lished by definite proof, by choosing the principal axes of strain

as the axes of reference, we can reduce the nine coefficients to a

form in which £'23 + £'32, -£^31 + E^, En + £'21 are zero, and

En, E21, E33 become the principal ratios of superficial enlarge-

ment, i.e., TiTs, rsn, viVi. Squaring and adding the equalities

in (19) we obtain

K"^ = EiX" + E2Y'^-\-EzZ'^-\-2EiY'Z' + 2E,Z'X'-\-2EeX'Y',

where

£1 = En' + £21^^ + £31^

and two similar equations,

Ei = Eiibjiz ~r E^itjiz "T Ezitiizz

and two similar equations.^

(20)

An application of the theorem in the Mathematical Note already

used would lead to the result that the value of Ei-\- E2-\- E3 is

independent of the choice of axes (just as was ei + 62 + es in

the discussion of equations (3) and its results). Since, with

the choice of the principal axes of strain, the values of the Er,

are as stated above, it follows that

£1 + £2 + £3 = (r^ny + (nny + (nr^y,

which is just equation (15). The details of the proof of these

statements are not difficult to supply, but for our purpose it is

the result (18) which is important.

As a final step in the elucidation of Gibbs, I, pages 205-211

we shall now adopt Gibbs' plan of allowing the axes to

which we refer the system in its strained state to be any set of
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orthogonal axes OX, OY, OZ, not necessarily coincident with

OX', OY', OZ'. Referred to these axes the coordinates of P"
are x, y, z and those of Q" are x -\-

^, y -{- tj, z -\- ^,so that the

local coordinates of Q" in a set of local axes through P" parallel

to OX, OY, OZ are ^, r/, f. The procedure now can be practi-

cally copied from the previous pages. Let us use a symbolism

similar to that employed above, and write

dx dx
«ii for—/ ai2 for—

'

ox ay

, dy
a,, for -' etc.

Then we find that

^ = aii^' + aW + an^',
]

V = «21^' + 0227?' + 023^',
f

r = 031^' + 03217' + flsar'- j

(21)

It follows that

P"Q" - ail ' + a,r,'^ + ast' + 2airi'^' + 2a,t^' + 2a,^'n', (22)

where

Oi = au^ + ^21^ + a3l^

a2 = ai2^ + «22^ + a32^

03 = ai3^ + 023^ + a33S .

Gi = a.i2ai3 + 022^23 + «32a33,
(

06 = aisfln + O23O21 + ^33031,

de = CinCl'12 ~\~ ^21^22 4" a3ia32.

(23)

Now although an, a^, a^, etc., are not respectively the same as

Cii, ^12, 621 etc. (unless of course OX, OY, OZ should coincide with

OX', OY', OZ'), nevertheless a comparison of (8) and (22),

which are true for any values of ^', t]
,
^' , shows that

fli = ei, 02 = ei, az = €3, tti = Bi,

In consequence of (11), therefore,

05 = 65, Oe = 66.

Oi + 02 + 03 = ri^ + Ti^ + rs^,

a^as + 0301 + aitti — 04^ — 05^ — Oe^

r2V3^ + rsVi^ + riV2^

Ol

Oe

06

06

02

05

04

03

. (24)

= r^T'^r^.
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set [439]. Again pursuing a line of argument such as led to

(18) we obtain

Ka = K'iAncx' + ^12/3' + A,,y'),]

K^ = K'iA^icc' + A22^' + A2,7'),\ (27)

Ky = K'iAncc' + ^32/3' + AW),]

where K and a, j8, y are the area and direction cosines of the

normal after the strain for a bounded plane surface (referred to

OX, OY, OZ) whose area and direction cosines are given hy K',

a, j8', y' in the unstrained state (referred to OX', OY', OZ').

As already stated these results are of importance on pages 192,

193 of Gibbs' discussion,

3. Heterogeneous Strain. In the discussion just completed

X, y, z have been considered as linear functions of x'
,
y', z' , with

the result that the Ors quantities (i.e., dx/dx', etc.) are constants

throughout the system, and the same remark applies to the

Ars quantities (viz., (dy/dy') (dz/dz') - (dy/dz') (dz/dy'), etc.).

If, however, the displacements of the points from the un-

strained to the strained states have such values that x, y, z

are not linear functions of x', y', z', then the quantities denoted

by Gts are functions of x', y', z' varying from point to point, and

the same is true for the quantities denoted by Ars and also for

the determinant denoted by the symbol H in Gibbs. (The

flexure or the torsion of a bar are examples of heterogeneous

strain.) As far as interpretation is concerned these functions

still determine the various ratios of enlargement, with the

understanding that the values of these functions at a given

point give the necessary data for calculating the conditions of

strain in a physically small element of volume surrounding the

point. In short, we regard the strain as homogeneous through-

out any physically small element of volume, giving the various

Qri and Ars quantities the values throughout this element which

they have at its central point.

4. Analysis of Stress. In using such a phrase as "the system

in its unstrained state" we implicitly assume that we shall take

this state as one in which the internal actions and reactions

between any two parts of the body shall be regarded as vanish-

ing. When we begin to consider if such actions are really zero,



418 RICE ART. K

we are facing the very difficult physical problem of explaining

by what mechanism such actions are exerted. We may imagine

that an elastic medium is free from everything in the nature of

external force, even gravity; we can hardly say, in view of the

customary notions of molecules and intermolecular forces, that

across the surface which separates two parts of the medium no

forces are exerted. Therefore in using the word "stress" as a

general term for the actions and reactions across dividing surfaces

which accompany strain and vanish when the strain vanishes,

we must regard stress as referring to change in the integral of

the intermolecular forces exerted across some finite portion of

such a surface, if we adopt a molecular theory of the constitution

of matter. However, in thermodynamical reasoning we avoid

the use of such conceptions, and we take it as a fundamental

assumption, well backed by experience, that there is for any

solid or fluid medium a condition of equilibrium to which the

system can be brought which can be termed conventionally the

unstrained state, and from which the medium can be strained

by the application of external forces, this process giving rise to

reciprocal internal forces across any conceptual surface dividing

the medium into two parts. Of such external forces the most

obvious example is gravity. This is sometimes referred to as a

"body force," being proportional to the mass of each element of

volume considered as pulled by the earth, moon, sun, etc.

Other types of external forces are the thrusts on the surface of a

body exerted by some liquid or gaseous medium surrounding it,

or on certain parts of the surface by a solid body in contact

with it. The pulls exerted by chains, ropes, etc., may be con-

sidered as body forces exerted throughout small parts of the

body; e.g., if a pull is exerted by means of a string fastened to a

nail embedded in the body, we can regard the medium as

actually existing throughout the small hole made by the nail,

and a body force existing in that small volume. Or alterna-

tively they might be regarded as surface pulls exerted across a

definite small portion of the bounding surface of the body. If a

body is electrified or magnetized the forces exerted by external

magnets and conductors, charged or conveying current, are

also external forces. Such external forces must be clearly dis-
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tinguished from the stresses which are occasioned by them.

To give a definition of the "stress at a point," we must conceive

a surface, on which the point Hes, dividing the body into two

parts. We also conceive a small element of this surface sur-

rounding this point. Of the total force which we imagine one

portion of the body to exert on the other across this surface, a

certain small part is considered to be exerted across this element

and, when the element is small enough in size, to be practically

proportional in magnitude to the area of the element and

unchanged in direction as the element is made smaller and

smaller. The quotient of this force by the area is assumed to

have a limiting value as both are indefinitely diminished in

magnitude. The reader is certainly acquainted with this con-

ception in the case of liquids and gases; but in such a case there

is a special simplification. For one thing the force is almost

always in the nature of a thrust in a fluid medium; in a solid

medium it may be a thrust or a pull. Moreover, in the case of a

fluid at rest, the force is normal to the element of the con-

ceptual surface. That is not in general the case for solid media.

The limiting value of the quotient of force by area referred to

above is called the stress across the surface at the point, and, as

stated, it is not as a rule directed along the normal to the

surface at the point. Another important distinction should be

noted here. In the case of a fluid not only is the pressure always

normal to the element, but it retains the same value as the

element assumes different orientations. (If the reader has

forgotten the proof of this it would do no harm if he refreshed

his memory, as the proof involves some considerations of value

to us presently). But in the case of a solid medium the

stress generally alters in value, as well as direction, as the

orientation of the element of surface is changed. In the

technical language of the vector calculus, the stress is a

vector function of the unit vector which is normal to the

element and changes in magnitude and direction as the unit

vector is turned to be in different directions. In the case of a

fluid medium at rest one numerical magnitude is obviously all

that is required to specffy the pressure at a point, and the physi-

cal problems raised involve the functional dependence of this pres-



420 RICE ART. K

sure on the position of the point. But for a sohd medium the

conditions are more complex, and we must consider carefully-

just how many numerical magnitudes must be given in order to

specify the stress at a point, i.e., to indicate what is the stress

at the point across any assigned element of surface. We shall

see presently that there are six, and, as is readily suggested by
the example of a fluid, each of these may vary in value with the

position of the point, i.e., be a function of the coordinates of the

point. The analysis of the stress at a point proceeds as

follows.

Consider the point P, the displaced position of a point P' in

the unstrained state, and let its coordinates referred to the

axes OX, OY, OZ (chosen for the strained state) be x, y, z*
First let the conceptual dividing surface be parallel to OYZ,
i.e., a plane surface at right angles to OX. We can resolve the

postulated force across the element of area at P into three

components parallel to the axes, and these when divided hy the

area of the element we denote by Xx, Yx, Zx, the suffix indicating

clearly that the plane surface under consideration is normal to

OX. Xx is of the nature of a tension or pressure, while Yx
and Zx are "shearing tractions," their directions lying in the

dividing surface. Of course each of these in general varies in

value with the position of P and so should strictly be written as

^x{x, y, z), Yx(x, y, z), Zx(x, y, z)

to indicate their functional dependence on the values of x, y, z;

however, for brevity, we drop the bracketed letters, but this

point should never be lost sight of. By considering plane

surfaces containing P normal to OF and OZ we can introduce

components of the forces at P across these surfaces, when
divided by the area of the element, as Xy, Yy, Zy and Xz, Yz,

Zz. By the aid of these nine quantities we can now express the

stress at P across any element of surface containing P whose

direction cosines are given, say «, /3, 7. To do so, draw local

axes at P (Fig. 5) and let a plane surface whose direction cosines

* We may from this point onwards drop double accents in symbols for

gtrained positions and coordinates as no longer necessary.
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are a, /?, 7 cut them in the points Q, R, S. Let K be the area of

the triangle QRS; then Ka is the area of the triangle PRS, Kfi of

PSQ and Ky of PQR. The portion of the medium within the

tetrahedron PQRS is in equilibrium under the body forces on it

and the stress actions on it across the four triangles mentioned.

Let us enumerate the latter first. Parallel to OX we have a

force across PRS of amount —KaXx. (We are assuming

that Xx is positive if it is a tension, and negative if a pressure;

also that the tetrahedron PQRS lies in the positive octant, i.e.,

the octant for which the local coordinates ^, tj, f are all positive).

Also parallel to OX we have a force —K^Xy (a tangential shear-

ing force) across PSQ, and across PQR a force —KyXz (also

KaX^ 4

Y <,

9 KiaK^-^px^i-yX^)

Fig. 5

shearing). In considering the equilibrium we can, if we
gradually reduce the size of the tetrahedron, neglect the body

forces on it in comparison with the surface forces just enumer-

ated. The point involved is the same as that introduced in

elementary treatises on hydrostatics when proving the uni-

formity of fluid pressure in all directions, and will doubtless be

known to the reader, or easily looked up. (Actually it only

requires us to remember that the body forces involve the

product of a finite quantity and the volume, while a surface

action involves the product of a finite quantity and an area.

As the size of the tetrahedron diminishes, the magnitude of the

volume becomes very small in comparison with the magnitude

of the surface, since the former involves the cube of a small
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length and the latter the square.) It follows that if equilibrium

exists the component of force across the surface QRS parallel

to OX is, for a small value of K, practically equal to

K{aXx + pXr + yXz).

The quotient of this force by the area K is the a:-component of

the stress at P across the plane (a, /3, 7) (meaning the plane

whose normal has these direction cosines). Similar results can

be obtained for the other components, and we arrive at the result

that the stress across the plane {a, /S, 7) has the components

aXx + pXy + yXz, aYx + ^Yr + yVz,

aZx + /3Zk + yZz.
(28)

We know that in fluid media in equilibrium the pressure

varies with the depth owing to the action of gravity, and in

general the pressure at a point varies with the position of the

point when body forces are exerted on the fluid. The reader

may be acquainted with the relation between the "gradient of the

pressure" (i.e., the rate of variation of pressure per unit of dis-

tance in a given direction) and the body force. It is dealt with

in works on hydromechanics and is given by the equations

dx dy dz

where Fx, Fy, Fz are the components of the force F on unit

volume of the fluid. Moreover, if at any point on the surface

of the fluid there is an external force in the nature of a thrust or

pull on the surface, and if F is the value of it per unit surface at

the point, then the value of the pressure at that point of the

surface is given by

ap = -F,, /3p = -Fy, 7p = -F^,

where a, /3, 7 are the direction cosines of the outwardly directed

normal to the surface at the point. By exactly the same type

of reasoning which leads to this result, we can find relations

between the body forces on a solid body and the space differ-

ential coefficients of the "stress constituents" Xx, Xy, . . • Zz.
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To obtain them we visualize a very small rectangular parallel-

opiped (Fig.6) of the medium in the state of strain which has the

point P at its center. It is bounded by six rectangular faces

parallel in pairs to the planes of reference OYZ, OZX, OXY.
The local axis of x through P cuts one face parallel to OYZ in a

point Q and the other in a point U, such that PQ = PU =
^,

the coordinates of Q being x -\- ^,y,z and oiU,x —
^, y, z. The

local axes of y and z each cut two faces, in the points R, V and S,

W, respectively, RV being equal to 2??, and SW to 2^. Thus the

volume of the parallelopiped is 8^??^ , its sides being 2^, 2?/, 2f and
its faces having the areas 477^, 4f^, 4^??. Let Xx, ... ^z be

the values of the "stress-constituents" at P. At Q they are
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since 47?f is the area of this face. Across the face containing U
there will be a pull in the opposite direction XO of amount

The difference of these, viz.,

dXx

dx
Hvt

is the resultant of these two in the direction OX. To proceed,

we also have a shearing force on the parallelopiped in the

direction OX of amount

/ dXy \

across the face containing R, and one of amount

/ dXy \

across the face containing V in the direction XO. These two

forces yield a resultant

dXr

dy
8^^r

in the direction OX. The remaining pair of faces contribute a

resultant force in the direction of OX of amount

dXz

dz

Thus the stress actions exerted by the surrounding medium on

the parallelopiped are equivalent to a force whose x-component

is

(
dXx dXy dXz\ ^

dx dy dz

The resultant body force arising from external influences on the
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parallelopiped we represent by the symbol F, estimated per unit

volume, so that the a;-component of this on the element of volume

we are considering is Fx • S^v^. Since the medium is in equilib-

rium, the sum of the components in any direction of all the

forces on an element of volume (including those due to influences

external to the medium and those arising from the part of the

medium surrounding the element) is zero, and therefore

dXx dXy dXz

dx dy dz

In just the same manner we can prove that

dYx dYy dYz \ (29)

dx dy dz

dZx dZy dZz— +— +— +Fz = 0.
dx dy dz

The equations [377] constitute a particular case of these; for

the forces arising from gravity have no horizontal components

and, since in Gibbs OZ is in the vertically upward direction,

Fz is his —gT.

If at the surface there are external forces in the nature of

thrusts or pulls on it, and if at any point such an external force is

represented by F estimated per unit area (regarded as positive if

it is a pull), then at the surface we also have the equations

aXx + iSXr + yXz = F.,

aVx + ^Yy + yYz = Fy,

aZx -h pZy -j-yZz = F,,j

(29a)

where a, jS, y are the direction cosines of the outwardly directed

normal to the surface at the point. This follows from the

consideration that a thin layer of matter at the surface of the

body exerts on the matter in the interior a stress-action per unit

area, whose component parallel to OX is aXx + fiXy + yXz,
etc. Hence the interior matter exerts on this thin layer an

action whose a;-component per unit area is — {aXx + ^Xy +
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7X2). For equilibrium the sum of this and Fx, the external sur-

face force-component per unit area, must be zero.

It was stated that the stress at a point was determined by six

independent quantities, but so far we seem to have reduced it

to a representation by nine. So we shall now turn our atten-

tion to three relations which exist between these nine constit-

uents, and which are given in [375] and [376], proving these,

however, by a more direct and more easily grasped method than

that employed by Gibbs. To this end let us once more give

our attention to the conditions controlling the equilibrium of the

parallelopiped (Fig. 6), and recall the fact that not only must

the total resultant force on the parallelopiped vanish, but also

the total couple as well. This couple is obtained by taking

moments about the point P, and has three components, one

around the local axis of x through P, one around the local axis

of y', and one around the local axis of z. Consider the contri-

butions made by each influence on the parallelopiped to the

component of the total couple round the local axis of x. The
pulls across the faces involving the constituents Xx, Yy, Zz are

symmetrical with regard to P and contribute nothing to the

couple. On the other hand the individual shearing forces

obviously tend to produce twists. Those that tend to twist the

element around the local axis of x are the shearing forces parallel

to the local axes of y and z, and they are the following four:

/ dZy \
4f^ across the face containing R,

( dZr \
~ [Zy — T~ V ) 4f^ across the face containing V,

dYz \ „
Yz + ~r~ r ) 4^77 across the face containing S,

az J(

/ dYz \— [Yz — "r~ r ) 4^77 across the face containing W

.

The moment of the first about the local axis of x is

/ dZy \
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in a right-handed sense; that of the second is

(

aZr \

also in a right-handed sense. That of the third is

/ dYz \

in a left-handed sense and that of the fourth is

also in a left-handed sense. Thus the four shearing tractions

yield a couple around the local axis of x in the right-handed

sense of amount

S^vUZy - Yz).

Turning now to the body forces we see that even if their action

on the element is not symmetrical about P (as would be the

case for example with gravity forces) they can yield in com-

parison with the moments arising from the shearing forces only

a vanishingly small couple, since about the local axis of x, for

instance, this couple must have an order of magnitude which

cannot be greater than the product of Fy, 8^r/f and i;, or Fz,

8^7?^ and 77. Since ^ry^^ or ^tj^^ is small compared to ^i)^ when

^, rj and ^ are small, these contributions are evanescent in

comparison with that written above, when the volume con-

sidered is small. Thus the total couple on the parallelopiped

has components around the three axes given by

{Zy - F^)8^r,r, {Xz - ZxM-n^, {Yx - Xy)S^-n^.

But in equilibrium these components must be zero, and so

Yz = Zy, Zx = Xz, Xy = Yx' (30)

This demonstrates that there are only six independent strain-

constituents, as already stated.
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It must not be forgotten that this analysis relates to any
arbitrary choice of axes of reference. Actually it is possible,

by selecting a special triad of orthogonal lines as axes, to intro-

duce a diminution in the number of stress-constituents required
for the formulation of the stress across any given plane at a
given point. A proof of this statement appears in Gibbs, I, 194,

195, but it is not so famihar and not so easy to grasp as the
usual proof given in works on elasticity, which follows a line

of reasoning similar to that adopted earlier to indicate the
existence of three principal axes of strain, and is here outlined.

Conceive that a quadric surface whose equation is

is constructed with P as center and with any local axes of ref-

erence at P; Xx, Xy, . . . Zz being the values of the stress con-
stituents at the point P. Let a line whose direction cosines
are a, 13, 7 be drawn from P cutting this quadric in the point

Q; denote the length of PQ by r so that the local coordinates of

Q are ra, r^, ry. Now draw the tangent plane at Q to the
quadric surface and drop PN perpendicular to this plane. By
the theorem already used we know that the equation of this

tangent plane is

(Xxra + AVr/3 -f X^ry)^ + {Y^ra + YyVlS -^ Yzry)r,

-f (Z^ra + ZyrlS + Z^ry)^ = k

(remembering that Yz = Zy, etc.), and so the direction cosines

of PA'' are proportional to

aXx + fiXy + yXz, aYx + ^Yy + yYz,

O^Zx + (3Zy + yZz.

Thus a glance at (28) shows us that the stress action at P across

a plane normal to PQ is itself parallel to PN. In general PN
is not coincident with PQ, i.e., the stress action across any plane
is in general not normal to the plane, as we know already; but
the information now before us about its direction indicates that

there are three special orientations of the plane for which this

happens to be true and for which PA^ lies along PQ. They are
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clearly the three principal planes ol the quadric surface whose

equation has been written down above. Were we to choose as

axes of reference the three principal axes of this quadric, we
know that the equation would only involve terms in ^^, 7?^, f ^,

but not in Tjf , f^, ^r). In short, with such a choice of axes of

reference only three of the stress-components would have a

finite value, viz., those corresponding to Xx, Yy, Zz. The
remaining six (actually only three) would be zero, and as Gibbs

states in equation [392] the stress action across any plane

(a, /?, 7) would have as its components aXx, ^Yy, yZz. These

three special axes are called the principal axes of stress, and their

existence is a point of considerable importance in the discussion

in Gibbs, I, 195 et seq.

Special cases arise if the quadric surface at a point referred to

above is one of revolution, i.e., if the section by one of the

principal planes is a circle. In this event, assuming that it is

the plane perpendicular to that one of the principal axes of

stress designated as OX, it is clear that Yy = Zz, and the stress

action across any plane containing the local axis of x at P is

normal to this plane. Or it may happen that the "stress-

quadric" is actually a sphere, so that Xx = Yy = Zz. Any
triad of perpendicular lines will serve as principal axes of

stress if this be so, and the stress-components which do not

vanish have one numerical value, the stress across any plane

being normal to it and having a value independent of direction.

This is in fact the general state of affairs for a fluid at rest and

Xx = Yy = Zy = —p where p is the fluid pressure. It is clear

that the equations of equilibrium (29) then degenerate to those

for a fluid quoted on page 422.

5. Stress-Strain Relations and Strain-Energy. We have now
considered at some length the mathematical methods by which

the strains and stresses in a body are analyzed into their most

convenient constituents, and it is clear that the differences of

behavior observed in various elastic media when subject to

given external forces arise from the different "constitutive" re-

lations which exist between the constituents of stress and the co-

efficients of strain in these different media. We know for instance

that the same pull will elongate a wire of brass of given section
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and one of steel of the same section in different ratios; in both

cases the Xx stress constituent is the same, but the en strain

coefficient is different (the axis of x being supposed to be

directed along the length of the wire). Obviously any complete

theory would place at the disposal of the investigator the

means of calculating in any given case, the strains which result

from the imposition of definite external forces. Equations (29)

are differential equations which connect the external forces

with the stresses, so that with sufficient knowledge of these

forces and of the state of stress at the surface of a body we can

in theory determine the stress at any other point of the body.

But this will not lead to a knowledge of the strains at each

point unless we have a sufficient number of algebraic equations

connecting the stress-constituents with the strain-coefficients.

So far we have relied on the mathematician to develop the right

conceptions and deduce the correct differential equations; we
now have to turn to the experimenter who by subjecting each

material to suitable tests determines the various "elastic con-

stants" of any given substance. This is a matter on which

little can be said here, but provided the tests do not strain a

body beyond the limits from which it will return to its former

condition without any "set" on removing the external forces, it

is found, as a matter of experience, that there is approximately

a linear relation between strain-coefficients and stress-constit-

uents. Under these conditions the deformation of solid media is

relatively so small that, although a rectangular element is in

general after the strain deformed to an oblique parallelopipcd,

the various angles have been sheared from a right angle by

relatively small amounts, and we can use the coefficients en,

en, .

.

. 633, referring the system to the same axes before and

after the strain. As we have seen above, the pure strains

depend actually on six quantities, en, e^, 633, 623 + ^32, esi + en,

en + 621, as the rotations are not a matter of importance;

furthermore there are only six numerically different values

involved in the nine quantities Xx, . . Zz Let us therefore

introduce for convenience a small modification of the sym-

bolism, and write
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Zi for Xx, /i for en - 1,

X2 for Yy, J2 for 622 — 1,

X3 for Zz, fz for 633 - 1,

Xi for Fz or Zy, /4 for 633 + 632,

Xi for Zx or Xz, ft, for 631 + e^,

Xe for Xy or Yx, /e for 612 + 621-

(fh h} h are the fractions of elongation along the axes and

fi, fh, /e are the shears or changes in the angles between the

axes.) A complete experimental knowledge of the elastic

properties of any material would therefore be embodied in the

ascertained values of the 36 elastic constants Crs in six consti-

tutive ''stress-strain" equations such as

Xi = Cu/i + C12/2 + C13/3 + C14/4 + C15/5 + Cifi/e,!

j
(31)

X2 = C21/1 + C22/2 + C23/3 + C24/4 + C25/5 + C26/6,J

and four similar equations. These equations are the expression

of a general Hooke's law, a natural extension of the famous

law concerning extension of strings and wires due to that

English natural philosopher.

This apparently presents an appallingly complex problem for

the experimental physicist; however, there are important

simplifications in practice. To begin with, it will appear from

energy considerations to be discussed presently, that even in

the most general case the 36 constants must only involve 21

different numerical values at most, and actually for a great

variety of materials still further reductions are involved.

Indeed, for isotropic bodies all the elastic constants of such a

material are calculable from the numerical values of two

"elastic moduh," the well-known "bulk modulus" (or "elasticity

of volume") and the "modulus of rigidity." For various crys-

talline bodies conditions of symmetry also involve a material

reduction of the number of independent constants below the

number 21.

The two moduli for isotropic bodies are referred to by
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Gibbs and perhaps merit a brief remark here. When a body is

subject to a uniform stress in all directions we have

Xx = Yy = Zz

and

Xy — Yx = Yz = Zy = Zx = Xz = 0.

If the body is isotropic, then referred to any axes

en = 622 = 633

and

ei2 = 621 = 623 = 632 = 631 = 6i3 = 0.

Thus along any line there is a fraction of elongation /, where

f = e — 1, e being the common value of en, 622, 633. Hence the

fraction of dilatation of volume is e* — 1 or practically 3/.

The quotient of the common value of Xy, Yy, Zz by 3/ is called

the bulk-modulus. (Gibbs calls it "elasticity of volume" on

page 213.) The conception is most important in the case of a

fluid. Here a variation of external thrust on the surface pro-

duces a variation of pressure from p to p -\- 8p; there results

from this an alteration of volume from v to v -{- 8v (8v is essen-

tially negative if 8p is essentially positive), i.e., a fraction of

8v
dilatation 8v/v. The bulk-modulus is the limit of — 8p/—

;

V

i.e., it is

dp(v, t)— V
—-—

'

dv

where p{v, t) is the function connecting pressure with volume

and temperature. (See [448].) This definition is synonymous

with the previous one, since for a liquid p = —Xx = —Yy =

—Zz and the shearing stresses vanish. (In fact the state of

stress uniform in all directions, mentioned above, is often

referred to as the case of "hydrostatic stress".)

We can have a state of stress also in which the six constituents
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vanish except (say) Yz{or Zy). In this case, for an isotropic

body, /i = /2 = /s = and also /s = /e = 0. Only fi is finite

and for the case of Hooke's law varies directly as Yz. The

quotient of Yz by fi is called the "modulus of rigidity," or

simply the "rigidity" of the material. Of course one should

bear in mind that the strains must be small if the physical facts

are to be consistent with these definitions

We thus see that a given system of external forces on a body

involves a determinate set of stress-constituents when the

body is in equilibrium under the forces, and these in their turn

by reason of the stress-strain relations (hnear or otherwise)

determine a definite condition of strain. Infinitesimal va-

riations in the external forces change the stress infinitesimally

to Zi + dXi, etc. in the new state of equilibrium, and the strain

coefficients are altered to/i + dfi, etc., where Xi + dXi, etc. are

connected with /i + dfi, etc. by the same six equations as

before. Actually we can conceive that "in the neighborhood"

of a given state of equilibrium involving a definite condition of

strain there are an infinite number of other states, which are not

necessarily equilibrium states, characterized by values /i +
8fi, etc. of the coefficients where the 8fr are entirely arbitrary,

so that /i + dfi, etc. are not connected with the external forces

by means of the stress-strain relations. For further information

on these matters the reader is referred to standard texts on

elasticity and to R. W. Goranson's "Thermodynamic Rela-

tions in Multi-component Srjstems" (Carnegie Institution of

Washington, Pub. No. 408, 1930).*

Our ultimate object in what has preceded is to lead up to

the expression which represents the change in the energy of

strain when the condition of strain has been altered by a change

from a state of equilibrium to a neighboring state. This must

be included in the expression for the total change of energy

when we are formulating the first and second laws of thermo-

dynamics. It is in fact the expression which is to replace

* The reader must be careful to remember that the author's symbol-

ism, which has been chosen to diverge as little as possible from that of

Gibbs, differs in some details from that used in these references.
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— pdv in the law for a fluid medium

8e = tdr] — p8v.

The natural method of procedure would be to consider the

movements of the points of application of the external forces

involved in the change of strain and, combining these with

the forces themselves, to determine the work of the external

forces; this work, if there is no exchange of heat, will be equal to

the change in internal energy. Unfortunately this method
involves the use of certain general theorems of mathematical

analysis which may be unfamihar to some readers and the

writer will therefore make shift with a more elementary, if less

rigorous, method.

We revert to our picture of an element of volume surrounding

the point P in the state of strain determined by the values en,

... 633 of the strain-coefficients (see Fig. 6). The element is

assumed to be strictly rectangular in this state (although not

necessarily so in the state of reference); its sides are parallel

to the axes OX, OY, OZ and have the elementary lengths h, k, I

respectively. We conceive that this medium receives a further

strain to the condition determined by en + Sen, etc., and this

involves infinitesimal elongations and shears in the rectangular

element. We now imagine the element to be isolated and to

experience the same movements under a set of external forces

which are equal to the forces which we assume to exist across its

faces when in situ. The work of these hypothetical forces we
take to be the increase in strain-energy of the element. In the

circumstances of the case en, ^22, 633 are near to unity in value,

so that in comparison with them en — 1, 622 — 1, 633 — 1, 623,

^32, esi, ei3, ei2, 621, as we noted earlier, are small. The rectangular

element has had its side h elongated by a fraction 5fi. The
matter surrounding the element is exerting on it forces across the

kl faces equal to klXx. Hence work is done which can be

calculated by conceiving one of the kl faces fixed and the other

moving a distance h8fi in the direction of the force klXx.

(The shearing forces klYx and klZx across these faces are at

right angles to the elongation and so this movement involves no

work on their part.) This work is hklXx8fi, and this is therefore
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one part of the increase of energy in the element of volume.

The other pairs of faces when treated similarly yield further

parts of the energy increase, viz. hklYybfo,, and hklZ^bfz. Now let

us turn to the shears and fix our attention for the moment on

the faces of the element which are parallel to the plane OXY and

are separated by the distance I in the direction of OZ. A little

thought will show that one of these faces has moved in a shearing

manner relatively to the other by an amount which is the vector

sum of a component U{ezi + en) parallel to OX and a com-

ponent Z5(e23 + 632) parallel to OY. (A glance at equation (10)

will remind the reader that the "shear" of hues parallel origi-

nally to OX and OZ is 5[e5/(e3ei)'] which is substantially

6(e3i + eia) ; the "shear" practically measures the small change in

the (right) angle between OZ and OX.) We can again simplify

our argument by conceiving one of the hk faces fixed and the

other slipping over it by amount Uf^ in the direction of OX.

The shearing pull across this face by the surrounding matter in

the element is hkXz in this direction. (The face is perpendicular

to OZ and the pull is in the direction OX.) Thus the work done

on this account is hklXz^fh- Similar reasoning yields hklYz^fi

for the other component. Each of the other pairs of faces

treated in a similar manner would yield similar terms ; the faces

parallel to OYZ would yield hklYxdfe and hklZxSf^, and the

faces parallel to OZX would yield hklZydfi and hklXr^fe.. It

would seem that in order to obtain the increase of energy asso-

ciated with the shearing movements, we ought to add these six

terms. This is, however, one of the pitfalls of this simple

method which we are using so as to evade advanced analytical

operations. If we adopted this procedure we should obtain

twice the correct increase associated with the shears, and it is

not difficult to realize that this is so. For a shear of one Z-face

past the other Z-face (meaning the faces perpendicular to the

direction OZ) in the direction parallel to OX involves of necessity

a shear of an X-face past the other X-face in the direction

parallel to OZ. Either shear is one of two alternative ways of

describing the resulting distortion. Now our method of cal-

culating the work done in this case really requires us to conceive

the element of volume as isolated and sheared either by a shear-
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ing pull hkXz across a Z-face or a shearing pull klZx across

an X-face. One way yields hklXzdfi for the work done; the

other yields hklZxBf^ for it; these are the same quantity since

Zx = Xz, but we must not count both or we shall obtain twice

the correct value, and this is just what we would be doing if we
added all the terms obtained above. In this comparatively

simple way we can reasonably assume a result which can be more

rigorously established by other methods, viz., that when the strain

of a solid is varied from a state in which the strain coefficients

are en, • . . ^33, to one in which the coefficients are en + 5en,

.

.

633 + 8633, the increase in energy in an element of volume is the

product of the volume of the element and

Xi8f, + X25/2 + X35/3 + X45/4 + X,8f, + X,5U (32)

This expression takes the place of the expression —p8v for a

fluid in the formulation of the variation of the internal energy of

a solid body in any general change of temperature and state.

That the expression (32) degenerates to this in the case of a

fluid can be readily demonstrated, for we have seen earlier that

in the case of a fluid X4, X5, X 6 are zero, and Xi = X2 = X3
= —p; hence (32) becomes

-p5(/i+/2+/3),

and, since unit volume expands in this case to

(1 + 6/0 (1 + 5/2) (1 + 5/3),

or practically

l+6(/i+/2+/3),

it follows that 8v is equal to the original volume of the element

multiplied by 8(fi + /2 + /3).

The whole of the argument so far has avoided any considera-

tion of changes of temperature arising from strain and assumes

all the energy to be mechanical. In so far as this is allowable

the expression X16/1 ... + X&Sfe must be regarded as the

variation of a function of the six quantities fi, ... /e, so that
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if we denote this "strain-energy function" by W(fi, . . . /e) it

follows that

_dW dW

If then each Xr is a linear function of /i, ... /e, as experiment

shows to be approximately the case for isothermal small changes,

it follows that W must be a quadratic function of the six

variables /i, . . . /e- Now such a quadratic can only involve 21

numerically different coefficients; thus

W = hCufi" +^66/6^

+ C12/1/2 + Cie/i/e

+ C23/2/3 + C2G/2/6

+ C34/3/4 . . . + Cirjaf^

+ C45/4/5 + Cicfif^

+ C^efhfe,

and so it appears in assuming that the various stress-constitu-

ents satisfy equations such as

Xr = Crlfl . . . + Criflj ,

that

This justifies the statement made above that in the cases where

there are linear isothermal stress-strain relations, there are

at most 21 elastic constants.

In the arguments that follow, however, we shall require no

such restriction as to the nature of the relations between stress-

constituents and the strain-coefficients. Actually these relations

also involve the temperature. Moreover, if we are going to

follow Gibbs' reasoning we shall have to realize his somewhat

different treatment of the stress-constituents from that outlined
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above, which is the usual treatment. It arises from his en-

deavor to make the foundation of his arguments as wide as

possible. He lays down no restriction that the state of

reference shall be so near to that of the state of strain that a

rectangular element is but little strained from that form in the

changes which take place between the two states. His only-

proviso is that the differential coefficients dx/dx', etc. shall

not alter appreciably over molecular distances, i.e., that the

strain is homogeneous within a physically small element of

volume. Let us retrace the ground covered by the argument

which we followed when deahng with the energy of strain.

The rectangular element of volume in the state of strain has its

center at a point P whose coordinates are x, y, z with reference

to the OX, OY, OZ axes; this element was, in the state of

reference, an obhque parallelopiped whose centre was at the

point P' whose coordinates are x', y', z' with reference to the

OX', OY', OZ' axes. Let the edges of the element in the state of

strain be parallel to OX, OY, OZ, and following the course we
used earlier let us call the mid -points of the faces perpendicular

to OX, Q and U, so that the local coordinates of Q with reference

to local axes of x, y, z at P are ^, 0, 0, and of U are — ^, 0, 0.

Those of Q', the center of the corresponding face of the un-

strained element, for the local axes of x', y', z' at P' are ^', -q', f

'

where, by equations (21),

k = an^' + anv' + Qisf',

= a.i^' + 0227?' + a23^',

= 031^' + ^321?' + Ossr'.,

(33)

Now let the slight increase of strain take place which we
considered above when we treated this problem in a more
restricted manner; the point P is displaced to a neighboring

point Ps, say, while Q and U are displaced to neighboring

points Qs and f/g. The strain-coefficients are now an -\- 8an,

etc. The local coordinates of Qs with reference to local axes of

X, y, z at P5 are ^ + b^, 8r}, 8^ where
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^ + 5^ = (an + danW + (ai2 + Ba^iW + (ai3 + Sa^)^',

5rj = (rt2i + 5a2i)^' + (a22 + 5022)77' + (023 + 5a23).C',

5f = (a^l + Sflsi)^' + (032 + ^a^^W + {a^s + 6033)^'.*

Hence

5^ = dan-^' + 5ai2-77' + 5ai3-f',

67? = 6021-^' + 5022-77' + 5a23-r',

5r = Sasi-^' + 5a32-77' + 5a33-f'.

Now we need to express these variations in terms of ^, and this

is easily done; for, on solving equations (33) for ^', 17', f' in terms

of ^, we find that

^ H ^*

,
A,,

where Ara is the first minor (vv^th its correct sign) of ars in the

determinant H.

We write for convenience hrs for Ars/H, and in consequence

we have the following three results

8^ = (hnSan + 6i25ai2 + hsdais)^,)

8r] = (6ii5a2i + 6120022 + &i35a23)^,
f

(34)

5f = (6ii5a3i + 6i25a32 + 6135033)^.]

It is easy to see that the coordinates of f/5 for the local axes at

Ps are just — (^ + 5^), —677, —8^. Thus it appears that the

rectangular element has had its edge parallel to OX elongated

* Observe that Pd and Qs are positions in the slightly altered state of

strain of the same original points P', Q' in the state of reference.
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by 25^ i.e., bj' the fraction (6ii6aii + hnda^ + bisSan) of its

lengtli 2^. In short, bndan + hnban + hnban is just the infini-

tesimal quantity 5/i or ben which occurred in the previous treat-

ment. Similarly the face containing Q has in this infinitesimal

change of strain been sheared by an amount 2bri relatively to the

opposite face containing U in the direction parallel to OF and

by an amount 25^ parallel to OZ. But as we have seen in the

earlier treatment these shearing displacements are be-n 2^ and

bez\ • 2| respectively. Hence we find that

5621 = hnba^i + 6i25a22 + hnba^z,

ben = bnbasi + 6]25a32 + 6136033.

The other faces can be treated similarly and we thus arrive at

the nine equations

ben
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where th, ... T33 are nine linear functions of the stress-con-

stituents Xx, • • Zz, involving the quantities brs in the co-

efficients. It will be found in fact that

Til = bnXx + &2i^y + bziXz,

T12 = bnXx ~\~ 622-^ r + O32XZ,

Tl3 = blsXx 4" 023Ay + bszX z,

and six similar equations. Now the expression (36) represents

the change in the strain-energy caused by the infinitesimal

increase of strain in the matter occupying unit of volume in the

state of strain. But, as we have seen previously, this matter

occcupies a volume H~^ in the state of reference, and so we must

multiply the expression (36) by H in order to obtain the increase

in strain energy of the matter which occupies unit volume in

the state of reference. Now from the definition of brs given above

we see that brsH is equal to Ars- Hence we arrive finally at the

result that the infinitesimal increase in strain energy estimated

per unit of volume in the state of reference is

Xx'^dn ~\~ Xy'Sun ~\~ Xz'Sais

+ Fx'5a2i + Fy'5a22 + Yz'Sa^s

+ Zx'Sasi + Zy'dasi ~\~ Zz'dazz, (37)

where

Xx'
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constituents Xx, etc., are not to be confused with the stress-

constituents Xx etc., of customary elastic sohd theory. Gibbs
himself gives on page 186 a physical signification to his constit-

uents, which brings home to the careful reader how essential

it is to be on guard when it is a question of giving a measure of a
physical quantity -per unit of length or area or volume. His own
statement is so brief that for clarity it can be somewhat ex-

panded. He asks us to consider an element of mass which
in the reference state is rectangular (a "right parallelopiped" as

he calls it) with its edges parallel to the axes OX', OY', OZ'.

We shall adopt a method similar to that employed previously

and regard the center of this at a point P', whose coordinates

are x'
,
y', z'. The middle points of the faces perpendicular to

OX' shall be named Q' and U', the coordinates of Q' being
x' + ^', y', z', and of U', x' - ^', y' , z'; and so on. (The dx',

dy', dz' of Gibbs are 2^', 2r]', 2^'.) In the strained state the
element is in general an oblique parallelopiped the center of

which is at P, whose coordinates are x, y, z with reference to

the new axes OX, OY, OZ. The coordinates of Q, the displaced

position of Q' , and still the center of one of the faces (now a
parallelogram), are a: + ^, ?/ + 77, 2 + f , where

k = ank',

r = asir.

(See equations (21), noting that the local coordinates of Q' in

the local axes at P' are ^', 0, 0.) Now consider a further infini-

tesimal displacement from this state in which only an varies, but
not any of the other eight strain-coefficients. In such a varia-

tion ^ will alter by ^ • 8an but 77 and f will not vary; i.e., the face we
are considering will move further from the center of the element
in the direction of OX (as Gibbs postulates in line 12 of page

186) by an amount ^' • 8an. Similarly the face opposite will move
relatively to the element's center an equal distance in the

opposite direction; in other words one face will have separated

from the other face by an amount 2^'oaii. Hence the work done
by the components of the force on the element across these faces

parallel to OX is equal to the product of 2^'aaii and this force.
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But a glance at (37), or [355] of Gibbs, shows us that, if no

heat is imparted and only an varies, the increase in energy of

the element is

Hence as work done is equal to energy increase the force just

referred to is 4:r]'^'Xx', or Xx> per unit of area in the state of

reference. The symbolism clearly indicates the physical

signification; the accented x' in the suffix indicates that the force

is estimated on an area which was perpendicular to OX' in the

unstrained state and was equal to the unit of area in that state.

The unaccented X, to which x- is the suffix attached, indicates

that the force is a component in the direction OX. The force

of course only exists in the strained state, since the reference

state is assumed as an unstrained state, that is, one in which the

stress-constituents vanish. (See the remarks on this on page 418.)

It is clear from this (quite apart from the type of equations

connecting Xx', ... Zz' with Xx, . . . Zz which are indicated

above) that Xx is quite distinct from Xx'', for Xx is the force

across a face which is perpendicular to OX in the state of strain

estimated on an area which is equal to the unit area in that

state; it is however, like Xx', a component in the direction OX.

Similar differences can be drawn between the other com-

ponents of stress in the two systems of coordinates. From this

it can be perceived that because Yz = Zy it is not of necessity

true that Yz' = Zy. It should be observed that these results

do not depend on the fact that one may choose the axes OX, OY,

OZ not to coincide with OX', OY', OZ'; for even if they were

made to coincide the symbol Xx, for example, could not be

made to do double service, on the one hand for a component

parallel to OX of a force across an area which was unit area in

size and was perpendicular to OX, and on the other hand across

an area which is unit area in size and is perpendicular to OX.

Thus the double naming of the axes is of service even when they

are regarded as coincident. This is a justification for Gibbs'

apparently pointless complication of procedure. Only if the

state of strain is regarded as being little removed from the state

of reference can we assume that an approximate equality may
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exist between Yx' and Xy, and so on, provided the two sets of

axes are regarded as coincident.

At the risk of appearing to be prohx on this matter, the writer

would hke to point out that the equations (38) offer an alter-

native method of giving the correct physical signification to

Xx', etc. If we recall the arguments developed from equations

(16) to (27) above, we will remember on looking at (27) that a

unit area, which was in the state of reference perpendicular to

OX' (so that for it a' = 1, jS' = 0, 7' = 0), is strained into an

area whose projections on the planes perpendicular to OX, OY,

OZ are An, A21, Asi, with similar results for unit areas originally

normal to OY' or OZ'. In other words, if unit area which was

in the state of reference perpendicular to OX' is strained into an

area of size K with direction cosines a, j8, 7 with reference to

OX, OY, OZ, then

Ka = An,

m = A21,

Ky = A31.

But by (28), the force across this surface in the state of strain in

the direction OX has the value aXx + ^Xy + 7X2 per unit

area, and so the actual force across the area Kin the state of

strain is

AnXx + A21XY + AsiXz,

which by (38) is just Xx', thus giving us the physical inter-

pretation of Xx' once more. In the same way we can demon-

strate that Xy' is the force parallel to OX across an area in the

state of strain, which in the state of reference was unit area in

size and normal to OY' in orientation; and so on.

6. Thermodynamics of a Strained Homogeneous Solid. The

treatment of heterogenous systems in the earlier parts of Gibbs'

discussion of the subject is of course based on equation [12] which

is a generalization from equation [11], the equation for a

homogeneous body when uninfluenced by distortion of solid

masses (among other physical changes). In the same way any

treatment of heterogenous substances in which elastic effects
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must be taken into account will require a knowledge of how a

homogeneous substance when strained must be dealt with in

thermodynamical reasoning. The equation which is to replace

[11] is now easily derived in view of what has just been accom-

phshed in the previous parts of this exposition. Thus in [11]

c and r] are regarded as functions determined completely by

the state of the body. For a homogeneous fluid, we can regard

them as functions of its temperature and volume, or of its tem-

perature and pressure, and their differentials are connected by

the equation

de = td-q — pdv. (39)

If we consider this as applying to the matter within a unit of

volume, dv is actually the fraction of dilatation, essentially the

one strain-function which plays any part in the case of a fluid,

since the elongation in all directions is uniform and shears do

not exist. For a strained solid e and r? are still functions of the

state, and we can take as the variables the temperature and the

strain-coefficients. There are nine of the latter, but we have

seen that six quantities are sufficient. In equations (9) we

have defined six such quantities d, 62, ... ee, and later in (23)

and (24) we have seen that they are quantities which are

entirely independent of the choice of the axes in the strained

state, (of course, their particular values depend on what axes

we choose for OX', OY', OZ', the axes to which the unstrained

state is referred; in particular we can choose axes so that

64, 65, 6 6 vanish—the principal axes of the strain which are not

sheared but merely rotated). For our immediate purpose it

is more convenient to take the quantities /i, ... /e as our

"thermodynamical variables," where /] = ei' — 1, ...... .;

f^
= 64/(62^3)% ....... As we know, /i then represents the

fraction of elongation parallel to OX', etc., and fi represents

the shear of lines parallel to OY', OZ', etc.

For a fluid body —p8v represents the change of internal

energy of strain (compression) when the (unit) volume ex-

periences a dilatation whose fraction is 8v. Similarly, when the

strain-functions /i, ... /e are altered, the energy of strain of unit

volume of the strained material alters by Xi8fi . . . + XeS/e.
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Here we make a natural generalization and assume that for any
change of state of a homogeneous solid

de = td-n + Xirf/i . . . + Xed/e. (40)

Fully interpreted this means that we consider e and 17 to be

functions of t, /i, ... /e. Strictly we should write them
i{t, fi, ... /e) and r){t, fi, ... /e). If the state of the solid alters

to another state of equilibrium in which the variables change

to t + dt, /i + dfi, . . . /e + dfi, then equation (40) connects

the various differentials.

It will help us if we briefly recall how from equation (39) we
derive the equations which connect those thermal and mechani-

cal properties of fluids which can be observed and measured by
experimental methods. Thus

c,{t, v) lit, v)

dr] = —-— di + —-— dv, (41)
L If

where c„ is the specific heat at constant volume, and U the so-

called latent heat of change of volume at constant temperature.

We are, at the moment, taking t and v as the variables and

indicating this precisely by writing the symbols in brackets

after each quantity to show that in each case we are considering

the appropriate functional form which expresses that quantity

in terms of these variables. This device will also indicate

without any ambiguity what quantities are being regarded as

constant when we write down any partial differential coefficient.

From the equation

deit, v) = tdr](t, v) — p{t, v)dVf

we derive the differential equation of the Gibbs yf function (free

energy at constant volume), viz.,

d^{t, v) = -7](t, v) dt - pit, v)dv, (42)

where

ip = € — trj.
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Thus

dv(t, v) dp(t, v)

But by (41)

dv dt

_ dyjt, v)

'" ~ ^ dv

(43)

Therefore

dp(t, v)

h = i -^' (44)

the well known relation connecting the latent heat of change of

volume at constant temperature with the temperature coeffi-

cient of pressure at constant volume. Also from (41) we
derive

dCyjt, v) _ ± ( dv(t, v) \

dv ~ dv { dt j

= t

dtdv

But by (43)

Hence

d^vjt, v) _ d^pjt, v)

dtdv ~ df^

dc,{t, v) ^ d'pjt, v)

which is another well-known relation.

If we choose we can take the temperature and pressure as the

thermodynamical variables. We then write

dv(.t, p) = —^— dt + —^— dp, (46)

where Cp and Ip are the specific heat at constant pressure and the
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latent heat of change of pressure at constant temperature. An-

other differential equation which we require now is that for

the f function of Gibbs (the "free energy at constant pressure")

dUt, P) = -v{t, p)dt + v{t, p)dp, (47)

where

^ = € - tri -{- pv.

From this we derive

dy]{t, p) dv{t, p)

But by (46)

dp dt

_ dv(t,p)
In — I

Therefore

a well-known relation.

Also, from (46),
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the change of entropy is equal, by equation (41), to

- < Cv{t, v)dt + U{t, v) —^ dt V

It is also, by (46), equal to

- Cp{t, v)dt.

Equating these two expressions we obtain the result

Cp{t, p) = Cv(t, v) + U{t, v)
—
^^'

and using (44) we arrive at

In exactly the same manner we can derive the equations

which connect the thermal and mechanical properties of a

solid. For the sake of brevity we shall write eQ, f) and 7?(^ /)

for e{t,fi, . . . /e) and 7?(i, /i, ... /e); so that when we write, for

example,

dyjt, f) drjjtj)
or '

we mean the temperature variation of t? at constant strain or the

rate of variation of r] with respect to /r, the temperature and the

five strain functions other than /r being maintained constant.

In analogy with (41) we write

dv(t,f) =^ * + S '-^ if- (52)

The summation extends over six terms; c is the specific heat at

constant strain of the solid (per unit volume as measured in the

state of strain), which means that the solid is prevented from

changing volume and shape. The six quantities Ir are various

latent heats of change of strain; in each case the temperature
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and five strain-quantities are unchanged. A well-known

illustration can be given of the idea involved here. When one

extends a piece of rubber suddenly, it rises in temperature.

Thus if one wished to maintain the temperature constant one

would have to extend slowly and take heat from the solid, which
shows that the Ir coefficients for rubber are negative. The en-

ergy relation (40) is now written

deitj) = tdriitj) + i:Xr{t, f)dfr, (53)

and from it we derive the differential equation for Gibbs' \p

function, viz.,

dKtJ) = -n{t,f)dt + XXr(t,f)dfr, (54)

where

\p = € — tr].

From (54) we derive

driitj) dXritJ)

But by (52)

dfr dt

a.(^/)

(55)

dfr

Therefore

lr= -t —^' (56)

There are of course six equations of the type (56), and they

connect the heat required to maintain the temperature constant

when the strains are altered with the variations of stress re-

quired to maintain the strains constant (i.e., to prevent expan-

sion and change of shape) when the temperature alters. To
continue, from (52) we derive

dcjtj) ^ d^tj)
,

dfr dtdfr
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But by (55)

dtdfr dt^

Hence we obtain the six relations

It is, of course, open to us to choose as thermodynamic

variables the temperature and the six components of stress.

The energy and entropy are then expressed in full by the

symbols €{t, Xi, ... Xe) and r](t, Xi, ... Ze) or briefly €{t, X)

and r](t, X). The entropy equation then becomes

at, X) s;^ Lrjt, X)
7]{t, X) = —^— dt -]- 2j

—
~t

—
' ^

where C is the specific heat at constant stress, i.e., under prac-

tically the usual conditions of measurement, where the external

forces on the solid are unchanged. Li, ... Le are six latent

heats of change of stress, each one at constant temperature and

with five of the stress-components unaltered.

The energy differential equation is once more adapted to the

choice of variables by using Gibbs' f function, viz.,

€ — ^77 — 2 XtSt.

Thus
d^{t, X) = —n{t, X)dt - Xfr{t,X)dXr. (59)

From (59) we derive

dr){t, X) ^ dfrjt, X)

dXr dt

But by (58)

dv(t, X)

(60)

Lr = t

dXr
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Therefore

Lr-t
^^

> (61)

giving us six equations connecting the heat required to maintain

the temperature constant when the stresses are altered with the

variations of strain which accompany changes of temperature

when the stresses are maintained constant. In addition we
derive from (58) the equation

dC{U X) ^ d^r^it, X)

and by (60)

dXr dtdXr

d^riit, X) b%{t, X)

dtdX, ~ df^

Hence we obtain the six relations

A relation analogous to (51) can also be derived, which connects

the difference of the two specific heats with the temperature

coefficients of the strain-functions and the stress-constituents.

Thus let an infinitesimal change take place at constant stress;

the change of entropy can be expressed in two ways. For by

(52) it is equal to

]{c(u)dt + J;uu)'-^

and by (58) it is also equal to

7 at, X) dt.
V

Equating these two expressions we obtain the result

C{t,X)=c{t,f)^^Ut,f)^-^^'
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and using (56) we reach, finally,

Some further relations can be obtained from the differential

equations for the entropy and various energy functions. Thus

from (52) we see that

l.{t,j) = t

dfr

dvitj)

dfs

Hence

dlrjtj) ^ dhjtj)

dfs ~ dfr
(64)

and there are fifteen such "reciprocal relations" between the

latent heats and the strains.

Similarly from (54) we obtain fifteen reciprocal relations

between the stresses and strains, viz.,

By using equations (58) and (59) we can obtain two sets of

reciprocal relations, one between the latent heats and stresses,

one between the strains and stresses, viz,

dLrjt, X) ^ dLsjt, X)
,QQ^

dXs dXr

and

dfr(t, X) _ dfs(t, X)

dX, dXr
(67)

From the thermodynamic equations we can also give a more

general signification to the elastic constants of a solid, which were
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introduced in equations (31) as purely mechanical conceptions.

By means of equations (53) or (54) we can express the stress-

constituents as functions of the temperature and the strains; thus

Xr =
dfr

(68)

Now suppose the body experiences a small variation of strain

at constant temperature; the variations in the stresses are given

by the six equations

where

8Xt = Crl5/i . . . + Credfe,

dXrjt, f) ]

_ d'Ht, f)

dfr dfs

(69)

(70)

Equation (69) replaces (31). The elastic constants are of

course functions of the temperature and the strains. If the xp

function is quadratic in the strains, the quantities Crs are inde-

pendent of the strains, and this leads to the generalized Hooke's

law referred to earlier. In any case equation (70) shows that

Cra = Csr aud that at the most there are only 21 elastic con-

stants. For an isotropic material, we have as before essentially

only two, the bulk modulus or elasticity of volume, defined as

before, and the modulus of rigidity given by any one of the

differential coefficients

or
a/4

a¥M),

dX,{t, f)
^

a/5

aVO/),
a/52

aXeO/),

a/e

aVO/),

a/e^

(71)

which are equal for such a substance.

For those interested to pursue these matters further, a short

chapter on the thermodynamics of strain will be found in

Poynting & Thomsons' Properties of Matter. For a very full
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treatment consult Geiger and Scheel's Handbuch der Physik,

Vol. VI, Chap. 2, pp. 47-60 (Springer, Berlin).

We have now completed this long exposition of elastic solid

theory. It has been necessary to go into it in some detail, since

without some modicum of knowledge concerning it, this section

of Gibbs' treatment, brief as it is, would be utterly unintelhgible.

Indeed its very brevity renders the task more difficult; for

although Gibbs, in his treatment of heterogeneous phases con-

sisting of solids and fluids, does not employ in every detail the

analysis of stress and strain in a solid usual in the texts of to-day,

every now and then he interposes a short remark which would

puzzle a reader unacquainted with that analysis. The very

first page of the section is a case in point. Moreover, this

analysis usually forms part of one of the more specialized courses

in the physics or mathematics department of a university, and

even students of physics, not aiming at a highly specialized

degree in that subject, might well find their knowledge of stress

and strain too rudimentary to follow Gibbs at this point.

We now take the section itself and give a commentary upon it

page by page.

II. Commentary

7. Commentary on Pages 184~190. Derivation of the Four

Equations Which Are Necessary and Sufficient for the Complete

Equililrium of the System. We have already in the preceding

exposition dealt extensively with the introductory defini-

tions and formulations of Gibbs, I, pp. 184-186. We would

remind readers that in [354] the usual practice of to-day would

replace a differential coefficient such as dx/dz' by dx/dz', since

it is implied that x, regarded as a function of x'
,
y', z', is being

differentiated ^partially with respect to z', with the condition

that x' and y' do not change in value. Actually it will probably

be more convenient if we keep the notation introduced above

and refer to dx/dx' as an, dx/dy' as an, dy/dx' as a^i, etc. If the

strain is homogeneous these ars strain-coefficients are independ-

ent of the particular values of x', y', z'; they are constant

throughout the soHd body. In general, however, the strain

may be heterogeneous, and in that event any a^g is a function
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of x', ij', z', and a^, implies a functional form and is really a con-
traction for a„ {x', y', z').

Care should be exercised also to retain a clear idea of the
meaning of the variational symbol 5. We have already used it

in the exposition in the sense in which it is employed by Gibbs;
thus b{dx/dx') or, as we shall write it, 6an refers to an infini-

tesimal variation of the strain-coefficient, at a given -point, i.e.,

in a given physically small element surrounding the point which
was originally at x'

,
y', z'. The reader must guard himself

carefully against the misconception that he is to think of a
point neighboring to x'

,
y', z', say x' + 8x', y' + W, z' + hz'

,

and to regard han as short for

9aii 9aii ha^
,^ ax' + ^ iy' + - &',

i.e., as the difference between the strain-coefficient at a point and
at a neighboring point. Such a blunder would be fatal to any
understanding of [355] . Indeed it was to avoid giving the reader
any unconscious bias toward such an idea, that the writer, in re-

ferring in the exposition to a point near to x'
,
y' , z' employed

the notation x' + ^', y' + t]',z' + f ' and not x' + bx' , etc.

In the exposition we used e and -q as symbols for the energy
and entropy of the amount of material which occupies the unit

of volume in the state of strain from which an infinitesimal

variation is made; there was no need for suffixes as there was no
ambiguity involved at that point. It is, however, the general

practice of Gibbs to refer the material to its state of reference

when considering magnitudes of measured properties per unit

length, area or volume. Hence his use of the suffix v to bring
that clearly before the reader's mind. Occasionally when he
wishes to make a statement concerning magnitudes measured
per unit of volume in the state of strain he employs the suffix v

without the accent.

In the exposition we saw that

dtv = td7}v + ^Xrdf.

Now a unit of volume in the state of reference becomes the
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volume vv in the state of strain. (See Gibbs, I, 188, line 27.)

This quantity is, as we proved in the exposition, the determinant

of the Urs coefficients, which is denoted later in Gibbs' discussion

by the symbol H. If we multiply the differential equation

written above by vv we obtain

dev' = tdijv + H ZXrdfr.

Also, the fr coefficients are defined in the exposition as certain

functions of ei, ... ee) i.e., of ai, ... ae which are in their turn

functions of the nine coefficients an, so that any differential

dfr can be expressed as a sum of the differentials dara, such as

<f>ndaii + 4>i2dai2 • • • + ^zzda^z,

where ^n, <i>n, ... ^33 are functions of an, a^, . . . a^. In this

way we arrive at Gibbs' expression [355], where Xx', Xy', . . . Zz'

are functions of Xx, • • Zz, an, • • 033- The actual func-

tional forms we have already developed in the exposition and

given the actual linear relations which connect Gibbs' stress-

constituents with the usual stress-constituents.

On page 187 we have an expression for the variation of the

energy of the solid body if an infinitesimal amount of material is

added to it. Again we must carefully distinguish between the

variational symbol 8 and the differential symbol D, and interpret

correctly the use of the accents. Thus an element of the

surface of the body in the state of strain is represented by

Ds. If by crystallization from a surrounding fluid, for example,

the body increases in size, the surface is displaced normally

outwards by an infinitesimal amount which we represent by

8N. This might be regarded as having a constant value every-

where on the surface, giving a uniform thickness for the addi-

tional layer. But this is not so of necessity; 8N in general is

regarded as a function of the position of the center of the element

Ds, a function obviously infinitesimally small in value. Indeed

8N could be regarded as some ordinary function (t>{x, y, z) of the

coordinates of a point on the surface multiplied by an infinitesi-

mal constant. A sign of integration, of course, refers to the

differential Ds. For example f8NDs is the increase in volume
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of the solid as it is when the deposition of matter takes

place, viz., in the state of strain. (Note lines 4 and 5, where

Gibbs expressly indicates this.) We could, however, conceive

the solid to be brought back to the unstrained state after the

deposition, the additional matter following the same change. In

consequence the solid would be larger in its unstrained state

than the original solid (before the increment) in the unstrained

state by an amount J'dN'Ds'; where 8N' now represents the

thickness of the additional layer in the unstrained state and Ds'

the size of the element of area which is Ds in the strained state.

Since ev > refers to the quotient of the energy of strain of a small

portion of the strained matter by its volume in the unstrained

state, the expression J'evdN'Ds' is justified. (It could, of

course, be just as well represented by J^evdNDs, but the former

expression is the more convenient for Gibbs' argument.) In

cases where the solid has in part dissolved, 8N and 8N' would

be negative in value. Thus we arrive at expression [357] for

the variation of the intrinsic energy of the solid.

We are not however concerned with this energy alone,

nor with the entropy and mass of the solid alone. The system is

heterogeneous and involves fluid phases also, and so we are led

to the considerations dealt with in the remainder of page 187.

Again the form of [358] may puzzle readers not acquainted with

the methods of the calculus of variations, although the

content or meaning of it should not be very much in doubt.

The passage of matter and heat to (or from) the solid from (or

to) the liquid will change the entropy Dt] and the volume Dv
of a given elementary mass of the fluid by amounts 8Dr} and

8Dv; and in addition will alter the masses of the constituents

Dmi, Dm2, etc., composing it. The condition laid down towards

the end of page 187, which obviates the necessity of dealing

with the internal equilibrium of the fluid itself, involves as a

natural result the simplification that the integrations through-

out the narrow layers of fluid between rigid envelop and solid

are free from any troubles concerning original and present states,

and do not require the use of accents to avoid ambiguity.

Expression [359] embodies the fact that the potential energy of

an element of matter 7n, raised through a height 8z, acquires

potential energy of an amount ing8z.
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The method of deaHng with the variational equation [360] is

essentially the same as that of dealing with the variational

equation [15] in the early pages of Gibbs' discussion, although

the presence of integral signs and merely formal differences of

appearance betweert [15] and [360] may mask the identity of the

methods. It would have been quite legitimate to write in

[15] ff ft'h-q'v'dx'dy'dz' for t'hri, the integration being

throughout the phase indicated by one accent, and so on; but it

was unnecessary, as the conditions were uniform throughout

any given phase in equilibrium. But for a solid the strain

may be heterogeneous, and so qv might well change in value

from point to point of the solid body with the changing values

of an, ai2, . . . flss. Hence the necessity for the integral. Also

if the strain were homogeneous we could write the second term

in [360] as F'ZS'Xx'San, Y' being the volume (unstrained) of

the solid; but in general this is not possible. Reflection on this

and similar considerations for the remaining terms will remove

any difficulty in understanding raised by pure differences of

form. Following this hint we see that [361], [362] and [363]

are the additional equations arising from constancy of total

entropy, from constancy of the total volume of the system

within the envelop, and from constancy of total mass of an

independent constituent of the system; they are entirely

analogous to equations [16], [17] and [18] respectively. Con-

dition [361] is straightforward. In [362] we consider any

element of the fluid Dv in the form of a thin disc lying between

an element of surface Ds of the solid and a similar element of the

rigid envelop. First of all the variation of the strain in the

solid involves displacements hx, by, 8z of the point x, y, z, the

center of Ds; thus Ds is displaced normally towards the envelop

by abx + ^by + 'ybz. This reduces the volume Dv by an

amount {abx -\- ^by + ybz)Ds. In addition the accretion of

new matter reduces it also by bNDs or vvbN'Ds' as we saw

above. These two causes therefore bring about a change

8Dv in Dv which is given by [362]. Equation [363] offers no

difficulty. The subsequent reasoning leading to equation

[369] is based on an application of Lagrange's method of

multipliers, referred to and used earlier in Gibbs' discussion.
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(See Gibbs, I, 71-74.) The object of the method is to ehminate

certain of the variations from the condition of equihbrium so as

to leave in it only those variations which are independent of

each other and are therefore completely arbitrary in their

relative values. Those variations which can be regarded as

arbitrary are the displacements of the points in the solid and
on the surface arising from the arbitrary variation of strain in

the soHd, and also the thickness of the layer of material deposited

on or dissolved off the soUd. The object is partly attained by
the time we reach equation [367] and the steps are fairly

obvious; but in addition to bx, by, bz and bN' we have also the

nine variations ban, ba^t, . . . baas. But as we have seen these

are not independent of each other since straining only depends

on six functions of an, a^, . . . ass- The step from [367] to

[369] actually eliminates them all and replaces them by varia-

tions bx, by, bz for points in the solid and on its surface. Gibbs

is very brief at this point, and to elucidate the step made in

[368] we shall have to make a short digression. The point

P'{x', y', z') in the reference state is displaced to P(x, y, z)

during the strain an, ai2, . . . 033- The additional strain ban,

bai2, . . . bas3 displaces it still further to Psix -\- bx, y -\- by,

z + bz). Hence the variation in the value of an, i.e., ban or

b(Jdx/dx'), is equal to

b{x + bx) dx

dx' dx'

Thus

\dx') ~
dx'

bx.

Similarly

<5)=
a
—,bx.
dy

(Note that x, y, z are definite functions of x', y', z' and x + bx,

y -\- by, z -{- bz are also definite functions of x', y', z' slightly

different in value from the former; thus bx, by, bz are also defi-
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nite functions, small in value, of x', y', z'.) On this account

•'(S)Xx' Sail = Xx' 51 ,

= Xx' ^ , ^x,
dx

which on integrating by parts is equal to

9 . dXx'
-, (X., Sx) -^ Sx.

Hence

Xx' dan dx'dy'dz' = — {Xx' 8x) dx'dy'dz'

dXx'
——r 8x dx'dy'dz'.
dx'

^

The first integral on the right hand side, which is an integral

throughout the volume of the soHd, can be transformed by

Green's theorem into an integral over its surface, viz.,

fa'Xx'dxDs',

and in consequence we obtain the result [368]. (Will the reader

accept the truth of this transformation for the moment so as

not to interrupt the argument? We shall return in a moment to

Green's theorem for the sake of those unacquainted with it.)

In a similar manner

/dx\
Xr'-5ai2 = Xy' 8[ p. /

j

d
= Xy> —, 8x

dy

d . dXy'
= -, (Xy> ox) - -^ SX,
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and therefore

Xy ban dx'dy'dz' = — (Xy 8x) dx'dy'dz'
dy'

- ff 'dXY'

T 8x dx'dy'dz'
J J dy

= U'iXy 8x) Ds' -
j I
j-^ 8x dx'dy'dz',

and so on. When we make the substitutions in the first integral

of [367] justified by these transformations, we convert equation

[367] into the form [369]. It might be as well to write the

first integral in [369] in full for the sake of clarity; it is

f f f ( /dXx' dXy dXz'\

/dYx' dYy dYz'\

-^\^ ^~By^^^F)^y

,
/dZx' dZy dZz'\ \

, , ,

where of course 5a:, dy, Sz are to be regarded as functions of

x', y', z', infinitesimal in value. Similarly the third integral

written in full is

/{ (a'Xx' + ^'Xy. + y'X,,)8x

-\-(a'Yx' + /3'Fk' + YYz')5y

+ (a'Zx' + ^'Zy + yZzO^z }Ds'.

We shall neglect for the moment the point raised at the bottom

of page 189 concerning surfaces of discontinuity, returning to it

when we give a proof of Green's theorem, and proceed with the

general fine of development. Taking the result [369] we shall

rearrange it so as to collect all the terms involving 8x, all those

involving dy, all those involving 8z and all those involving 8N'.

It is then written in the form
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9Ax' dXr' dXi

JO

'dYx' 9Fy' dY
+

(dZx' dZy' dZz' A I . . .

+ (a'Xx' + ^'Xy' + t'Xz') + av
D£
Ds'

8x

+

+

Dsl

+

(a'7.v' + /3'Fk. + 7'FzO + pp j^A 8y

(a'Zx' + ^'Zy> + t'-^z') + TP;^J 5z\ds'

ev - tr]v' + pvv - 2 (mi^i) ^^' ^^' = ^

This is equation [369] written in full.

Since, in the volume integrals, 8x, by, 8z are arbitrary varia-

tions, the expressions multiplying them must be zero at all

points of the solid in order that [369] may be true for any rela-

tive values of 8x, 8y, 8z. Thus we arrive at equations [374].

In the second integral of our rewritten [369] the expressions

multiplying 8x, 8y, 8z respectively must also be zero at all

points of the surface for the same reason. Thus we arrive at

equations [381]. There remains only the third integral in the

rewritten [369]. If 8N' is quite arbitrary, i.e., if crystal-

lization on the solid and solution from it are both possible we

must accept the truth of [383] ; but if the values of 8N' can only

be chosen arbitrarily from infinitesimal negative numbers, i.e.,

if solution only is possible, we justify only the wider conclusion

[384].

At the bottom of page 190, Gibbs makes a passing reference

to the stress-constituents Ax, Xy, . . . Zz i.e., the constituents

measured across faces perpendicular to the same axes as those

which indicate the directions of the thrusts or pulls involved in

the definitions of the constituents. His proof of the equality
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of Xy to Yx, Yz to Zy, Zx to Xz is one of those succinct, sweep-

ing statements which he makes from time to time with complete

justification, but with a whole array of intermediate steps in the

reasoning omitted, to the bewilderment of the reader not so well

versed in analytical processes. It was in \ iew of the awkward
situation at this point that we have in our discussion introduced

and defined Xx, Xy, . . . Zz first, treating them in a manner
which will have been familiar to any reader acquainted with

modern texts on elasticity, and have already proved the

equality of Xy to Yx, etc. Later, it will be recalled, we intro-

duced Gibbs' more general stress-constituents Xx', Xy', . . . Zz'

and gave some care to their precise definition and to the equa-

tions (38) which connect them with Xx, Xy, . . . Zz. It will

be apparent from these equations that in general Zy is not

equal to Yx', for example. Let us, however, make the two
sets of axes coincide so that an becomes en, etc., and ^^s, the first

minor of Urs in the determinant
|
a

\

becomes Ers, the first minor of

Crs in the determinant \e\. Equations (38) will be replaced by
equations in which Ers is substituted for A rs. Even so, as we
pointed out earlier, Xx' does not become identical with Xx, etc.,

unless the difference between the state of reference and the state

of strain is so little that a rectangular parallelopiped in the one

is but little distorted from that shape in the other. To elabo-

rate this latter point a little more, it will be observed that in

such a case the determinant

en ei2 eis

621 622 623

631 632 633

approximates to the form

1 612

1— 612

— ei3 — ^23

for en, 622, 633 are little different from unity, and 623 + 632, etc.,

ei3

623

1
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from zero. It appears that in such case £"11 approximates to

unity since 623 is small and 1 + 623^ differs but little from unity.

Similar statements are true of jE'22 and £'33, while E23, E32, etc.,

all approximate to zero for similar reasons. On examining the

modified equations (38) it will appear that in the event of such

coincidences Xx' approaches to Xx, Xy' to Xy, Xz' to Xz. We
thus illustrate in another manner Gibbs' conception of gradually

bringing not only axes of reference but the two states into coin-

cidence. But it will be realized on a little thought that even if

we have the states approximating to coincidence, but not the

axes, the considerations just raised do not hold; for then an,

an, ... 033 involve not only the actual elongations and shears

but also the direction cosines of the axes OX, OY, OZ with

reference to OX', OY', OZ' which change with any reorientation

of the former relative to the latter. In consequence an,

an, ... ass do not approximate to unity in general even for

slightly separated states, and An, An, • ^ss do not tend

to the values which are the limits of £"11, £'12, . . . Ess.

Gibbs' own proof may now be clearer to the reader. From

[355]

dev' dev'
Xy' = ~— and Yx' = ~—

oax2 0021

Under the conditions of coincidence assumed ai2 approaches en

and a2i approaches 621 in value. Hence the limit of Xy is

dev/den and that of Yx' is 967/9621 since under these circumstances

ev ' approaches ev. Now actually ev is a function of /e, and /e

becomes in the limit 612 + 621- Since therefore in the limit

and

dev

den
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being equivalent to a rotation simply recalls the fact that in the

analysis of strain the e^ and 621 coefficients involved the strain

through their sum and a rotation around the axis OZ through

their difference. (See equations (7) of this article.)

The reader may at this point feel a little mystified about

making the states of reference and of strain coincide ; for in such

case he may well ask, how can one have stresses at all. If he

will refer to the top of page 185, and read over the remarks on

this point by Gibbs, he will feel once more that they are too

brief to be very illuminating. The essential point is this.

We are after all not treating the state of strain itself and its

relation to a state of reference which is physically an unstrained

state; we are treating other states of strain obtained by slight

deformations from the state of strain in question, involving

variations of an, etc.; and for that purpose it does not matter

what particular state, strained or not, we take for a state of

reference. The position is similar to the treatment of the

geometry of a surface. There we are considering the relations

of points on a given geometrical locus to some other geometri-

cally relevant point (e.g., spherical surface to center, cone to

apex, etc.) and it does not matter theoretically what particular

set of axes we set up for assigning coordinates to the points in

question. We choose in each case a set which is practically the

most convenient. To give as wide a theoretical basis as possi-

ble to his analysis, Gibbs does not confine himself to any partic-

ular set of axes or any particular state of reference; but he does

at this point make a passing reference to those axes and states

which in practice are the most convenient by reason of the

simplifications which they make possible, and to which we con-

fined ourselves, for that reason, at the outset of our discussion

of elastic solid theory.

Before we go on to comment on pages 191-207 in which Gibbs

goes into certain details connected with equations [374], [381]

and [383], it will be as well to dispose of the question of discon-

tinuity referred to at the bottom of page 189. We have already

mentioned that in deriving [369] from [367] Green's theorem is

used. This theorem states that, if <^(a:', y', z') is a function which

is continuous, one-valued and finite throughout a region of
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space bounded by a surface s', then the three following rela-

tions are true

^, dx' dy' dz' = \ a'4> Ds',
ox I

30

dy
-, dx' dy' dz' = / l3'(i> Ds',

^ dx' dy' dz' = / y'(}> Ds',
dz I

where the volume integrations are to be taken throughout the re-

(i'K'\)

Fig. 7

gion bounded by s' and the surface integrals over s' . Figure 7

illustrates the proof of the first equation. The region is divided

by up into elementary columns parallel to OX' , whose sections by

planes parallel to OY'Z' are elementary rectangles, bounded by

sides parallel to OY' and OZ' . Let us integrate {d(f)/dx')dx'dy'dz'

throughout that part of the region contained in one of the

columns which intersects the surface in two elements of area

Dsa and Dsb' at the points A and B; the result is in the limit

equal to the product of the definite integral
/

{d(}}/dx')dx' by
Jb

the sectional area of the column. Now the definite integral is

equal to <}>a
—

<i>B, where (J)a and 0b are the values of 0(x', y', z')
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at the points A and B respectively. Also if a^', 13/, Ja and an',

^b', Jb' are the direction cosines of the outward normals to s' at

A and B, respectively, then u/Dsa' and —cxb'Dsb' are each equal

to the sectional area, since the sectional area is equal to the

projection of either of these sections by the surface on the plane

OY'Z', and a is the cosine of the angle between the normal to an

element of the surface and OX', which is normal to OY'Z'.

(The figure shows that the minus sign is necessary in one of the

results, since in one case the normal directed outwards will

make an obtuse angle with OX'.) Hence the result of integrat-

ing (d(j)/dx')dx'dy'dz' throughout the part of the region within

this column is equal to

aA(i>ADSA + aB<t>BDSB.

Adding similar results for all such columns and passing to the

limit we obtain the first of the relations given above. The re-

maining two are obtained by employing columns parallel to OY'
and to OZ'. In the derivation of [368] by means of this the-

orem the function 4> is Xx'^x.

Suppose, however, that in the above proof (i>{x', y', z') is dis-

continuous at a certain surface s" which divides the region of

integration into two parts, li AB (Fig. 8) intersects this sur-

face s" in C then as we approach C in passing along BA from B
the function <f>{x', y', z') reaches as a limit a value </>ci which

differs finitely from the limit </)c2 which is reached as we ap-

proach C along AB from A. In applying Green's theorem now
we must apply it separately to the two regions and integrate

(d4>/dx') dx' dy' dz' first along a column stretching from B to

C taking 0ci as the value at C, and then along the column

from C to ^ taking 0^2 as the value at C. In this way we ar-

rive at the result

—f dx' dy' dz' (throughout the column)

= as' 4>B Dsb' + aci" <i>ci DSc" + otc-l' 0c2 -DSc" + ola! <^a Ds/,

where the direction cosines with the suffix 1 are for the normal

to Dsc" directed outwards from the first part into which the
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region is divided by s", and those affected by the suffix 2 for the

normal directed outwards from the second part. (Of course

a/' = -ai",^i" = -182", 7i" = -72".) On adding results for

all the columns we obtain the result

9^

dx
-, dx' dy' dz' =

j a> Ds' + j{a," 4>x + «2" .^2) Ds",

and two similar results can be derived by using columns parallel

to the axes OY' and OZ'.

If considerations such as these are given their due weight

when discontinuities in the nature and state of the solid exist, it

Fig. 8

follows that in [369] a further term must be included on the left

hand side, viz., the integral over such a surface of discontinuity,

represented by

where bx, by, 8z, whether in the terms affected by the

suffix 1 or in those affected by 2, refer of course to the same

variation, viz., the variation in position of a point on the surface

of discontinuity arising from an arbitrary change of strain; since

this is just as arbitrary as the variation of any other point in the

interior of the solid or on the surface bounding the solid, we
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must conclude that the three factors in the integrand multiply-

ing 8x, 8y, 8z are severally zero, and so we arrive at [378]. (The

doubly accented direction-cosine symbols used in the argument
for the sake of distinction between s' and s" are, of course, not

required any longer.) The expression referred to in [379], and
the two similar expressions are of course the expressions in

(29a) of this article, except that the former are the com-
ponents of the stress-action at a surface on an area which was
unit size in the state of reference, the latter on one which is unit

size in the state of strain. The interpretation then put on [378]

is obviously necessary for the equilibrium of an internal thin

layer of the solid, bounded by two surfaces parallel and near to

the surface of discontinuity, one in one part of the solid and one

in the other.

8. Commentary on Pages 191-197. Discussion of the Four

Equations of Equilibrium. Let us now resume the commen-
tary on details in pages 191-197. The equations [377] are a

particular case of (29) of this article in which the compo-
nents Fx, Fy of the force per unit volume are zero and Fz = —gV.
(Remember that OZ is directed upwards so that gravity is in

the negative direction of OZ.) The meaning of the remarks

which immediately follow concerning [375] and [376] may
perhaps not be obvious to all readers at first sight. When we
proved these equations in this exposition, we assumed that the

solid was in equilibrium, but strictly this assumption was un-

necessary. For if we refer once more to the proof leading to

equation (30) and do not assume equilibrium, we must put the

couple on the element of volume arising from the stresses of the

surrounding matter and from the body forces on it equal, not to

zero, but to the sum of the moments of the mass-acceleration

products of the various particles of the element; i.e., to the

product of the moment of inertia of the element and the angular

acceleration. Now, without going into too much detail, this

moment-sum, like the moment of the body forces, involves terms

which have as a factor the product ^rjf and a length of the same
order of magnitude as ^, 77 or f . In consequence it is evanescent,

just as is the moment of the body forces, in comparison with the

moment of the stress-actions, and the same result follows as
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before. In consequence [375] and [376] are true in conditions

other than those of equiUbrium; they express in fact, as Gibbs

says, "necessary relations,"—necessary, that is, in the sense that

otherwise there would be involved a contradiction with the

laws of dynamics in situations more general than those con-

sidered in the text.

The equations [381] should be compared with (29a) of this

article, in which the expression {aXx + fiXy + yXz)Ds is

the stress-action across Ds in the direction OX of surface

matter on interior matter, and — apDs is F^Ds, the a;-compo-

nent of the external force on Ds. The difference here is purely

formal, since (a'Xx' + ^'Xy' + y'Xz')Ds' is still the stress-

action of surface matter on internal matter across the same

element of area which was Ds' in the state of reference. The

transformation of the equations to the form [382], which in-

volves throughout the direction cosines a', ^', y' of the element

in its state of reference, can be obtained at once without going

through the argument in Gibbs, I, 192, 193; for we have

already considered that argument in somewhat greater de-

tail when proving equations (18) and (27). The notation we
used in our discussion allows us to write equations [382] more

fully, thus,

a'Xx' + /3'Xr + y'Xz, + p{a'An + /8'^i2 + y'A,^} = 0,

and two similar equations, since by (27)

Ds ( Ka\

and An is the second minor of On in the determinant
|
a\, i.e.,

All = 0,22(133 — 023^32;

dy dz dz dy
^ dy' dz'

~
dy' dz''

and so on.

We pass on to the arguments based on equation [386] or

[387]. The symbols p and mi refer of course to the surrounding
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fluid (ni being the potential of the sohd substance in the Hquid)

;

€v,r]v and r, to the sohd. The subsequent discussion is Umited to

the case of a sohd body which is not only homogeneous in

nature, but also homogeneous in its state of strain. The first

point considered by Gibbs is concerned with the conditions

under which this latter proviso is compatible with a uniform

normal pressure over any finite portion of the surface. (The

effect of gravity, the only body force considered in the general

discussion preceding, is disregarded as negligible in producing

heterogeneity of strain or variation in the value of pressure at

different points of the surface.) This leads at once to Gibbs'

discussion concerning the three principal axes of stress on pages

194 and 195. We need not comment on this, as we have already

proved the necessary propositions in our exposition, starting

from an expression similar to [389]. Gibbs' proof is an analyti-

cal one based on the methods of the calculus as applied to

questions of maximum-minimum values of functions of several

variables, and will be easily followed by those acquainted with

these methods, whereas the method we have used, being

based on the elementary geometrical properties of the stress-

quadric will probably be intuitively perceived by those not so

well versed in mathematical analysis. Actually, if we revert for a

moment to the form of equations [382] which we have written

above, the conclusions arrived at in the paragraph which

includes the equations [393], [394], [395] can be obtained in a

very direct and suggestive manner. Equations [382] in our

form can be written thus

:

(Xx' + Anp)a' 4- (Xr> + Ay,p)l3'^

+ (Xz' + A,sp)Y = 0,

(Yx' + Anp)a + {Yy> + A,,p)^'

+ (Yz' + A2zp)y' = 0,

{Zx' + A3ip)a' -t- {Zy + A32PW

-f (Z^, + Anp)y' = 0.

If the solid is in a given homogeneous state of strain, Xx', . Zz',

> [382a]
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an, ... ass are all constant and given in value throughout the

solid. The same is true of the first minors ^u, . . . ^33. In con-

sequence [382a] combined with

form a system of four equations to determine four "unknowns"

a, /3', 7', p, which will thus yield not only definite values of the

fluid pressure, but also definite orientations of the solid surface

compatible with this assigned state of strain. To see how
many definite values and orientations are involved we consider

[382a] carefully. Suppose that a definite value is assigned to p ;

this would give us three simultaneous equations to determine

the values of the unknown a', /3', 7', at least apparently. In

reality, however, we should have three equations to determine

two unknowns, viz., a/j' and 13'/y'. In short we have one

equation too many; values of a'/y' and jS'/t' which v»^ould

satisfy the first two would not necessarily satisfy the third,

unless a special relation existed between the nine coefficients.

The relation embodies the fact that the determinant of the

nine coefficients is zero, i.e.,

Xx' + Aiip Xy' + A12P Xz' + Anp

Yx' + A21P Yy> + A22P Yz' + Aizp

Zx' + A31P Zy' + A32P Zz' + Azzp

= 0.

Without actually multiplying this out, the reader will realize

that the left-hand side is an expression involving p, p^ and p^.

The equation is a cubic in p. Hence there are only three

values of p which are compatible with the state of strain. They

are the roots pi, p^, pz of this equation. If we insert one of

these values, say pi, into the first two of [382a] we can solve for

the ratios a'/y', ^'/y', and combining these with a'^ + /8'^ + 7'^

= 1, we obtain values of a, /3', 7', say a/, /S/, 7/. Actually,

as is obvious, —a/, — jS/, —7/ will also satisfy the equations.

(Not of course —a/, jS/, 7/ nor any triad with an arrange-

ment of signs other than the two mentioned; for these would

give ratios not satisfying [382a].) Inserting p^ and pz we find
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that once more only a pair of orientations, given by a^, fi-i,

72'; —OC2, —^2^ — ji' qm6. oii , ^2! ,
73'; —0:3', — jSa', —73', are com-

patible with these pressures respectively and the given state of

strain. Furthermore, it can be proved from the equations that

«!'«/ + iS/iSa' + 7/72' = 0,

cii'az' + /32'/33' + 72'73' = 0,

az'ai' + /33'/3i' + 73'7i' = 0,

showing that the three directions are normal to each other; but

the proof would lead us too far into the theory of such deter-

minantal equations. Indeed, as doubtless many readers know,

the analysis is quite similar to that employed in analytical

geometry when determining the directions of the three principal

axes of a quadric surface, and in fact Gibbs derives the result

by a direct appeal to the existence of the three principal axes of

stress which will, of course, have the same directions at all points

of the solid if the strain is homogeneous. These directions

are in fact the directions on', fii ,
71'; 0:2', ^2, 72' and az, 183', 73';

and pi, P2, Ps are respectively —Xx, —Yy, —1z if the analysis

of the stress-constituents has been referred to these principal

axes as the axes of reference in the state of strain. (Xy, Y z, Zx,

etc. are of course each zero in such case. In order to avoid con-

fusion we have thus far had to use suffixed symbols for the

three pressures instead of accented symbols; for the use of ac-

cented symbols to indicate measurements in the state of refer-

ence makes it awkward to use them for any other purpose, such

as distinguishing three different values of a quantity. How-
ever, as the subsequent treatment will not require the use of

direction-cosine symbols, we shall revert to Gibbs' notation

and substitute p', -p", jp'" for pi, p-i, pa.)

In this way the important conclusion emerges that only three

fluid pressures are compatible with an assigned homogeneous

state of strain of the solid in contact with the fluid, and if one of

these pressures is established in the fluid, the solid, if equilib-

rium is to be preserved, can only be in contact with it at a pair of

plane surfaces whose normals are opposite to one another in

direction. Of course, this is a general statement; there are
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special cases where wider possibilities can exist. If, for instance,

in the state of strain the three principal stresses are equal to

one another, the "stress quadric" is a sphere; all sets of three

axes are principal; there are no shearing stresses for any axes.

(See case (3), Gibbs, I, bottom of page 195.) This is in fact the

case of ''hydrostatic stress" referred to frequently in these

pages by Gibbs. In such a state the form of the solid does

not matter. Immersed in a fluid throughout which there

exists a constant pressure a sohd will be in a homogeneous state

of strain compatible with the condition of hydrostatic stress,

that is, the condition in which there are no shears and the stress

over any surface is normal to it and is of the pressure type.

(The reader should not misconceive the phrase "homogeneous

state of strain." This implies that an, an, • • • ass have values

which are severally constant throughout the solid. But there is

no implication, for instance, that an = a22 = 0,33- It should be

clearly recognized that this is not necessarily the case even for a

state compatible with hydrostatic stress. It would be so, no

doubt, if the solid were isotropic in nature; in that event all linear

contractions or extensions would be equal and no shears would

exist, but for crystalline solids the more general nature of the

stress-strain relations would permit of wider conditions of

strain, even if for any set of axes Xx, Yy, Zz were equal to one

another, and the remaining stress-constituents zero.) If, how-

ever, one is to maintain the rectangular parallelopiped of solid

material, imagined by Gibbs at this juncture, in equilibrium in a

general homogeneous state of strain, one must arrange for

different pressures on the different pairs of faces. So if the

solid is in contact with a fluid of suitable pressure at one pair of

opposite faces, it cannot be so at the other two pairs. It must

be constrained by some other surface forces (pressural or

tensional) on these faces to maintain the assigned state of strain.

If these constraints are released and the fluid comes into contact

with all six faces there will be an immediate change to another

state of homogeneous strain compatible with the condition of

hydrostatic stress. In such a change there will be a diminution

of intrinsic energy of strain, since all release of constraints if

followed by movement converts potential energy into kinetic
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energy of sensible masses, or heat. This justifies the brief

statement of Gibbs on page 196 near the bottom: "This
quantity is necessarily positive except, etc."

The remarks so far have been concerned with mechanical
equilibrium. Equation [388], rewritten for the three possible

pressures in [393], [394], [395] involves equilibrium as regards
solution of the sohd in the fluid, or crystallization on the solid

from the fluid. This amplification of Gibbs' treatment of the
mechanical relations will, it is hoped, render the task of master-
ing these pages easier for the reader; there appears to be noth-
ing of special difficulty in the deductions on page 197 concern-
ing the supersaturation of the fluid.

It should be carefully borne in mind that the argument has
been confined to a homogeneous state of strain in the solid.

Gibbs remarks on page 197 that "within certain limits the
relations expressed by equations [393]-[395] must admit of

realization." But even if it were hardly practicable to make
the special arrangements conceived in these arguments, that
does not invalidate the conclusions. We are all thoroughly
familiar with "perfect engines," "perfectly smooth surfaces,"

"perfect gases" and other conceptual devices of the physicist

and chemist which are the "stock in trade" of many mechan-
ical and thermodjTiamical arguments. Of course in any prac-

tical case, if a solid of any form immersed in a fluid were
subject to distorting surface forces the strain would be hetero-

geneous. Perhaps some readers, recalling equations (29) of

this article or [377] of Gibbs, might wonder how a hetero-

geneous state of strain can exist without body forces; for in

such a case the equations referred to would become

dXx dXy dXz

dYx dYr dYz _
dx ~^ dy ~^ dz ~ ^'

dZx dZr dZz

ox dy dz

(We are neglecting gravity.) One might rashly conclude from
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these that Xx, Xy, • • • Xz must individually maintain constant

values throughout the solid, and that the strains, therefore,

being definite functions of these, would also be uniform in value

throughout ; but the conclusion is unwarranted, as the equations

do not assert that each of the nine differential coefficients is zero.

The torsion of a bar by gripping in the hands and twisting is an

instance of heterogeneous strain under surface forces, which

will be familar to all readers who have a special acquaintance

with text-books of elasticity.

9. Commentary on Pages 1 97-201 . The Variations of the Tem-

perature of Equilibrium with Respect to the Pressure and the

Strains. The Variations of the Composition of the Fluid. At

the bottom of page 197, Gibbs begins an argument leading

to equations [407] and [411]. Equation [407] is the analogue

of the well-known equation, first discovered by James Thom-

son, giving the alteration in the melting point of a solid due to

the increase of pressure on the surface. Perhaps if we put the

analysis in a more general form than in the text it may assist

the reader. We make no special arrangement about axes.

The unit cube in the state of reference becomes in general, in

the state of strain, an obhque parallelopiped whose volume has

changed to y^/,which as we have seen is equal to the determinant

an
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and ri -\- dr). There is no change in the mass of the solid, but its

volume will change by an amount given by

dvv = Andan + ^i2<iai2 • • • + Azzdas^.

This result depends on the fact that if the constituents of the

determinant \a\, written above, are all altered by infinitesimal

amounts, dan, dan, etc., then the infinitesimal change in the

value of \a\ is equal to the expression on the right-hand side

of the equation just written. Now by equation [355]

de = tdrj + Xx'dan + Xy'da12 + Zz'da.33, [400a]

since for the postulated cube ev and riv are identical with «

and t]. Also from [388]

dt = td-q + ridt — pdv — vdp + mdm,

remembering that vv is identical with v.

Equating [400a] and [401] we obtain

qdt — vdp + mdni = Xx' dan + Xy da^ + .

.

+ Zz' dttss + pdv

= {Xx' + An p) dan + {Xy + An p) da^ + . .

+ (Zz- + Azi p) dazz.

[401]

-. [404a]

This is our form of equation [404]. If we then proceed to

equation [405] which holds for a fluid identical in substance

with the solid (so that we are dealing with fusion and solidifica-

tion) we arrive at our form of [406], viz.,

(vf — v) dp — {riF — 7]) dt = (Xx' -{- Anp) dan

+ {Xy' + An p) dan . . . + {Zz' + Azz p) dazz. [406a]

In consequence we find that

dp

dt

Q
[407]

t{vF — v)

Let us recall that p is the fluid pressure on a pair of opposite
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faces of the solid which is compatible with the given state of

strain an, an, . . . 033. Thus p is a function of an, an, ... 033

and the temperature; dp/dt is therefore the rate of variation of

this pressure with temperature at constant strain, i.e., with the

solid constrained to keep its size and shape (in the state of

strain) unchanged. This is the analogue of the usual equation

for the variation of the melting point with pressure. The

melting point is t at pressure p and strain an, an, . • . ass- At

pressure p -\- dp and the same strain an, a,n, . . clss the melting

point is ^ + dt, the latent heat per unit volume is Q, and so

Q/t(vp — v) is equal to the limit of dp/dt. It is necessary to real-

ize the conditions under which Q is the latent heat of fusion.

From [393] the energy of the solid with the proper pressure p'

on a pair of faces is given by

€ = trj — p'v -{- m'm.

That of the same mass of the fluid in equihbrium with the faces

is given by

Hence

€f = tr\F — p'vf + ni'm.

€f — e = t{r]F — ri) = Q.

As Gibbs points out, if we imagine the cube surrounded entirely

by the fluid so that the conditions are those of the case usually

considered, the quantities e and rj have different values from those

considered above (see equations [396]), and Q is also different

in value.

The more general case considered on page 200 when the fluid is

not identical in substance with the solid can be followed up as

is done by Gibbs, and we arrive at [411] in the form

{

djii (t, p, nir) \m — v> dp
dp )

( dfll {t, P, nir) dm (t, p, Mr)
+ m< ~—:; dm2 + 1 dnia + etc.

( dm2 drriz

= {Xx' + An p) dan + {Xy + An p) dan • •

+ {Zz' + ^33 p) dass.
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(In this iii(t, p, Wr) is a contraction for ni{t, p, mi, mo, ms, . . .)

indicating the functional dependence of m on t, p, mi, m2,

mz, . . .;m is of course the mass of the soHd.) The treatment by
Gibbs on pages 198-201 is based on certam geometrical postu-
lates. In the state of reference he chooses lines parallel to the
edges of his unit cube as axes of reference. In the state of

strain he takes OZ to be perpendicular to the faces in contact
with the fluid, i.e., to be one of the principal axes of stress. The
other two axes OX, OY are of course in the plane containing

the other two principal axes of stress, and one of them, OX, is

chosen so as to be parallel to one of the edges of the oblique

parallelopiped. Thus all points which have the same s'-co-

ordinates in the state of reference have the same s-coordinates

in the state of strain; in consequence ^ is a function of z' alone

being independent of x' and y', and so a^i and 032 are zero. (See

[398].) Moreover all points which have the same y' and z' co-

ordinates in the state of reference, i.e., lie on a line parallel to

OX', have the same y and z coordinates in the state of strain.

Thus yisa, function of y' and z' and is independent of x', and so

021 is also zero, (again see [398]). From this point on he pursues

the analysis as above with the absence of certain terms which
vanish on account of the conditions

«21 = «31 = ^32 = 0.

Thus the determinant of the ar, coefficients becomes

an
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the solid during the infinitesimal strain is as usual

Xx'daii + XY'dai2 . . . + Zz-dazz.

This is of course equal to the work of all the surface forces

during the variation of strain. These surface forces may be

regarded as due to the pressure p on all the faces (a hydrostatic

pressure) together with additional forces on four of the faces.

The work of the hydrostatic pressure is —'pdv which is equal to

— p(Aii^aii + Avidan . . . + Azzdaz^.

Hence by subtracting this from the increase of energy of strain

we obtain the work of the additional forces and this is seen to be

equal to the right hand member of our [404a], and becomes the

right hand side of [404] when Gibbs' special geometrical con-

ditions are assumed.

10. Commentary on Pages 201-211. Expression of the Energy

of a Solid in Terms of the Entropy and Six Strain-Coefficients.

Isotropy. Having discussed the conditions of equilibrium Gibbs

proceeds in the subsection on the Fundamental Equations for

Solids to consider the problem of expressing the functional re-

lationship between the energy per unit volume, the entropy per

unit volume and the nine strain-coefficients. If ck- is expressed

as a function of -qv, an, an, . . . azz, or i/t' is expressed as a function

of t, an, an, . . . azz, we can by differentiation obtain, as we have

already pointed out in this article, the stress-strain relations,

which will be nine of the eleven independent relations referred to

byGibbs on page 203 . He opens the subsection with some rather

involved considerations on a special point, which we pass over

for the moment, and then briefly touches on the fact that the

energy or free energy functions must have a special form in the

nine strain-coefficients, inasmuch as the strain of an element is

capable of only six independent variations. This we have
already explained in our discussion, where we chose the six

quantities /i, f^, ... /e to represent the displacements arising

from pure strain, as distinct from possible additional dis-

placements involved in the nine coefficients an, an, . . azz, which

are the result of a pure rotation and produce no distortion of the
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material. The fr quantities are themselves functions of the six

quantities ei, e-i, ... ee (or ai, a2, ... ae) which are the same as

A, B, C, a, h, c defined in [418], [419]. Thus the energy or free-

energy functions must be functions of these six quantities, or

in other words "the determination of the fundamental equation

for a solid is thus reduced to the determination of the relation

between ev, riv, A, B, C, a, b, c, etc." (page 205). Having
pointed this out Gibbs at once proceeds to discuss a further

limitation on the form of these functions if the solid is isotropic,

and this involves him at once in an appeal to the existence of

three principal axes of strain for any kind of material, a fact

to which we have already referred in this article. Thereafter

he deals with approximations to the form of these functions

and concludes this subsection on that topic.

Let us proceed to the subject matter of pages 205-209 of the

original which has been treated in our discussion in a somewhat
different manner. The starting point of Gibbs' treatment is the

equation [420] and this has already appeared implicitly in this

article. For we know that if P' and Q' are the positions in the

state of reference of two adjacent points, and P and Q are their

positions in the state of strain, then

PQ' = air' + a2v" + asf" + 2a4Vr' + 2a,^'^' + 2ae^'r,',

where x', y', z' and x' + ^ ,
y' + tj', z' + f' are the coordinates

of P' and Q! and ai, ai, az, ai, as, ae are six functions of the

strain coefficients defined in (23), or, as already stated, the same
functions which Gibbs defines in [418] and [419] denoted by the

symbols A, B,C, a, b, c, respectively. If a, ^', y' are the direc-

tion-cosines of P'Q' with reference to the axes OX', OY', OZ'

so that a' = ^'/P'Q', etc., it follows that

PQ"
aia'2 -f- a2)3'2 + asj'^ + 2a,^'y' + 2a,y'a' + 2a6a'^' = =^ = 7-

P'Q'

which is just Gibbs' equation [420].

The method pursued by Gibbs at this point to demonstrate

the existence of the principal axes of strain employs the analyti-

cal processes associated with the discovery of maximum-
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minimum conditions of a function of several variables, and

resembles that employed by him on pages 194, 195 when
demonstrating the existence of the principal axes of stress. It

will be followed easily by those versed in such analytical

methods, but for other readers not so well acquainted with

mathematical technique we can give a geometrical flavor to the

argument which may prove helpful. We saw in the previous

discussion that

is the equation of a locus drawn round the local origin P' which

is strained into a sphere around the center P. This locus is an

ellipsoid, and its actual form and the orientation of its principal

axes in the body are of course dependent entirely on the magni-

tude and nature of the strain and not at all on the particular

choice of the axes of reference, OX', OY', OZ'. We have already

seen in this article that the principal axes of this "elongation

ellipsoid" experience no shear and so are the principal axes of

strain, and we can therefore proceed at once to the deduction of

equations [430] and [431] on page 207. The method is well

known to students of analytical geometry. Suppose that R'

is a point in which one of the principal axes of this elongation

ellipsoid through its center P' cuts the surface, and let its local

coordinates be ^Z, tji', f/. We know that the direction cosines

of the normal at P' are proportional to

But since P'R' is along a principal axis, the normal at R' coin-

cides with P'R' and so the direction cosines are also proportional

to ^i, r}i', fi'. Thus the three quantities

fli^i' + aem' + ctBfi' fle^i' + a2Vi' + «4fi'
; ' ; '

F~'
'
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have the same value. So it appears that if a, /3', 7' are the

direction cosines of any one of the three principal axes then

aia + ae/S' + a^y'

aea + a2/3' + 0*7'

asa' + ttifi' + 037'

pa',

pt',

where p is a multiplier still undetermined, but the same in all

three equations. These, combined with the equation

Q,'2 _j_ ^'2 _|_ y'2 = X, are sufficient to determine, first the value of

p, and then the values of a', ^', y' in terms of the six strain-func-

tions, tti, 02, ... a 6. The analysis is exactly similar to that

which we employed earlier when explaining the conditions for

the existence of a homogeneous strain in a solid in contact with a

liquid. We write the preceding equations in the form

(ai — p)a + ae/S' + 057'

aea' + (a2 - p)l3' + 047'

a^a' + a^jQ' + (as - p)7'

[429a]

(The reader will easily satisfy himself that these are the equa-

tions [429] with p substituted for rl) Now, for reasons which we

have already discussed in the place just referred to, these three

equations are not consistent with one another unless the follow-

ing determinantal equation is true:

ttl
-



fll
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article by another method. (As mentioned at that point a
straightforward, if tedious, piece of algebra will show that

0203 + ascti + aia2 — 04—05 —
6

= Al + Al^^... +A 2

33'

where Apg is the first minor of Opg in the determinant of the

coefficients, viz. H. This gives the alternative expression for

F in [434]. Also, we have already seen that the rule for multi-

plying determinants will verify that H^ = G.) A rather special

point is raised and disposed of on pages 210, 211. It concerns
the sign of the determinant H. It is clear from [439] that G
is a positive quantity, but H may, of course, have a negative

value instead of a positive one from a purely mathematical stand-

point; but from a physical standpoint negative values of H are

ruled out, provided we agree that the axes OX', OY', OZ' and
OX, OY, OZ are capable of superposition, meaning that if the

latter are turned so that OX points along OX', and OY along
OY', then OZ will point along OZ' (not along Z'O). In short, if

one set of axes is "right-handed" the other must be likewise,

if one is ''left-handed," so also is the other. (A right-handed

set of axes is one so oriented that to an observer looking in the

direction OZ', a right-handed twist would turn OX' to OY', etc.)

Gibbs illustrates this by considering a displacement of the

particles which is represented by

X = x', y = y', z = -z',

the two sets of axes being regarded as identical. (If they were
not they could easily be made so by a rotation.) Now the H
determinant of this is

1
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OX'Y'. This displacement cannot be effected by any simple

rotation. (A rotation of the body for example round the axis

of OX' through two right angles would be represented by the

equations

X = x', y = -y', z = -z'

whose U determinant has the value +1.) Indeed, to produce

the displacement indicated we would have to conceive a con-

tinuous distortion of the body in which all the particles of the

body would have to be gradually "squeezed" towards the plane

OX'Y' , the body growing flatter and more "disc-like" until it is

squeezed to a limiting volume zero; thereupon it would begin to

swell again to the same size as before, but with all the particles

previously on the positive side of the plane OX'Y' now on the

negative, and vice-versa. Such a process while conceivable is

hardly possible physically. It should be noted that in the

course of such a conceptual continuous process the volume

would pass through the value zero; also the determinant H,

which is the ratio of volume dilatation, would pass through

decreasing small values from unity to zero, then change to

negative values and grow numerically (decreasing algebraically)

to the limiting value —1, as we indicated above. This short

discussion will perhaps help the reader while perusing pages

210, 211.

We now revert to the short paragraph beginning near the top

of page 205 with the words "In the case of isotropic bodies."

Unless the reader is on his guard the position of this paragraph

in the general argument might unconsciously incline his mind

to the view that the subsequent discussion concerning principal

axes of strain is only valid for isotropic solids, and this would be

unfortunate. Nothing in Gibbs' own argument nor in that given

earlier in this article warrants such a restriction. No mat-

ter what the nature of the solid, any group of external forces

will produce a distortion and a system of stresses such that there

are in any element three principal axes of strain for which the

shearing strain-coefficients d, Ch, ee vanish, and three principal

axes of stress for which the stress-constituents Yz (or Zy),

Zx (or Xz), Xy (or Yx) vanish. If the strain is homogeneous
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the principal axes of strain are oriented alike in all elements;
that will also be true of the principal axes of stress if in addition
the body is homogeneous in nature. But it will naturally occur
to the reader to inquire whether the principal axes of strain are
coincident with those of stress, and indeed this query and its

answer is just the matter at issue at this point in Gibbs' text. A
few lines before, Gibbs refers to the now familiar fact that the
state of strain (as distinct from rotation) is given by six func-
tions of the strain-coefficients an, a^, . . . ass, choosing, for

reasons now fully discussed, ai, . . . ae as these functions (or

A,B, C, a, b, c, as he styles them) and points out that for any
material, homogeneous in nature or not, isotropic or not, the
energy per unit volume will be a function of the entropy per
unit volume and the six strain-functions. This we have
already discussed in the present article. For isotropic materials,

however, there is a certain simplification, three functions of the
strain-coefficients being sufficient for this purpose. Gibbs
derives this result from the sentence at the end of the short para-
graph referred to above, namely the sentence: "If the unstrained
element is isotropic" (the italics are the writer's) "the ratios of

elongation for these three lines must with rjv determine the

value of €v'." Now this is hardly obvious without some
further consideration of the meaning of isotropy in this con-
nection. Space does not permit us to discuss the matter fully,

but the central idea can be indicated. The essential character
of an elastically isotropic solid is embodied in two facts.

1. For any system of external forces the principal directions

of stress in any element are identical with the principal direc-

tions of strain.

2. The number of elastic constants required to express the
relations between stress and strain for small strains is two.

Thus if we take the axes of reference to be parallel to these

principal directions, we have the extremely simple stress-strain

relations (in the conventional text-book form)

Xx = X3 + 2/xeii,

Yy = X8 + 211622,

Zz = X5 4" 2^1633.
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In these equations X and m represent the two elastic constants, 8 is

the sum of en, 622, 633 being known as the "dilatation." (623, ^32,

esi, ei3, 612, 621 as well as Yz, Zx, Xy are zero.) The various

moduli can be expressed in terms of X and n. (In fact /x hap-

pens to be the modulus of rigidity itself.)

Indeed the idea of isotropy may be broadly indicated by

reverting to an illustration which we gave in a rather vague

form at the outset of our exposition. Imagine a system of

forces to be exerted on a body, spfierical in shape, at definite

points of the body. These will produce a system of strains and

stresses. In a given element there will be a common triad of

principal directions. Now conceive the body to be rotated

round its center to another orientation, but conceive also that

the same forces as before are acting, not at the same points in

the body, but at the same points in the frame of reference, i.e.,

points with the same coordinates with respect to the axes of

reference, which we regard as fixed. Exactly the same system

of stresses and strains will be produced as before. This does

not mean that the element referred to above (i.e., the element

occupying the same situation in the body) will be strained just as

before; but the element of the body occupying the same situa-

tion in the frame of reference will experience the same strains and

stresses as were experienced previously by the element originally

in that situation, with the same orientation for the principal

axes. (It must be carefully borne in mind that this is true for

isotropic bodies only; in fact it constitutes a definition of isotropy

in elastic properties.) The energy of the spherical body after

the rotation is the same as before. This gives us the key to the

situation. Such a rotation would be equivalent mathematically

to referring a strained body first to any axes of reference (not

necessarily principal axes of stress or strain) and then referring

to another set; equivalent in fact to what the mathematician

calls a "transformation of axes." The values of the strain-

coefficients and strain-functions will change. In the first set

of axes OX', OY', OZ', ai, o^, az, at, a^, ae are the strain-functions

and ^', r]', f ' the local coordinates. The elongation-ellipsoid is

ax^" + a,-n'^ + az^'^ + 2a,r]'^' -{- 2a,^'i' + 2ae^'r,' = k\
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Now we rotate the axes of reference to OU, OM', ON'. Let the

strain-functions for these axes now be cxi, a2, as, on, as, ae and

the local coordinates X', yJ , v' . Of course ai is not in general

equal to ai, nor a^ to a^., etc.; for ai is the ratio of elongation

parallel to OU , while ai is that parallel to OX', etc.; and

aii/{ocia2)^ is the shear of OL' and OM' while a6/(aia2)^ is the

shear of OX' and OY', etc. But the equation

aiX'2 + «2m" + oizv'^ + 2a4/x'''' + 2a5/X' + 2a6X'M' = ^'

represents just the same elongation-ellipsoid as before, situated

in the same way in the body. Let the function which expresses

the strain energy in terms of ai, 02, ... a& be 0(ai, a^, ... aa).

Exactly the same function of ax, ai, ... a a must also be equal

to the strain energy. This must be so on account of the isoiropy.

In the illustration above, assume the sphere to be strained

homogeneously for simplicity, and refer to any axes of reference.

Keeping the forces as it were "in situ," we rotate the sphere and

axes. The energy is unchanged. But the mathematical con-

s "derations leading us to a certain function of ai, 02, ... Oe which

is equal in value to the energy will lead us in the second case to

just the same function of ai, ai, ... ae; for the general oper-

ations are unchanged by a change of axes and just the same re-

lations exist between the stress-constituents and the strain-co-

efficients for any one set of axes as for another. Once more that

is the essence of isotropy.

We are thus naturally led at once to the purely mathematical

question of trying to solve the following problem

:

"An ellipsoid referred to OX', OY', OZ' has the equation

air^ + ai-n" + azt" + 2a,v'^' + 2af,^'^' + 2a,^'rj' = k\

When referred to another set of axes OL', OM', ON' its equation

is

q:iX'2 + aofx'^ 4- aa/' + 2a4M'/ + 2ayX' + 2a6XV' = k\

What function of ai, 02, as, ai, a^, as is equal in value to the same

function of ai, a2, as, ai, as, aa?"

That problem we have implicitly solved in the note on
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quadric surfaces (see Article B of this volume) . For there we

have mentioned, with references to sources, the fact that it can

be proved that

«i + ^2 + fls = ai + 0:2 + as,

a2«3 + «3«1 + CLlCli — Cli — CI5 — Qq

= azas + mai + aia2 — a^ — a^ — a^,

ai

as

ae
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in an aeolotropic body the principal direction of stress and those

of strain do not in general coincide, and if we carried out the

conceptual experiment suggested above of rotating a spherical

body keeping the forces and their points of application "in situ"

in the frame of reference, the strains and stresses would not in

general be same in an element as they were previously in the

element which originally was situated in the same place in the

frame of reference ; for the orientation of the two elements would

be different although their relation to the external forces would

be the same, and that would be a significant change for an

aeolotropic element, even although the two elements were

homogeneous in nature. Hence the rotation would in general

involve an entire alteration in the general state of stress and

strain and a change of strain-energy. Thus one of the premises

of the argument would collapse.

We have already referred to the arguments by which Gibbs

justifies the use of the determinant H (with a positive value)

instead of G for expressing the energy of an isotropic material.

11. Commentary on Pages 211-214- Approximative Formulae

for the Energy and Free Energy in the Case of an Isotropic Solid.

The approximative formulae given by Gibbs in [443] and

[444] are just examples of the expansion of a function in series

by the use of Taylor's theorem, neglecting powers higher than

the first. For small strains ri, r2, rz differ little from unity. By
[439] E differs little from 3, F from 3, and G or H from unity.

Writing E' for E - 3, F' for F - S, and H' for i^ - 1, we can

express any function of E, F, H asa, function of E', F', H'. We
can expand this function as a series by Taylor's theorem, say

k-}-aE' + bF' + cH' + higher powers and products of E', F' ,W

.

For small strains the higher powers and products are negligible

compared to the terms involving the first power. So to the

first approximation the function will be

1 + aE + hF -]- cH

(where Z = fc — 3a — 36 — c), which has the form of [443]

or [444].
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The justification of [445] can be easily given as follows. Re-

membering that i^F' is a function of E, F, H, say ^{E, F, H), it

follows that

dypv _d4> BE d4> dF d<i> dH

dri
~ dE dn dF dri dH dn

dE dF dH

Similarly

^ = 2r.% + 2r. (rl + r?) ^ + r^n -^•
ara dE dF dH

Obviously

dxf'v' _ d\f/v'

dri dri

if ri = Ti = rs, and exactly similar arguments cover the other

equations. The wording of the argument at this point on page

212 is a little confusing; for, as the text itself points out, this

theorem is true "if i/^' is any function of t, E, F, Hj" not merely

the approximative linear function of [444] ; then just lower down
we have references to "proper" and "true" values of ^pv. It

might be better therefore to introduce two functional symbols

one <i){t, E, F, H) to refer to the "true" value of ypv and one

x{t, E, F, H) to refer to the linear function of E, F, H in [444]

which is approximately equal to ypv. These can both be

expanded as series in terms of ri, r2, r^, or rather of ri — ro,

^2 — ro,rz — ro; the discussion centers round the problem of deter-

mining at what power of n — ro, etc., the two series begin to

show a difference. A little thought will show that the series for

X will terminate at fourth order terms. In fact writing for

the moment x for ri — ro, y for ra — ro, z for rs — ro, we see that

X = i + e{{x + roY + (2/ + ro)^ + (z + ro)'}

+ f{{y + roYiz + roY -\- (z-h roYix + ro)^ +
(x + roYiy + roY]

+ h{x + ro) {y + ro) {z + ro).
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The series therefore involves first powers and squares of x, y, z

and product terms such as xy, xyz, x^y, x^y^. Of course the series

for </) will in general extend beyond such terms and may indeed

be a convergent infinite series. Before proceeding further,

it might be well to point out that Vo is just an ordinary factor

of temperature expansion (linear), resembling in fact the

familiar 1 -\- at oi the text-book of heat. It is necessary to

bear in mind that the state of reference is a state at a given

original temperature. If the solid is warmed (or cooled) to

another temperature without any application of external forces

and creation of stress, straining takes place; for an isotropic

material it is a uniform expansion. This is an excellent illustra-

tion of the necessity of keeping the notions of strain and of

stress clearly separated in the mind. Our instinctive notions

of pulling, pushing, twisting, bending bodies into different shapes

and sizes gives us an unconscious bias towards the idea that

stress must invariably accompany strain and vice-versa, whereas

change of temperature produces strain (change of size at all

events, if not a change of shape which generally accompanies

heating of crystalline material) without stresses being created,

and if we prevent the strain occurring we have to exert external

force on the body with the creation of internal stress, sometimes

of relatively enormous value. (We can all recall the experi-

ment in our lecture course in elementary physics when the

demonstrator fractured the red-hot bar, or the clamps which

held it tightly at its ends, by pouring cold water over it.) If

therefore we alter the temperature of the (isotropic) body and

subject it to external force, the principal elongations with

reference to the unstressed state of reference at this tetnperature

will be Vi/ro, /'2A0, fs/ro] and ipv, regarded as a function of the

temperature and the elongations, can be considered as expanded

by Taylor's theorem in the form of a series in the relatively

small variables (ri/ro) — 1, (r2/ro) — 1, (rz/ro) — 1. This

comes to the same thing as regarding ypv (either its "true"

value (f){t, E, F, H) or its approximative value x{t, E, F, H))

expanded as a series in ri — r^, r^ — ro, rz — ro.

Let <f>o, xo be the values of <^ and x when ro is substituted for

each of the quantities n, 7'2, ^3 in E, F, H. Let {d(j>/dr)o,
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(d'^<l)/dr'^)o, (d^4)/drdr')o be the common values, assumed accord-

ing to [445] by the various first and second differential coeffi-

cients of (f) with respect to the variables ri, r^, rz. Use a similar

notation for x- Then if we write down

Xo — 4>o,

>ar/o \ar/o

\ar2/o

\drdr'/o \

.drWo

—

V

drdr'/o

we have four simultaneous equations to determine the four

quantities ^, e, f, h; these, as the text says, will give to the

approximations x, dx/dn, 5x/9^2, dx/dr^, . . . d^x/dridrz their

"proper," i.e., correct, values ^, d<i>/dn, d4)/dr2, dcjy/drs, . . .

d^(t)/dridr2 when n = r2 = n = ro, i.e., when the solid is in its

unstressed state not at the original temperature of the state of

reference but at the temperature for which it has expanded (or

contracted) from that state in the ratio ro. But by Taylor's

theorem, if we expand <f)
in terms of ri — ro, r2 — ro, n — ro,

we have

* = *, + (

^

\dr
) (n - ,-.) + (^) (r. - r.) + ('-*) (ra - r,)

i/o \3r2/o \9'Vo

+1{m (., _ r„)' + (q) in - r„y+ (^) (r. - r.)=

2! \\drVo \drl/o \drl/o

+ 2 (-^) (r2 - ro) (rs - ro) + 2 (^^) (r, - ro) (n - ro)

\dr2dr3/o Xdndri/ q

+ 2 (
——

) (ri — ro) (r2 — ro) > + higher powers
\dridr2/o J

= <^o + (— 1 (ri + rg + rs - 3ro)

\ar/o
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+ 2
av

v9r9r
-, ) [(?'2 - ro) (rs - ro) + (rj - r^ (n - ro)

+ {n — To) (fi — ro)] > + higher powers,

and similarly

X = Xo + f
—

j (ri + r2 + rs - 3ro)

,1 f/9^X
"^

2!

+
/ 9^ X \

2 \7^f) K^2 - ro) (rg - ro) + (rg - ro) (n - n)

+ (ri — ro) (r2 — ro)] > + higher powers.

Hence (f)(t, E, F, H) and x{t, E, F, H), the true and the

approximative expansions of ^l/v agree to the terms of the second

degree inclusive. The remaining statements on page 212 can

be deduced similarly.

The equations

r^ + ra^ + rg^ = On^ + a^^ + a^^ + a^i^ + 022' + 023^

+ agi^ + aga^ + agg^,

ra^rg^ + rgV^^ + nVa^ = ^u^ + An^ + An'' + ^21' + ^22^

+ ^23' + ^31^ + A322 + ^3g2,

an ^12 ^13

rir2rg = 021 ^22 0,23

dzi Cli-i ^33

are equations [432], [434], [437] of the text. By partial differ-

entiation with respect to an, we can, as Gibbs points out,
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regard the three quantities dn/dan, Qr^/dan, drs/dan as deter-

mined by the resulting three simultaneous equations in these

quantities (determined, i.e., in terms of the Upq coefficients).

Similar statements are true for any of the partial differential

coefficients dri/da„y, drt/dapq, dr^/dapq. These are of course

correct values and have nothing to do with the approximation

to \pv made in [444]. Now Xx' is determined as we know by

the equation
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elongation with the ratio Vi in all directions as compared with the

state of reference at the original temperature, so that its volume is

now ri^ (n = rz = ra). Thus E = Sri^ = Sv' ; P = 3ri* = Sv^;

H = r^ = V, and so we arrive at [451]. By equation [88] from

the earlier part of Gibbs' discussion we obtain the general expres-

sion for p in [452] in any state of uniform stress small enough to be

consistent with Hooke's law. Differentiation gives us [453],

and an approach to the limit at which v = r^ gives us the result

[454].

The writer is unable to justify the equation [449] as it stands;

as far as he can judge it ought to read

dXy'
R = ro

da12

To see this, let us consider the matter from the point of view of

the ordinary treatment of isotropic solids in the text-books of

elasticity. Limiting ourselves to strains so small that Hooke's

law applies, the modulus of rigidity is defined as the common
value of the quotients

Yz ^x Xy.

fi U U

The quantities fi, /e, /e are the shears of the lines parallel to

axes of reference (the same axes for the state of strain as for the

state of reference). As we saw in our discussion the value of

/a, for example, is ee/(ele2)^ although it can be replaced by an

approximation Cn, + 621 for very small strains. This, of course,

implies that changes of temperature are not involved. Let us,

however, consider the situation which arises when the state of

strain is at a temperature t, different from the temperature of

the state of reference. The definition of the modulus of rigidity

at temperature t must of course involve the shears of the axes

from an unstressed state also at that temperature, that is, a

state in which all lengths are elongated in the ratio ro as com-

pared with the state of reference. The definition of R is still

Xy/fi (say), and /e is still 66/(6162)^ But we have to be careful

about the approximation. Let us recall the definitions of
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ei, 62, ... et from this article or from [418], [419] of Gibbs:

ee = 611^12 + 621622 + 631632,

61 = 611^ + 621 '^ + e3l^

62 = 612^ + 622^^ + 632^

In making the approximations we take as usual 623, 632, 631, 613,

612, 621 to be very small compared to en, 622, 633; but the three

latter quantities do not now approximate to unity, as formerly,

but to 7*0, since in the unstressed state at temperature t, there

exist elongations of amount ro as compared with the state of

reference. Hence the approximations now must involve re-

placing 66 by ro(6i2 + 621), 61 by ro^ 62 by ro^

Hence

_^ 612 + 621

Thus

ro

Xy a j

R = — #= J'o

/e ' 612 + 621

As we are assuming that the range of stress and strain is

covered by Hooke's law it is also true that

Xy ~\~ 8Xy
R = To 1—

;

:

'

612 + oei2 + 621

where SXy is a small change of shearing stress produced by a

small change Sen in the coefficient 612, and thus

8Xy
^ = ^0 ^

'

06X2

This corresponds to Gibbs' equation [449] but with the ro on

the right hand side of the equation, not on the left. The

symbol ro can be obtained on the left if 66 is taken as the approxi-

mation to /e (which is the case when change of temperature is

not involved since en and 622 are then approximately unity) ; for
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if this is done and we write ro(ei2 + 621) for/e we obtain Gibbs'
result. But this amounts to putting en or 622 equal to unity in

one part of the complete formula for /e and equal to r^ in

another. We should obviously approximate from 66/(6162)*

and not from ea.

If the writer is correct, then we should write equation [449] as

R = To
-—

[449a]

with of course an = 022 = 033 = ro and the remaining apg

coefficients put equal to zero; for we are considering the value of

R for the state of vanishing stress. This will change equa-
tions [455] and [457]. Thus

and we have to differentiate this partially twice with respect to

an. The term multiplied by e will yield 2e. In the term which
is multiplied by /, four of the Ap^ minors involve an, viz.,

^33^ Azi"^, Ais^, ^2^^ so that this term yields

aAsa
. , 3^31 . , 9^23 . dA

2/i^33 z~ + As, -^' + A,3 z-^ + A
21

5ai2 aai2 aai2 da12

On passing to the limit when 023, 032, 031, ais, ai2, 021 are zero and
On = ^22 = 033 = To it will be easily seen that the only surviving

part of the derivations from this term is 2/A21 (9^21/9^12) which
becomes 2/a332 or 2/rol Hence [449a] becomes

R = 2ero + 2/ro^ [455a]

which replaces [455]. It will then appear that in place of [457]

we shall find

J 6 -I
~ 2 >

ro^ ro

h = - i- - V.

[457a]
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Similar chaDges will have to be made in [459] and [461], if the

writer's emendation of [449] is correct.

Before leaving this subsection we shall revert for a moment to

the special point passed over at the beginning of the com-

mentary on this part. Pages 201 and 202 are rather involved

but the point appears to be as follows. It has been implied

hitherto that no particular physical properties are imposed

on the state of reference. In ordinary elementary discussions

in the text-books it is taken as unstressed, i.e., without any

strain energy. Thus if a relation is given between ev and

rjv', duy ^12, . • • ^33, then ev is the intrinsic energy of the

state of strain; but if no such restriction is imposed on the

state of reference then, since the coefficients an, an, ... ass

express a relation between the state of strain and the state of

reference, the function ev will give the excess of energy in the

former state over the latter for the material occupying unit

volume in the latter. Provided the state of reference is at all

events one of homogeneous strain, this introduces no difficulties

since the energy in any element of the solid in the state of

reference is the same as that in any other, and therefore ev

differs from the intrinsic energy in the state of strain (per unit

volume of the state of reference) by a constant amount, (i.e.,

the same for all elements of volume). But if, as Gibbs suggests,

it happens that in some cases it is impossible to bring all ele-

ments in the state of reference simultaneously into the same

state of strain, this means that in the state of reference the

energy in an element depends on its position in the state of

reference, i.e., on the coordinates of the point which it surrounds.

We can, however, take some particular element in the state of

reference as being in what we may call a "standard state."

The condition in any other element in the state of reference can

be stated in terms of the strain-coefficientswhich give the relation

between the state of this latter element and the standard state,

and the energy in this element in the state of reference will,

apart from a constant, be a function of these latter strain-coeffi-

cients. Thus ev will now be a function not only of the strain-

coefficients ail, ai2, ... ass (connecting the state of strain with

the state of reference) but also of other strain-coefficients con-
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necting the state of reference with the standard state (which will

vary in value from point to point of the state of reference).

IS. Commentaiy on Pages 215-219. Solids Which Absorb

Fluids. Elucidation of Some Mathematical Operations. In the

final four pages of the section, viz., pp. 215-219, the general argu-

ment offers no difficulty and only a few comments need be made
on the mathematical operations. Regarding the equations

[463] and [464], we refer the reader to equations (38) of our

exposition. If we are considering a state of hydrostatic stress,

we know that

Xx = Yy = Zz = -V

and

Yz ^^ ^Y ^^ ^x = A z = A K = Yx ^ 0-

Hence by (38)

Xx' = -Anp, Xy' = -A12P,

Xz' = —Aisp, Yy' = —A22P, etc.

which constitute [463] of Gibbs.

Also

Xx'^aii -(- Xr'5ai2 ...-]- Z z'^azi

= —p{Aiiban + An^an . . . + Azzbazz).

As we have already seen on several occasions, the bracketed

expression on the right hand side is bH, and of course H is the

ratio of enlargement of volume, i.e., the volume of an element

divided by its volume in the state of reference ov vv. Thus we
obtain [464].

The equations subsequent to [471] are obtained by the

familiar device by means of which we obtain the yp and ^ func-

tions from the e function. Thus since ,

dev = tdr]v -\- S2(Xx'6aii) + ^HadTa,
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we regard €r' as a function of riv, an, an, . . . ass, Va, Tb , . .

.

and the result just written embodies the equations

dev' dev' dtv'

^y. = ^' a"^ = ^^'' "^"•' ^ = ^^ '*'•

leading to [471] and other similar results. Also regarding

\j/v'( = ev' — t-qv') as a function of t, an, a^, . . . flss, T/, Tb, etc.,

we can write

d\pv' = d{ev' — triv)

= -riY'dt + S2Zx'£/aii + 2/iaC?r„',

and this is equivalent to the equations

dypv' dypv' d\pv'

~^ = - ^'"' a"^ = ^^'' '^'•' ^ = ^- '^'•'

which yield

dr]v' dXx'

dan dt

and similar results.

Also from either of these we obtain by repeated differentiation

dXx' d^ey djXq

dVa' ~ dVj dan ~ dan

and so on, where Xx', etc. and Ha, etc. are regarded as func-

tions of r]v' (or 0, an, an, . . . ass, Ta, Tb, etc.

We can also introduce a function 0r' of t, an, an, . . . ass,

Mo, fib, etc. defined by

<j>V' = €v' — trjv — HaTa' — jJ^bTb — etC,

whose differential satisfies the equation

d<f)v' = —rjv'dt + ZiXXx'dan — ^Tadna.

This will lead to the second group of [472].
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The function ^v of t, Xx', Xy', . . . Zz', Ta, T^, etc., defined

by

will give the second set of [473], and a function x^. of t, Xx'>

Xy', . . . Zz', tJ-a, y^b, etc., defined by

will yield the first group of [473].

The function tv gives us the equation [471], viz..

or

I.e.,

dt



THE INFLUENCE OF SURFACES OF DISCONTI-
NUITY UPON THE EQUILIBRIUM OF HET-

EROGENEOUS MASSES. THEORY
OF CAPILLARITY

[Gibbs, I, pp. 219-331; 331-337]

JAMES RICE

I. Introductory Remarks

This part of Gibbs' work can be broadly divided into two por-

tions; the first of these, and much the longer of the two, deals

with surfaces of discontinuity between fluid masses, while the

second consists of a brief treatment of liquid films and surfaces

of discontinuity between solids and liquids. The first portion

itself falls broadly into three parts, one of which, after formulat-

ing the general conditions of equilibrium in a surface phase

between fluids, derives the famous "adsorption law" (a name

not actually employed by Gibbs) and treats briefly the thermal

and mechanical processes in such surface phases; another deals

with the stability of surfaces of discontinuity; and the third

part is concerned with the conditions relating to the formation

of new phases and new surfaces of discontinuity. In addition, a

few pages of the succeeding section on Electromotive Force are

devoted to electrocapillarity, a commentary on which naturally

belongs to this portion of the present volume.

1 . The Surface of Discontinuity and the Dividing Surface

As Gibbs points out in the first paragraph of this section, the

basic fact which necessitates a generalization of the results

obtained in the preceding parts is the difference between the

environment of a molecule situated well within a homogeneous

mass and that of a molecule in the non-homogeneous region

which separates two such homogeneous masses. In the sub-

505
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sequent pages he formulates in his customary careful and

rigorous manner the fundamental differential equation for this

region and gradually leads the reader to the abstract idea of a

'dividing surface" as a convenient geometrical fiction with which

to represent the 'physical non-homogeneous region which has in

reality extension in three dimensions, one however being very

small. This region he frequently refers to as a "surface of dis-

continuity" but is careful to point out that the term does not

imply that "the discontinuity is absolute," or that it "dis-

tinguishes any surface with mathematical precision." The

term "dividing surface" does, however, refer to a surface in the

strict geometrical sense and the reader is warned to keep this

distinction well in mind. There is a certain latitude, as he will

presently learn, in the precise position to be assigned to the

dividing surface and in later developments of Gibbs' work this

latitude has been the cause of some doubt concerning the

validity of certain deductions.

In this way a certain part of the whole energy of the system is

associated with this dividing surface. Now this part is not

actually the energy situated in the non-homogeneous region or

"surface of discontinuity," but is the excess of this energy over

and above another quantity of energy whose amount depends on

the precise location of the dividing surface. The matter is

carefully dealt with by Gibbs (I, 223, 224), in equations [485]

to [492]. Thus there is a certain latitude in the quantity of

energy which is to be associated with the dividing surface, and

this lack of precision in the value of this energy must not be lost

sight of. A similar lack of precision accompanies the amounts

of entropy and of the various components which are to be

associated with the dividing surface, and whose actual values

will in any given system depend to some extent on where we

conceive the dividing surface to be situated. Gibbs denotes a

physically small element of the dividing surface by s, and the

quantities of energy, entropy, etc. associated with this element

by e'^, rf, nii^, w/, etc.

As is the case for any of the homogeneous phases, the variables

which determine the state of such an element of the surface of

discontinuity include the quantities s, t]^, nh^, rui^, etc., just
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referred to. The energy e^ associated with the dividing surface

is of course a function of these variables. (Actually Gibbs

introduces the curvatures of the element of the surface as

further variables, but disposes of them as of negligible impor-

tance, a point which we shall consider at a later stage, but

shall ignore for the present.) The partial differential coefficient

of e^ with regard to r?^ is of course the temperature of the dis-

continuous region, and those with regard to rrii^, mi^, etc., are the

chemical potentials of the various components in this region.

In the first few pages of this section we are provided with a proof

on exactly the same lines as that in Gibbs, I, 62 ei seq. that the

temperature and potentials in the discontinuous region are equal

to those in the homogeneous masses separated by this region,

provided of course that the usual condition is satisfied, viz., that

the components in the surface are actual components of the

homogeneous masses; if some of them are not, the usual in-

equalities hold. All this proceeds on familiar lines. There

remains the partial differential coefficient of e^ with regard to the

variable s; this is denoted by o-. It is clearly the analogue of

the partial differential coefficient of the energy of an ordinary

homogeneous mass with respect to its volume, i.e., the negative

pressure, — p, which exists in that phase. Equation [493]

(with the last two terms omitted for the present as explained

above) or equation [497] gives the formulation of the ideas just

outlined. The paragraphs between equations [493] and [497]

may well be omitted at this stage. The reader will then find

that the succeeding two paragraphs lead in a direct and simple

manner to the extremely important result expressed in equations

[499] or [500].

2. The Mechanical Significance of the Quantity Denoted by a

If the reader pauses to reflect he will observe that in the earher

portion of Gibbs' treatment the quantity — p makes its appear-

ance strictly as the partial differential coefficient of the energy

with respect to the variable v. To be sure p has a mechanical

significance which is always more or less consciously kept before

us, but nevertheless in its original significance it is concerned

with the quantity of energy which is passed into or out of a
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phase from or to its environment by reason of a simple volume

change in the phase. Now it is to be observed that equation

[500] opens up the possibility of giving a mechanical significance

to a, despite the purely formal introduction of it in [493] or

[497]. It is well known that if a non-rigid membrane or a liquid

film, such as a soap bubble, separates two regions in which

there exist two different pressures p' and p" then there exists a

surface tension T uniform in all directions in the membrane or

film, and moreover

V' - v" = T{c, + C2)
,

where ci and c^ are the principal curvatures at any point of the

membrane or film. The exact agreement of the form of this

equation with [500] suggests a plausible mechanical interpreta-

tion for (7 as a "superficial" or "surface" or "interfacial" tension.

Actually in a converse fashion T, which is introduced as a tension

in the membrane, can easily be given an interpretation in terms

of energy. If the membrane, for instance, encloses a gas at

pressure p' which receives (reversibly) an elementary amount of

heat and expands by an amount bv, the increase of energy of the

system, gas and membrane, is

t b-q — p"bv
,

where p" is the external pressure, since p"bv is the amount of

energy transferred by mechanical work from the internal gas-

membrane system to the external gas system. Now, since

p" = p' - T{c, + C2)

,

it can be proved (the proof is a familiar one and will be found

in the standard texts, being just a reversal of the steps in Gibbs'

treatment between [499] and [500]) that

p"bv = p'8v - Tbs,

where s is the area of the whole membrane; and thus the increase

of energy of the system, gas and membrane, is

tbri - p'bv + Tbs.
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The analogy between the quantity a- for an interface between

two Kquids or between a Hquid and a gas, and the quantity T
tor a membrane in tension between two gases, is thus drawn
once more from another standpoint. It is therefore quite

natural for Gibbs at this point to say, as he does, that equation

1499] or [500] "has evidently the same form as if a membrane
without rigidity and having a tension a, uniform in all directions,

existed at the dividing surface," and thereupon to suggest the

name "surface of tension" for a specially selected position of

the dividing surface and the name "superficial tension" for cr.

The cautious nature of Gibbs' statement might easily be over-

looked by the reader. It clearly does not commit him to the

view that the interface between two fluid masses must be

regarded actually as a membrane in a state of tension. This

idea is certainly a prevalent one, and the treatment of "surface

tension" in many of the elementary texts of physics fosters it.

So it may be of some service to the reader if a short discussion

of this much debated point is inserted here. This will require

us to enter into a more detailed consideration of the molecular

structure of the fluid phases than actually occurs in the original,

but that is hardly avoidable in any case in view of the develop-

ments of Gibbs' work by subsequent writers. In addition, later

workers have availed themselves of the statistical calculations

and results which are nowadays associated with molecular

pictures of matter in order to give a deeper interpretation to

some of Gibbs' results and to help to elucidate certain difficulties

of the purely thermodynamical treatment. So it may prove

serviceable to seize the opportunity at this point to give also a

brief discussion of the fundamental statistical idea involved in

such calculations.

II. Surface Tension

3. Intrinsic Pressure and Cohesion in a Liquid

The behavior of soap films, in which there may well be a

strong lateral attraction between long-chain molecules such as

those of the fatty acids, "anchored," as it were, side by side in

the surfaces of the film (an attraction which may with some



510 RICE AKT. L

justification be really considered as a surface tension since it

resembles a tension in an elastic membrane in most respects),

gives a bias towards an explanation of the phenomena at the free

surface of a simple liquid, or at the interface between two such

liquids, in terms of the same concept. As already hinted, most

elementary texts of physics deal with the "surface tensions" of

liquids as if there did exist in their surfaces lateral pulls, tan-

gential in direction, between the surface molecules, of an order

of magnitude much greater than that exerted between these

molecules and those immediately under them in the interior.

At times one reads accounts of suspended drops of water which

imply that the main body of water in the drop is contained in

an "elastic" bag made of molecules which cohere together very

powerfully like the molecules in a rubber sheet.

Now it is true that the mathematical form of the results de-

duced from such an assumption is precisely the same as that

which can be deduced from a physically more real picture of

the situation at a liquid surface; and it is also true that this

assumption provides an easier mathematical route to these

results then does the alternative hypothesis, which when
worked out in detail involves rather troublesome analysis of a

type first developed by Laplace. However, the course of that

analysis and its outcome can be quite easily indicated without

going into the purely analytical steps.

An analysis of the situation requires us first of all to be very

careful concerning the interpretation of the word "pressure" in

connection with a liquid. When we speak of the pressure of a

gas we are thinking of the integral effect of the bombardment

of the swiftly moving molecules on unit area of the enclosing

vessel, or of the rate of transfer of normal momentum across

unit area in the interior. The notion will be quite familiar

to those who have some acquaintance with the kinetic theory of

gases, and everyone recognizes that pressure arising from weight

is usually an entirely evanescent quantity in a gas. Theoreti-

cally, of course, the pressure at a point in a gas increases as the

point descends in level, but the difference of pressure between

the top and bottom of an ordinary-sized vessel is negligible.

On the other hand, the pressure in a liquid arising from the
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weight of a superincumbent column of liquid is in general the

most important portion of the thrust on the enclosing vessel.

Yet it only complicates the situation we are discussing to bring

this in at all. It is best to conceive the liquid to be free from

gravity, as Gibbs actually does in a great part of his treatise. We
may, if we wish, consider it to be contained in a vessel which it

touches everywhere, and which can be regarded as fitted with a

piston so that a thrust can be applied if required,—a thrust

which by Pascal's law is distributed at all parts of the surface in

proportion to the size of each part, or is exerted normally across

any conceptual dividing surface in the interior, again in pro-

portion to its extent. Or we may think of the hquid as a

spherical mass subject to the pressure of a surrounding gas and

for the moment regard the sphere as so large that any small

portion of the surface is practically plane. If now the pressure

of the surrounding gas were zero the pressure would also vanish

in the liquid. (Actually the pressure cannot be less than that

of the saturated vapor.) The reader who has studied the

earlier portion of Article K of this volume (pp. 395 to 429) will

realize that this would be just a special case of an unstressed

state of a body. Yet in the interior of the liquid there must

be a relatively enormous pressure in the sense in which that

word is used in connection with a gas; "kinetic" pressure we

shall call it. In the liquid there exists a thermal motion of the

molecules, and on account of the much larger density of the

liquid the rate of transference of momentum across an interior

conceptual surface is very great indeed. Clearly this internal

kinetic pressure cannot be the quantity which is denoted by

the symbol p in our equations; for that, as we have seen, would

practically vanish when the stress in the liquid produced by the

thrust of an external gas or piston in an enclosing vessel dis-

appears. Of course at the surface there is the well known

inward pull on each molecule in the layer whose thickness is

equal to the radius of molecular attraction. This has the effect

of turning inwards all but a small fraction of the molecules

moving through this layer towards the surface, and in conse-

quence the actual kinetic pressure at the surface is enormously

reduced below the kinetic pressure which exists in the interior.
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We may look at this matter from another standpoint, a

purely static one. We can assume a molecular configuration

practically unchanging in average conditions and imagine a

plane to be drawn in the interior of the liquid. Across this

plane there will be exerted repulsions between molecules in very

close proximity to one another and attractions between mole-

cules rather more separated. These ideas resemble somewhat
those of Laplace who regarded the liquid as a continuum whose

neighboring elements attract one another, this attraction tend-

ing to make the liquid contract; such contraction would be

opposed by an internal pressure. These concepts of cohesion

and intrinsic ^pressure are quite familiar. The molecular picture

defines them a little more closely. The force between two

molecules for distances greater than a certain critical amount
is an attraction falling off in value very rapidly as the distance

increases. At the critical distance, which must approximate in

value to the size of a molecular diameter, the force is zero and

changes to a repulsion when the distance apart is decreased;

this repulsion must increase with very great rapidity as the

distance apart is reduced below the critical separation. Van
der Waals formulated these forces of cohesion and intrinsic

pressure in his famous equation

a Rt
V + ~2 =

1)2 V — b

for a/v"^ is nothing more than the cohesion varying directly as

the square of the density, and Rt/{v — h) is the intrinsic pressure

varying inversely as the excess of the volume of the fluid above

its irreducible minimum volume 6. The symbol p represents

the ordinary pressure with which we are concerned in the con-

ditions of equilibrium. When p is small the cohesion and

intrinsic pressure are nearly equal, which means that we have

on the average a molecular configuration in which the repulsions

and attractions across an internal plane nearly balance one

another. The reader will recall in our discussion of the theory

of elasticity (Article K) the warning that the stress-constituents

Xx, Xy, etc. (which in the case of a fluid reduce to —p) are not

to be confused with molecular attractions and repulsions, which
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may readily exist even in the ''unstressed" state, when Xx, Xy,

etc., vanish. Just as the stress-constituents in the case of a

strained soHd arise from change of molecular configuration, i.e.,

strain, so the experimentally observable pressure p in a liquid

arises from change Ln molecular repulsions and attractions due

to the change in average molecular separation which we con-

ceive to accompany compression.

4- Molecular Potential Energy in a Liquid

Having disposed of these considerations concerning pressure,

which will be of service presently, we turn our attention to a

treatment of the energy of a liquid from the point of view of

molecular dynamics. We shall not, of course, go into the de-

tailed mathematical analysis (which can be found by the reader

in the works of Laplace or Gauss, or in accounts such as that

of Gyemant in Geiger and Scheel's Handhuch der Physik, Vol.

7, p. 345) but shall content ourselves with quoting certain impor-

tant results. If we assume that there is a law of force between

two molecules we can obtain in a familiar manner their mutual

potential energy which we will represent by ^(r), where r is their

distance apart. The magnitude of ^(r) increases as the mole-

cules separate until r reaches a value at which the attractive

force vanishes. For values of r greater than this the potential

energy of the two molecules remains constant. In all expres-

sions for potential energy there is an indefinite constant of

integration and for purposes of calculation it is necessary to

assign a definite value to this constant. In the present instance

it is most convenient to choose the value of the integration

constant in the function </>(r) to be such that the maximum
value attained by </)(r) for sufficiently large separation of the

molecules is zero. This makes the value of 0(r), for smaller

values of r, negative, at all events until the critical separation

is reached at which the attractive force is changed into a repul-

sion. There we have the minimum value of 0(r). (Of course,

the numerical value of </>(r) will be greatest at this distance.)

Anj'" further decrease in r will produce an increase in <j){r), which

will very quickly reach zero and even positive values owing to

the enormous resistance to compression exhibited by liquids.
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In terms of 4>{r) it is easy to express the mutual potential

energy of one molecule with respect to all the molecules within

its sphere of action; but, of course, the result will vary according

to the situation of the selected molecule. Suppose in the first

instance that it is well within the general body of the liquid, so

that a sphere around this molecule as center with a radius

equal to the radius of molecular action, denoted by /i, is com-

pletely filled with liquid. It is easy to see that the potential

energy in question is represented by

47rn / r^(f>(r)dr
f (1)

where n is the number of molecules per unit volume and I is the

minimum distance between molecules, a distance which must

approximate closely to the critical distance referred to above.

Doubtless the integral form of this result should not be taken too

seriously for purposes of actual calculation in view of our pres-

ent-day knowledge of the properties of molecules, especially

the fact that the radius of molecular action is not many times

larger than a molecular diameter. But it will serve as a repre-

sentative expression suitable for the purpose we have in mind,

viz., the elucidation of the true nature of the "surface tension" of

a simple liquid. Actually the numerical value of the expression

(1) (we must bear in mind that it is an essentially negative

quantity according to our conventions) is the amount by which

the energy referred to is less than that for a molecule separated

by relatively great distances from all others. It must also be

noted that while this expression represents the potential energy

of one molecule, this energy is nevertheless shared, as it were,

with other molecules, so that when we wish to represent in a

similar manner the potential energy of the group of molecules

in unit volume we do not multiply the above expression by n

but by n/2; otherwise we should be counting the energy of

every pair of molecules twice. Thus the potential energy of

the molecules in unit volume is

27r?i2 / r^(f>(r)dr. (2)
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This expression is of course essentially negative by the con-

vention stated above, which means that the numerical value

of (2) is the amount by which the energy of these molecules is

less than what it would be were they all widely separated from

one another at the same temperature, i.e., in the gaseous state.

If we now wish to obtain the potential energy of all the mole-

cules in the body of liquid, we must not merely multiply the

expression (2) by the volume. To do so would be to overlook

the vital point that if a molecule lies in the layer of depth h at

the surface, part of the sphere of molecular action lies outside

the Uquid and the expression (1) is not correct for the potential

energy of this molecule. For such a molecule the contribution

to expression (2) is numericalUj smaller since n is zero* for certain

elements of the spherical volume of radius h surrounding it;

but as </)(r) is negative for the values of r considered, the con-

tribution of this molecule to the total potential energy is

greater than for a molecule in the interior of the liquid. In

short, if a body of liquid is divided into two portions which are

then separated from one another against mutual attraction we

know that the potential energy of the whole is increased. This

increase is made up of the larger contributions of those mole-

cules which lie near to the two new surfaces created by the

division. This increase can be calculated in terms of 0(r) and

we can thus obtain an expression which represents the "surface

energy," meaning by that the extra energy associated with the

molecules in the surface layer of thickness h over and above

that which would be associated with them if they were all in the

interior of the liquid mass. This is not the place to enter into

the analytical details, but it can be shown that the whole

potential energy of the body of liquid can be written in the form

pV + <tA,

where V and A are the volume and superficial area of the mass

;

* Actually it is the concentration of the vapor or gas phase, rather

than zero.
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p is the expression (2) and c is the expression

Trn^

r^({>(r)dr*. (3)

(Once more, since the definite integral in (3) is essentially

negative, a itself is essentially positive.) The expression (3)
represents the potential energy per unit area of surface. This
is not the whole energy of the surface since in that we must also

include the kinetic energy of the molecules in the surface layer.

We have here a mechanical interpretation of the well-known
division of the total surface energy into the surface "free

energy" a, and the "bound energy" - tda/dt.

5. An Alternative Method of Treatment

There is another method of approaching this question of

surface energy which leads to the same result. In the interior

of a liquid mass there is on a given molecule no force perma-
nently acting in a given direction. As the molecule changes its

relative position and suffers many more encounters with other
molecules than it would meet in a gas in the same tune, the
attractions and repulsions of its neighbors on it change in a
fortuitous fashion. At the surface of a Hquid, within the layer

of thickness h, there is an inward normal resultant force on a
molecule which increases in value as the molecule approaches
the surface. Also in a layer of the vapor outside the surface
of the liquid this field of force also exists, reaching the value
zero when the molecule is at a distance h from the surface. A
molecule in such a situation possesses potential energy, just

like a body raised above the ground against gravity. Just as a
body under gravity tends to move downwards, so molecules in

the surface tend to "fall inwards" towards the interior and so

reduce the extent of the surface, thus producing the illusion of a
surface contracting "under tension." But of course the truth
is that the effective force on a molecule in the surface layer is

* In arriving at (3) certain assumptions are made about the behavior
of 0(r) and certain functions derived from it at the lower limit I of r.

This, however, concerns mathematical details and does not concern
physical interpretation.
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not parallel to the surface but normal to it. As stated above, it

is by reason of this that the enormous kinetic pressure in the

interior (the intrinsic pressure) never manifests itself to our

senses or our measuring instruments. Only a small fraction of

the molecules, whose kinetic energy is sufficiently above the

average and whose direction of motion is sufficiently near to the

direction of the outward normal, will manage to effect their

escape and impinge on an enclosing solid wall or enter into a

vapor phase. Thus it is chat, apart from artificially produced

thrusts on the surface of the liquid mass and the effects of

gravity, the observed pressure of the liquid is just the saturated

vapor pressure.

This picture of the surface conditions enables us to make a

calculation of the surface potential energy in a manner alterna-

tive to that suggested earlier. The basic idea of it is just the

same as that employed in calculating the potential energy of a

body raised above the ground
;
perhaps the potential energy of a

wall of given height is a better analogy. The details are again

too troublesome to reproduce here, but once more we reach the

same result as before for this energy per unit area of surface,

viz., the expression (3).

This second method of analyzing the situation also enables us

to obtain a formula for the "cohesion," i.e., the amount by which

the intrinsic pressure of the liquid exceeds the observed pres-

sure. It can be shown that the attraction of the interior liquid

on all the molecules contained in the amount of surface layer

which lies under unit area of surface is

4>(r)dr. (4)- 27rn2

(This happens to be expression (2) with the sign reversed.)

This is the well-known result of Laplace, and this expression

(4) for the "cohesion" is usually denoted by the letter K. It is,

of course, as well to remember that this expression, like the

previous results, is derived on the assumption of a liquid so fine-

grained in structure as to be practically continuous, and there-

fore these expressions can only be regarded as approximate

representations of the proper formulae in the case of an actual
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liquid. This, however, does not invalidate the general tenor

of the argument. The expression (4) for K represents the

van der Waals' cohesion a/v"^. If the constant a is reckoned

for unit mass of the liquid it is easy to see that

a = —

where m is the mass of a molecule.

III. The Quasi-Tensional Effects at a Curved Surface

6. Modification of the Previous Analysis

Hitherto we have regarded the surface of a liquid mass as

plane. When we consider the situation in a surface layer at a

curved surface we have to modify the calculation of the inward

attraction on this layer. In the same broad manner as before

we can indicate the modification and thereupon it will be clear

how it comes about that the quantity represented by a, which is

manifestly an energy per unit area, appears to take on the

role of a surface tension, i.e., a force per unit length. (It is, of

course, obvious that energy/area and force/length have the

same physical dimensions.) To make this clear we shall have

to indicate in a little more detail how the calculation which

leads to (4) is effected. In Figure 1, ^ is a point in the surface

(supposed plane) and C a point at the distance h below. If P
represents the position of a molecule in the layer, we consider

another point B such that AP = PB; it is then clear that the

layer of liquid between the surface of the liquid mass and the

parallel surface through B produces no resultant force on the

molecule at P. Thus the inward attraction on P will arise

from the layer of liquid between the surfaces through B and C,

and a little thought will show how this attraction increases as P
approaches A . This argument is made use of in the calculation

of the entire force on all the molecules lying between the surface

through A and that through C,—a calculation which, as stated,

leads to (4). Supposing, however, that the surface of the liquid

were spherical and convex, and that we were proceeding as

before to determine the attraction inwards on a molecule
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situated at P; we realize at once that the layer of liquid near

the surface which has no resultant effect on the molecule is not

bounded by a plane surface through B but by a concave one

having the same curvature as the surface of the liquid mass.

The net result of this will be that the inward attraction on the

B

C

Fig. 1

'^^'^
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is carried out it yields the result that the inward attraction on a

small prism of the liquid at the surface, whose depth is h and

whose sectional area is bs, is equal to

6s < — 27rn2 / r^<l>{r)dr — — j
r^4>{r)dr >

,

where R is the radius of curvature of the spherical surface. A
reference to (3) and (4) shows that this is just

(5)

Were the surface of the liquid mass concave, we could show

in a similar manner that the attraction on a molecule situated at

P would be less than for a plane surface and that the result for

the total attraction on the prism would work out to be

8. {a- -I}- (6)

The analysis is due to Laplace, and it is customary to denote the

quantity 2o- by the letter H. (See, for example, Freundlich's

Colloid and Capillary Chemistry, English translation of the third

German edition, pp. 7-9, where K is called the internal pressure,

an unfortunate term since i^ is a cohesional attraction and not a

pressure, and H/R is referred to as a surface pressure, another

unfortunate name for what is really an additional cohesion.)

7. Interpretation of a as a Tension

We can now use this material to elucidate the apparent role

of cr in this connection. In the first place, if we consider a plane

surface we have the result

Po- K = po, (7)

where Po stands for the intrinsic pressure within a (weightless)

liquid bounded by a plane surface,* and po stands for the

external pressure on its surface which arises from its saturated

* I.e., by a spherical surface of very large radius.
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vapor (with the possible addition of effects arising from artificial

thrusts). Actually, even for a liquid under gravity, we can

regard Po as the intrinsic pressure just within the horizontal

free surface. As the depth increases, the intrinsic pressure, just

like the usual "hydrostatic pressure", will increase by the

amount gpz, where p is the density of the liquid and z the

depth. Now Pn arises from the momentum of the thermal

motion of the molecules of the hquid, and Pq — K represents this

kinetic pressure enormously reduced by the cohesion on the

surface layer. We might therefore call Pq — K the internal

pressure of the liquid at the surface, but care will have to be

taken to avoid any confusion between this use of the term

"internal pressure" and the use of it by Freundlich and others

(erroneously in the writer's opinion) to refer to the cohesion K*
On the other hand po is the external pressure on the surface of

the liquid and is the pressure actually measured by a manom-
eter; so that the result for a plane surface simply states that

the external and internal pressures at the surface are equal.

Turning now to a spherical surface of radius R (convex to the

exterior), the expression (5) yields the result

P - {k+^-~)=V, (8)

where P is the intrinsic pressure inside the liquid mass (at any

point if the liquid is weightless, or at the free surface if gravity is

supposed to act) and p is the external (observable) pressure on

the surface. As before, we may call P — K the internal pressure

of the liquid at its surface, and denoting this by p' we have

P'-P = |- (9)

Now this result is identical in form with that which connects

the gas pressure inside a membrane or liquid film and that

external to it. This formal identity has led to the use of the

* Or we might use the old-fashioned phrase "vapor-tension" for

Pq — K, as distinct from "vapor-pressure" the term for po.
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term "surface tension" for the quantity denoted by a, with

unfortunate results for the real understanding of certain

phenomena by students reading elementary accounts of capil-

lary rise, for example. In consequence vague notions are preva-

lent that in some way a tight skin of water holds up the elevated

column in the capillary tube and "pins it" to the inner wall,

or, on the other hand, that a tight skin of mercury holds the

mercury in a capillary tube down below the general level in the

vessel outside. In the case of a spherical membrane under ten-

sion enclosing one body of gas and surrounded by another, both

pressures are available for observation, the inside as well as the

outside. In the present instance the intrinsic pressure of the

liquid is not open to observation, nor its cohesion; but we can

infer from the result (9) that the internal pressure just within a

spherical mass of liquid, subject to a definite external pressure,

is greater than it would be under a plane surface, subject to the

same external pressure, by the amount 2(t/R. In short the

liquid in the sphere is a little more compressed than that under

the plane surface, but tliis extra compression is not due to a

"surface membrane" in tension, but to a small change in the

inward attraction on the membrane due to the curvature.

Indeed the elevations and depressions observed in capillary

tubes are easily seen to arise indirectly from this cause. In the

first instance, the curvature at the surface of water in a capillary

tube dipping into a beaker of this liquid is caused by the strong

molecular attraction of glass on water as compared to the

attraction between the molecules of water (water "wets" glass

and adheres powerfully to it). This concave curvature can

only exist if the internal pressure just at the surface is less than

the external pressure; this external pressure is practically the

same as exists on the plane surface of the water in the beaker.

Thus the internal pressure just under the curved surface in the

tube is less than that under the plane surface in the beaker, and

this cannot be so unless the level in the tube is higher than in

the beaker; in short the column in the capillary tube is pushed up,

not pulled up. For a liquid like mercury which adheres

scarcely at all to glass, the absence of molecular attraction by

the glass necessitates a convex curvature in the capillary tube,
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and a similar argument demonstrates that the mercury must be

pushed down in the tube, in order to preserve conditions of

hydrostatic equilibrium.

The writer feels that there exists so much misconception con-

cerning the surface tension of Hquids that the preceding elemen-

tary account may not be out of place at the outset of a commen-

tary on a portion of Gibbs' work which is so vitally concerned

with the concept of surface energy, with which the term ' 'surface

tension" has come to be practically synonymous. Before

proceeding, it may be desirable to take this opportunity to

clear up a misconception about another matter which experience

shows to occur often in this connection. Outside a spherical

mass of liquid the vapor pressure is less than the internal

pressure just inside the surface. It is quite easy, as the writer

knows from teaching experience, for the unwary student to pick

up the notion that the saturated vapor pressure outside a liquid

with a convex surface is therefore less than that outside a

plane surface; but, of course, the very reverse of this is true.

The capillary tube phenomena actually demonstrate this, as

well as the complementary fact that the saturated vapor pres-

sure above a concave surface is less than that above a plane

surface. The chapter on the vapor state in any good text of

physics contains the necessary details on this point. Moreover,

the matter can be argued out correctly from statistical con-

siderations. In any case the equations (7) and (8) show

that

P - p > Po- Po,

but unless we had some definite prior information concerning

the equality or inequality of P and Po we could draw no in-

ference from this as to the relation of p to po. Actually, as

stated just above, capillary experiments or statistical arguments

demonstrate that p > po, and so we can infer from this fact

that P > Po also.

IV. Statistical Considerations

8. The Finite Size of Molecules

While the foregoing analysis is very instructive in giving some

insight into the true nature of the conditions at the surface of a
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liquid, it is limited by the fact that implicitly it regards the

liquid as divisible into elements infinitesimally small com-

pared to the range of molecular attraction, and this is not the

case in actual fluids. However, molecules although not

mathematically infinitesimal in size are so small that great

numbers of them exist even in any "physically small" volume

of a gas. By "physically small" we mean small in so far as our

capacity to deal with it experimentally is concerned. Under
such conditions we can apply certain well-known statistical

results which will prove of service to us later when we shall

endeavor to supplement the thermodynamical arguments of

Gibbs' treatment by considerations based on molecular

structure.

The previous discussion introduced us to an expression which

represents the potential energy of one molecule with respect to

its surrounding neighbors. It is given in (1), and ostensibly it is

proportional to n, the numerical concentration of the molecules.

We have already noted the hypothesis of infinite subdivision

of the fluid on which this is based. But even if we waive that

difficulty we must draw attention to the fact that the factor

multiplying n is a function of the lower limit of the integral,

viz., I. Now this limit is by no means so definite as the upper

limit. Undoubtedly, if the concentration is not too great, we
may take it to be a fixed quantity so that the expression in (1)

may be regarded as varying directly with n;and as we have

seen it then supplies the theoretical basis for van der Waals'

cohesion term. But as the concentration increases, or as the

temperature rises so that molecular impacts are on the average

more violent and penetration of molecule into molecule more

pronounced, the quantity I itself will become a function of

concentration and temperature. Thus the linearity in n of the

function expressing this mutual potential energy disappears at

sufficiently high concentrations. We shall still require this

conception of the potential energy of one molecule with respect

to the others or, to put the definition in another form, the change

of energy produced by introducing one more molecule into the

system, and we shall consider it as some function of concentra-

tion and temperature. Of course, one part of this change will
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be the average kinetic energy of one molecule ; with that we are

not^seriously concerned; it is the average potential energy of a

molecule with regard to all the others with which we wish to

deal, and we shall represent it as a function of the concentra-

tion, say 6(n). As stated, if n is sufficiently small d{n) is simply

a multiple of n and is, according to our conventions, negative,

approaching the value zero as n approaches zero. But at

sufficiently large concentrations d{n) will reach a minimum

(negative) value and as the effect of intermolecular repulsive

force begins to make itself more marked in the great incompres-

sibility of the fluid, 6{n) will increase in value with further

increase in the value of n and must be considered as theoreti-

cally capable of reaching any (positive) value, however large,

unless density is to grow without limit.

9. Distribution of Molecules in Two Contiguous Phases

Now suppose that we have two phases of the fluid in a

system, represented by suffixes 1 and 2. The gain in energy

of a molecule when it passes from the second phase to the first is

d{ni) — d{n2). (We are assuming that the average kinetic

energy of a molecule is the same in each phase.) It is a well-

known result familiar to those acquainted with the elements of

statistical mechanics that the concentrations in the two phases

are related by the equation

where k is the "gas constant per molecule," i.e., the quotient of

the gas constant for any quantity of gas divided by the number

of molecules in this quantity.*

For a gram-molecule, ft = 8.4 X 10^; A^ = 6.03 X lO^^; so A; = R/N =

1.36 X 10"^^ Exp (x) is the exponentialfunctionofx, viz., the limit of the

infinite convergent series

X x^ x'

^'^ri'^21'^3!'*'
••'

exp(a;) = e',

where e is the Napierian base of logarithms.
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By taking logarithms we can write this in the form

log ni + -^ = log n2 + -^

or, if we represent the gram-molecular gas constant by R and

the number of molecules in a gram-molecule by N, we can write it

thus:

Rt log ni + Ne(ni) = Rt log n^ + Ndin^). (11)

If the first phase is a vapor, so that 6(ni) approaches zero,

the expression on the left-hand side approaches Rt log rii.

Now, as is well known, the chemical potential of a gram-

molecule of a dissolved substance, provided its concentration is

small, is given by Rt log ni, where rii is the concentration. In

seeking to discover how this formula must be generalized so as

to embrace more concentrated states, statistical as well as

thermodynamical argument may easily prove of service, and

the equation (11) gives a hint of a possible line of attack.

Equation (10) shows that the function

Rt log n + Nd(n)

is the same in both phases of the fluid. When we remember

that the chemical potential of a given component is the same in

all phases in equilibrium, and compare Rt log n with the formula

for the chemical potential of a weakly concentrated component,

we may well consider that the full expression just written might

prove to be the pattern for a formula for the chemical potential

under other conditions. We shall return to this point in the

commentary.

In conclusion, we may point out a phenomenon at the surface

of a liquid which bears some resemblance to adsorption, and is

explained by statistical considerations, When we were treating

the field of force which exists at the surface separating liquid

and vapor it was mentioned that the field exists in a layer of

the vapor as well as in a layer of the liquid extending in both

cases as far as the radius of molecular action. Now, just as the

density of our atmosphere is greater the nearer we are to the
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ground, so this field in the vapor will tend to retain molecules

in this layer in greater number than exist in an equal volume

elsewhere in the vapor; so that at the surface there is an excess

concentration in the vapor phase. Furthermore this "ad-

sorption" is accompanied by a decrease of the surface energy;

for the reader will recall the fact that any concentration of mole-

cules near the surface of the liquid tends to reduce the total

potential energy, since the nearer one molecule is to another,

outside the distance where repulsion begins, the smaller their

mutual potential energy. Again there is an analogy with the

mechanical conditions in the atmosphere, since any aggregation

of molecules of air in the lower levels produces a diminution of

potential energy as compared with a state of affairs in which

the molecules are more uniformly distributed in the atmosphere.

Indeed, when one is endeavoring to interpret thermodynamic

phenomena in terms of mechanical laws, we may expect to find

that any occurrence in which free energy tends to decrease is

to be explained by the mechanical fact that, in the passage of

an isolated dynamical system to a state of equilibrium, poten-

tial energy always tends to a minimum.

V. The Dividing Surface

10. Criterion for Locating the Surface of Tension

We now return to the text of the treatise and consider one of

the most troublesome features of the earlier pages of this

section, viz., the location of the abstract dividing surface which

in the course of the reasoning replaces the non-homogeneous

film or region of discontinuity. The argument of Gibbs (I, 225-

228) leads to a criterion based on theoretical grounds for locat-

ing this surface in a precise fashion; yet, as will appear, it is

one which gives way in practice to other methods of placing the

surface more suitable for comparing the deductions from the

adsorption equation [508] with the results of experiments.

Nevertheless, as there are one or two points in the argument

which may require elucidation, we shall devote some considera-

tion to it. Fig. 3 will help to illustrate Gibbs' reasoning. He
chooses first an arbitrary position for the dividing surface which



528 RICE ART. L

he calls S. In the figure, K represents the closed surface which
cuts the surface S and includes part of the homogeneous masses
on each side; the portion of K which cuts S and is within the

non-homogeneous region is generated by a moving normal to S;

the remaining parts of K in the homogeneous masses may be

drawn in any convenient fashion. The portion of S referred

to by the letter s (m Clarendon type) is indicated by ^5 in the

figure, and its area is given by the italic s. CD and EF indi-

cate portions of the other two surfaces mentioned at the top of

page 220. The parts referred to in Gibbs' text by the letters, M,
M', M" are also indicated in the figure. In the succeeding

K
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may help to visualize the situation; nevertheless it cannot be

too strongly emphasized here in view of the references later to

experimental work that e^, rj^, nii^, etc. do not refer to the actual

quantities of energy, entropy, etc. in the discontinuous region,

but to the excesses of these over those quantities which would be

present under the arrangement postulated in the text with ref-

erence to the surface S. The actual quantities present are of

course precisely determined by the physical circumstances of

the system; the quantities e^, rj^, mf, etc. are, however, partly

determined by the position chosen for the surface S. (This is

a point more fully elaborated later by Gibbs on page 234.)

That being so, there is something arbitrary about their values

unless we can select a position for S by means of some definite

physical criterion. Such a criterion Gibbs suggests and deals

with in pages 225-229. He calls this special position the

surface of tension.

11. An Amplification of Gihhs' Treatment

The criterion is based on the formal development of the

fundamental differential equation for the dividing surface

regarded as if it were a homogeneous phase of the whole system.

As usual the energy e^ of the portion 5 of the surface is regarded

as a function of the variables, rj^, mi^, m2^, etc. Among these

variables must of course be included the area s of s; but in

addition there exist two other geometric quantities; these

measure the curvature of s (regarded as sufficiently small to

be of uniform curvature throughout), viz., the principal curva-

tures Ci and C2. It is a possibility that a variation of the

curvature of s, which would obviously involve an alteration in

form of the actual region of discontinuity, would cause a change

in the value of e^ and in consequence we must regard e« as

dependent to some extent on ci and C2. The partial differential

coefficients de^/dci and de^/dCi are denoted by Ci and C2.

Now we know that e^ is dependent in value on the position which

we assign to s; also it appears that the values of the differential

coefficients just mentioned depend to some extent on the posi-

tion and form of s. Gibbs chooses that position of s, which
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makes

dCi dC2

equal to zero, to be coincident with the surface of tension. The
proof that such a position can be found and the reasons for

choosing it are expounded at length. In view of the fact that

Gibbs takes S to be composed of parts which are approximately-

plane and which are supposed in the course of the proof to be

deformed into spherical forms of small curvature, we may as

well introduce that simplification into the argument at once

and assume that Ci = c^ so that Ci = C2, and we have then to

show that we can locate s in such a way that

To-"'

where c is the common value of Ci and C2.

Let CDEF in Fig. 4 represent the portion of the region of dis-

continuity, and suppose AB represents an arbitrarily assigned

position of s so that EA = FB = x. We shall represent the

thickness of the film EC by f . We now suppose that a deforma-

tion to a spherical form indicated by the diagram with accented

letters is produced. This means that c varies from zero to

1/R, where R is the radius of the sphere of which A'B' is a por-

tion; i.e., 8c = 1/R. We also suppose that s does not vary in

magnitude; i.e., that the area of the spherical cap indicated by
A'B' is equal to the area of the plane portion indicated by AB;
nor is there to be any variation of the other variables rj^, mi^,

tUi^, etc. Hence, by [493],

C
5e« = 2C8c = 2 ^•

But the only possible reason for which e^ will vary under these

circumstances is the fact that the volume of the element of film

indicated by C'D'E'F' is different from that of the element

CDEF. In short one must remember that a, though called a

surface energy, is strictly an energy located in the film with a
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volume density cr/f. Consequently de^ will be equal to the

product of o-/f and the difference in the volumes of the elements

just mentioned. On working this out we shall be able to obtain

some information concerning the order of magnitude of C and

justify the statements which Gibbs makes on this point in the

paragraph beginning at the middle of page 227. It is true he

begins the paragraph with the words: "Now we may easily

convince ourselves by equation [493] ..." but the reader may
well be pardoned if he doubts whether conviction is so readily

obtained. Since the solid angle subtended by A 'B' at the centre

of the sphere is s/W, it is proved by well-known propositions in

solid geometry that the volume of the spherical film C'D'E'F' is

3 R-{{R-\-^ -xY- {R-xY],

since R — x\q the radius of the sphere on which E'F' lies and

R -\- ^ — X the radius of that on which CD' lies, R being the
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radius of A'B'. This volume is equal to

3 f,
{sRHt -x) + 3R(r - xy + (r - xy + sr^x - srx^ + x^}

= sf + ^ (f2
- 2^x)

,

neglecting the remaining terms which involve squares and

products of ^/R and x/R. Hence the difference of the volume

elements is

^ (f^ - 2fa:)

,

and so the value for 8e^ calculated as suggested above is equal to

= — (r - 2x).

This is the same as 2C8c, i.e., 2C/R. Hence we find that

C = ks(f - 2x).

From this equation it is clear that C can have positive or

negative values according as x is less or greater than f/2. C is

zero if X = f/2, i.e., if the dividing surface is midway in the film.

Also if C is the value of C when x = x\ and C" its value when
X = x", these being in fact the values of C for two positions of

the dividing surface separated by X, where \ ^ x' — x", we have

2(C" - C) = 2(Ts{x' - x") = 2as\.

In this way we confirm the results obtained by Gibbs on

page 227. These results show that we can choose in any general

case a position for s which gets rid of the awkward terms

Cibc\ + CibCi in [493]; our sole object in presenting an alternative

method of derivation has been to show the physical basis for

introducing these terms at all. It may also help the reader to a
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further insight into the argument presented by Gibbs on page

226. Before leaving this topic, however, it may be as well to

enjoin on the reader the necessity of keeping Gibbs' own

caution in mind that in strict theory it is only for this specially

chosen position of the dividing surface that the equation [500]

is valid, and that only to it may the term surface of tension be

correctly applied.

VI. The Adsorption Equation

IS. Linear Functional Relations in Volume Phases

Let us revert for a moment to the substance of pages 85-87

of Gibbs, which leads to the equation [93]. Divested as far

as possible of the mathematical dressing, the simple physical

fact on which it rests is this. We are considering two homo-

geneous masses identical in constitution and differing only in

the volume which they occupy. If the volume of the first mass

is r times that of the second, then the amount of a given constit-

uent in the first is r times that of the same constituent in the

second; also the energy and entropy of the first are respectively r

times the energy and entropy of the second. Hence, when we

express e as a function of the variables -q, v, mi, m^, ... w„,

writing for example,

e = <^(r?, V, mi, m2, ... m„),

we know that

(f){rr], rv, rmi, rm2, . . . rmn) = r4){y}, v, mi, W2, . . . w„).

In other words, the function (/> is a homogeneous function of the

first degree in its variables.* There is a well-known theorem of

* It should be observed that this does not of necessity mean a linear

function. Thus ax + by + cz is a linear function of the variables x, y, z;

but

ax^ + fcy^ + cz^

Ix + rny + nz

is not. Yet both are homogeneous functions of the first degree; for if

I, y, z are all altered in the same ratio, the values of these functions are

also altered in the same ratio.
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the calculus due to Euler, which states that if ^{x, y, z, . . .)

is a homogeneous function of the q^^ degree in its variables then

d\p dyj/ d\J/

dx dy dz

As a special case of this we see that

9<^ d(j) d<i> d4> d<t>

07] dv drrii 9w2 dnin

But by the fundamental differential equation [86] which
expresses the conditions of equilibrium

90 90 90

Hence

e = tt] — pv + fxinii + M2W2 . . . + iJLnm„

,

which is equation [93].

13. Linear Functional Relations in Surface Phases

Precisely similar arguments justify equation [502], since we
assume as an obvious physical fact that if we consider two
surfaces of discontinuity of exactly similar constitution then

the entropy, energy, and amounts of the several components in

each would be proportional to the superficial extent of each.

Since e-^ is homogeneous of the first degree in the variables

7]^, s, nii^, W2'5, etc., it follows that the partial differential coeffi-

cients of the function 4>{'r]S, s, mr^, m2^, . . .) of these variables,

which is equal to e'^, with regard to the variables are individu-

ally also homogeneous functions of the variables of degree

zero, i.e., they are functions of the ratios of these variables.

But by [497]

90 90 90
^ = :97^' ^ = 7.' ^^ = ^' ^^'- (^2)

Hence the n -\- 2 quantities t, a, \i\, 1JL2, ... are functions of
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the n + 1 variables tjs = tVs> Ti = nii^/s, T2 = mz^/s, etc.

By means of the n + 1 equations which express t, mi, M2, etc.

as functions of the n + 1 quantities 77s, Ti, r2, etc., we can

theoretically express 77s, Fi, r2, etc. as functions of t, mi, M2, etc.

In consequence a, which is also, as we have just seen, a function

of the former set of n + 1 quantities, can be expressed as a

function of the second set, viz., t, /xi, 1x2, etc. This functional

relation between a and the new variables t, ni, jU2, etc. is referred

to by Gibbs as "& fundamental equation for the surface of dis-

continuity." Now the values of the potentials jUi, 1x2, etc., are

themselves determined by the constitution of the phases or

homogeneous masses separated by the surface of discontinuity;

so we see that o- is itself ultimately dependent on the constitu-

tion of the adjacent phases and the temperature (unless any of

the potentials relate to substances only to be found at the

surface). Furthermore, as we know, the pressures p' and p" in

these phases are also determined by the temperature and the

potentials. Since by equation [500]

pf _ p"
Ci + C2 =

,

it follows that the curvature of the dividing surface is also

dependent on the temperature and the constitution of the

phases separated by it.

14- Derivation of Gibbs' Adsorption Equation

Suppose the constitution of the phases suffers a change so

that a new equilibrium is established at a temperature t + dt,

with new values of the potentials in the phases equal to mi + dyn,

H2 + dn2, etc. This will involve changes in the surface energy,

entropy and masses to values e^ + de^, rj^ + drj^, mi^ + dnii^,

rriz^ + dm2^, etc., and the surface tension will alter to o- + da.

The equation [502] still holds for this neighboring state of

equilibrium, so that

e^ + de^ = {t-\- dt) (tjS + drjs) + {(T + da) (s + ds)

-f- (jLii + c?jui) (mi^ + drui^) + etc.
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or, neglecting quantities of the second order,

di.^ = tdt]^ -\- r]^dt + ads + sda + nidmi + Widiii + etc.

But since e^ is equal to a function (^(tj'S, s, rrii^, m-f, ...) of

ri^, s, rrii^, m^^, etc.,

d4) d(j> d4> 34)
de^ = — dr]^ + — ris + -—: drui^ + -—: dnii^ + • • •

3?j* ds dmi^ dmf

= tdrf + ads + /ii c^Wi'^ + jii dm%^ + . .

.

by equation (12) above. Hence by equating these two values

of dt^ we obtain

iq^dt + sda + TUi^dni + mo^dfXi + . . . =
,

which is equation [503] of Gibbs. Equation [508] is just

another way of writing it. We have already seen that a can

be expressed as a function of the independent variables, t, jUi,

H2, etc., and [508] shows that if this function were known so

that a = fit, Hi, juo, • • •)> where/ is an ascertained functional

form, then

9/ 9/ 9/
Vs = — — ' Ti = - —-

, T2 = - — f etc. (13)
01 Ofil OfJ.2

Equation [508] is the "adsorption equation" and as we shall see

presently the experimental verification of its validity is beset

with difficulty and some doubt. One cause of this difficulty

can be readily appreciated by considering the form of the equa-

tions (13) which constitute another way of expressing the Gibbs

law of adsorption. Considering the first component, we see that

its excess concentration in the surface (estimated of course per

unit area) is given by the negative rate of change of the surface

tension with respect to the potential of the first component in

the adjacent phases, provided the temperature and the remaining

potentials are not varied. Now, quite apart from the trouble

involved in measuring with sufficient precision the excess con-

centration, it is impracticable to change the amounts of the

components in the phases in such a manner that all but one

of the potentials shall not vary.



SURFACES OF DISCONTINUITY 537

15. Variations and Differentials

The apparent formal similarity of equations [497] and [501]

should not blind the reader to the different implications of the

two, which the alternative method of writing the derivation of

[508] may help to bring out. In equation [497] the functional

dependence in the mathematical sense of e^ on the variables

rj-s, s, mi-s, W2'5, etc., is kept in the background as it were; 8e^,

dr}^, brrii^, 8m2^, etc., are any arbitrary infinitesimal variations of

t^, etc., in other words, although t^ is some function of the quan-

tities Tjs, s, rrix^, mi^, etc., presumably discoverable by experi-

ment, €^ -{ 8e^ is not necessarily equal to this same function of

the quantities tjs + Srj^, s + 5s, nii^ + Snii^, rrbi^ -\- 8m2^, etc.

;

i.e., the varied state is not of necessity one of equilibrium.

Equation [497], while being the statement of the condition

that the unvaried state is one of equilibrium, is from the

mathematical point of view a way of writing down the n + 2

partial differential equations (12). But in [501] the quantities

dr]^, ds, drtii^, dnii^, etc. are not arbitrary variations but differ-

entials whose values must be chosen so that the varied state is

one of equilibrium as well as the initial, i.e., so that t^ + de^

is the same function of ??« -f d-q^, s + ds, Wi^ + dmi^, nii^ +
d?r.2^, etc., as e^ is of t?^, s, mi^, m2«, etc. If this is kept in mind it

will be seen from the nature of the proof of [508] that, in passing

from any state of the system for which [508] is assumed to be

true to any other for which it is also true, we must pass through a

series of equihbrium states; briefly all the changes involved

must be reversible in the usual thermodynamic sense, not

merely in the special sense in which Gibbs uses that word.

More than one writer has pointed out that in some of the

operations carried out in certain experiments made to test the

validity of the adsorption equation this condition has apparently

not been satisfied and irreversible steps have intervened.

Further reference will be made to this presently, but it is this

feature of the proof to which we have drawn attention that is

involved.

16. Condition for Experimental Tests

In many of the experiments made to test the truth of [508] the

adsorption is measured at the surface of bubbles of a gas or
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liquid rising through another Hquid. Clearly such surfaces are

not plane and yet in the argument it is generally implied that

the conditions for a plane surface exist. Actually Gibbs has

anticipated this point in his discussion on pages 231-233. The
crucial point in this is reached on page 232 where he says "Now
TiCci + C2) will generally be very small compared to 7/' — 71'."

In general where adsorption is very marked Ti/f , which is the

average volume concentration in the region of discontinuity, is

greater than 7/ or 7 1 , the volume concentrations in the homo-
geneous masses; but ri(ci + C2) is of the same order of mag-
nitude as Vi/R, where 22 is a radius of curvature of any curve in

which a normal plane cuts the surface, and so ri(c] + d) has the

same order of magnitude as Fi/f multiplied by ^/R. If the

thickness of the film is very small compared to R, the factor

^/R may easily be less than the factor by which one would
multiply 7/ or 7/' to obtain Ti/f ; so that Ti (ci + C2) is negligible

compared to 7/ or 7/' and therefore to their difference except

in the rare cases where 71' and 7/' are extremely near to each

other in value. Now even for small bubbles R must be much
greater than f , and the conditions postulated would appear to

be practically satisfied in the actual experiments. So that,

although Gibbs says that "we cannot in general expect to

determine the superficial density Ti from its value — {d(r/dfJLi)t.^

by measurements of superficial tensions," the conditions which

render this feasible in particular circumstances seem to be

satisfied in the usual experiments, and we must look in other

directions for the source of the discrepancies which undoubtedly

exist. Of course, the first sentence of the next paragraph on

page 233 which refers to the practical impossibility of measuring

such small quantities as Ti, r2, etc. has no application at present,

as the skill of the experimenter has actually surmounted the

difficulties.

17. Importance of the Functional Form of a in the Variables

We have already pointed out that it is impracticable to obtain

da/dfii directly by arranging to vary ni while keeping the other

potentials constant. Hence has arisen the device, actually

suggested by Gibbs himself, of altering the position of the
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dividing surface from that which is termed the surface of tension

to one determined so as to make a specified surface concentra-

tion vanish. This is fully expounded in pages 233-237. In

the case of plane surfaces the term CiSci -f C25C2, which necessi-

tated the special choice of the surface of tension, disappears in

any case, and although es, rjs, Ti, r2, etc. will change in value

with a change in the location of the dividing surface, cr will not

change in value. To be sure, the proof given by Gibbs of this

statement is confined to plane surfaces, but it is easily seen to be

practically true even for surfaces of bubbles of not too great

curvature; for on using the equation p' — p" = a(ci -\- Ci) we

see that the increment of a caused by a change of amount X

in the position of the dividing surface, viz., X(ev" — ^v')

— t\{r]v" — riv') — mACti" ~ 7i') — etc., is not actually zero, but

equal to o-X(ci -f- Ci). As before, X, which is in all cases com-

parable with the thickness of the discontinuous region, is so

small that X(ci -f- C2) is an insignificant fraction, and so a is

altered by a negligible fraction of itself. A difficulty, however,

which might occur to an observant reader is the following.

Since a- is a definite function of the variables t, ni, ju2, etc., (for

so it has been stated), how comes it that da/dm, da/dyLi, etc.

will alter with the location of the dividing surface? We have

just seen that cr does not alter, and certainly the variables t, m, M2,

etc. are in no way dependent on where we place the surface;

if (T is a definite function of t, m, H2, etc., so also are da/dni,

da/dni, etc. definite functions of the same variables, and appar-

ently they should no more change in value than a itself. The

solution of this difficulty requires the reader to guard against

confusing the value of a with the functionalform of a. Actually,

if after the alteration a remained a function of the variables

t, Hi) M2, etc., the implied criticism would be valid; but a does

not do so. It must be borne in mind, as indicated by Gibbs on

page 235, that, with an alteration which makes Fi zero, a itself,

although not changed in value, has to be regarded as an entirely

different function, and moreover a function of the variables

t, 1J.2, jU3, etc., jui being excluded. The equation

V'(i, Ml, M2, ...) = P"(t, Ml, M2, • . •)
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enables us to express jui in terms of /, /X2, ms, etc. If this expres-

sion for /xi is substituted in the original function expressing a,

say f{t, Hi, /i2, . . . ) we obtain an entirely different function

say x(^ M2, M3, . • .). No doubt

but certainly a//aAi2 is not equal to 6x79^2, etc. The differential

coefficients dx/dfii, 9x/9m3, etc., are the new values of the

surface concentrations (with reversed sign); there is of course

no dx/dfJ-i at all, in consequence of the fact that we have elim-

inated Ti; it has no existence. To be still more explicit the

equation p' = p" is by means of [93] equivalent to

ev' — t-qv' — MiTi' — M2T2' — . . .

= tv" - iw" - MiTi" - m2" - . . . (14)

Hence

ey' - ey" - tinv'- nv") - M2(72^- 72^0 - M3(73^- 73^0 - . .

Ml = —, -T, .

71 ~" 71

Inserting this value of mi in fit, ni, H2, . . . ) we obtain

x{i, M2, M3, . . •). We can then derive dx/dfx^ by observing that

dx df df dm

dn2 dfii dni dn2

and obtaining 9mi/9m2 in this result from (14). Thus

dx 9/ 9/ 72' - 72"

80 that

dm dm dni ji — 7i"

— ^2 — ii / _ „dm 71 — 7i

which is equation [515], obtained by Gibbs in another way.

We observe in passing that if the dividing surface is considered

to be moved a distance X toward the side to which the double
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accent refers we increase the amount of the r*'^ component in

the conceptual system, in which the two homogeneous phases

are assumed to extend right up to the dividing surface, by

^(7r' — 7r") estimated per unit area of the surface, and so we
diminish the value of Tr by this amount, so that the new Tr is

equal to the old Tr — X(Tr' — y/'); if we choose X to be

equal to Ti/iyi — 7/'), this obviously makes the new Ti zero,

and the new Tr, i.e. Tra), equal to

71 ~ Ti

which is the result [515] once more.

VII. Other Adsorption Equations

Having commented on the derivation and form of Gibbs'

adsorption equation we will refer briefly to other equations,

which have been suggested empirically or derived in other ways,

concerning the concentration of components at a surface of dis-

continuity. Some of these refer to adsorption at solid surfaces

just as much as at liquid surfaces; indeed in their derivation the

conditions at solid surfaces have been more in the minds of

their originators when developing their views. In such cases

the concept of surface tension hardly has any bearing on the

matter; but of course surface energy is a wholly justifiable term to

use, although in the nature of things it is only at liquid-vapor

or liquid-liquid interfaces that measurements of change of

interfacial energy are practicable. This, however, is a minor

matter, as it happens that the surface tension does not enter

into many of these laws, apart from the one derived by J. J.

Thomson, and a few others. Nevertheless, in the discussions

concerning the validity of the Gibbs relation it is hardly possible

to avoid making some reference to a few of these other proposed

forms of adsorption laws, and that must serve as an excuse for

making a brief reference to two or three of the most important

of them. For a very adequate account of the complete group

of laws the reader is referred to a rev^iew of the literature by
Swan and Urquhart in the Journal of Physical Chemistry,

31, 251-276 (1927).
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18. The Exponential Adsorption Isotherm

Historically, the oldest equation is one usually referred to as

the "exponential adsorption isotherm." We have already

mentioned that Gibbs does not use the term "adsorption,"

and the word itseh has been used somewhat loosely to cover

effects complex in origin and due to the operation of more than

one cause. It has been suggested that a rough criterion of

adsorption proper is that it takes place very rapidly, whilst in

many cases the effects produced by the presence of a porous

substance such as charcoal immersed in a gas or gas-mixture or

in a solution require considerable time to reach completion,

McBain has suggested that the whole phenomenon should be

called "sorption", and that portion of it which occurs rapidly

should be termed adsorption proper. Rapidity of occurrence,

however, can only be a rough guide at best. It is only in terms

of the effect which Gibbs calls the "excess" (or defect in the

case of negative adsorption or "desorption") of a component

at a surface that a precise definition can be given. Actually

adsorption is to some extent a phenomenon which recalls absorp-

tion, i.e., the dissolution of a gas or solute throughout the entire

space occupied by a phase. Adsorption, however, differs from

absorption in certain fundamental respects. As is well known,

absorption equilibrium in a heterogeneous system is governed

thermodynamically by a relation which demands (in the

simplest case) that the ratio of the concentrations (or more

exactly the activities) of a gas or solute in the different phases

present shall be independent of the absolute quantity of gas or

solute in the system. However, no such constancy obtains in a

system consisting of an aqueous solution in which finely divided

material such as charcoal is immersed; the concentration term

of the solute in the aqueous phase has to be raised to a power less

than unity in order to obtain a relation which is capable of

fitting with sufficient accuracy the observed values of the

adsorption. It is this relation which is called the "exponential"

adsorption equation and is written in the form

re = A;c"

,
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where x is the mass of gas or solute adsorbed per unit mass of

adsorbing material, c the concentration of the solution in the

bulk or the partial pressure of the gas in a gaseous system, n

an exponent which in general is less than unity. The exponent

n and the constant k are in general functions of temperature.

For substances feebly adsorbable n approaches unity. Ap-

parently this type of equation appears to have been first applied

to adsorption of gases by Saussure as early as 1814, and in 1859

Boedecker extended it to solutions. It has since been em-

ployed by a large number of workers. The most complete

examination of its applicability in relatively recent times has

been made by Freundlich, whose name is now very generally

associated with the relation itself. In his Colloid and Capil-

lary Chemistry (English translation of the third German edition,

p. 93 (1926)), he draws attention to the fact that some of the

experimental results at liquid-liquid interfaces fit it fairly well

;

for in them there appears a striking feature, corresponding to what

is known to be true at solid boundaries, viz., a surprisingly large

relative amount adsorbed at low concentrations, followed by a

growth as the concentration rises which is not in proportion to

the concentration but increases much less rapidly, ending up at

high concentrations with a saturation which hardly changes.

Actually the exact formula is only roughly valid numerically at

high concentrations, but when the conditions are sufficiently

removed from saturation it holds quite well. Although only

one of many relations suggested, it is still regarded as one of

the most convenient and reasonably exact modes of represent-

ing existing data, especially for systems consisting of finely

divided solids as adsorbing agents. For a discussion of the limi-

tations of its applicability the reader is referred to Chapter V
of An Introductio7i to Surface Chemistry by E. K. Rideal (1926).

19. Approximate Form of Gihhs' Equation and Thomson's

Adsorption Equation

Actually Gibbs' equation is the earhest theoretically derived

relation; but in 1888, about ten years after its publication,

J.J. Thomson obtained by an entirely different method a relation

which resembles that of Gibbs. There is a rather prevalent
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impression that the two equations are the same, but that is not

so; and both on grounds of priority and because of the wider

scope of Gibbs' result, there is no justification for the use of the

name "Gibbs-Thomson equation" which one sometimes meets

in the hterature, although it is doubtless true that Thomson's

work was independently carried out. In equations [217] and

[218J Gibbs shows that, for a component the quantity of which is

small, the value of the potential is given by an expression such as

A log (Cm/v), or A log (m/v) + B

,

where m/v is of course the volume concentration of the compo-

nent in question and A,C (or B) are functions of the pressure,

temperature, and the ratios of the quantities of the other

components. For a dilute solution regarded as "ideal" this

result becomes

M = Mo + -RHog c
,

where c is the concentration of the solute and /io is a function of

pressure and temperature. This is proved in standard texts of

physical chemistry. For non-ideal and concentrated solutions,

the relation is given by

fi = Ho + Rt log a
,

where a is the "activity," whose value in any case can be

determined by well-known methods described in the standard

works. As the concentration diminishes the activity approaches

the concentration in value. On this account an approximate

form of Gibbs' equation is frequently used for a binary mixture,

where the dividing surface is so placed that the surface con-

centration of one constituent (the solvent) is made zero. It is

c da , .

since b^x is put equal to Rt bc/c if temperature and pressure do

not vary. Now in Thomson's derivation of his result he uses

the methods of general dynamics. The reader may be aware

that in that science a system is specified by the coordinates and
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velocities or the coordinates and momenta of its discrete parts

(the molecule, in the case of a physico-chemical system). The
most usual method of attack on the problem of how its con-

figuration will change in time is by the use of a group of differ-

ential equations which involve an important function of the

coordinates and momenta which is called the Hamiltonian

function. There is another method, however, actually devel-

oped by Lagrange before Hamilton's memoirs were written,

which involves another group of differential equations asso-

ciated with a function of the coordinates and velocities called

the Lagrangian function. J. J. Thomson has made a brilliant

application of this analysis to the discussion of the broad

development of physico-chemical systems. Before the present-

day methods of statistical mechanics had developed, he showed

how to convert the actual Lagrangian function of a system

into a "mean Lagrangian," expressed in terms of the physical

properties of the system which are open to measurement, and

by the aid of it to use the Lagrange equations so as to deduce

macroscopic results. His work on this subject is summ.arized

in his Applications of Dynamics to Physics and Chemistry (1888),

a book that has never received the attention which it justly

merited. By this method he deduced the following result for

adsorption from a solution at its surface:

P

p
= '''p{ii}

('«'

In deducing it he assumes that we have a thin film whose area is

s and surface tension cr connected with the bulk of the liquid by a

capillary tube. The quantity ^ is the mass of the solute in the

thin film itself, while p and p' are the densities of the solute in

the film and in the liquid, respectively. R is the gas constant

for unit mass of the solute, i.e., the gram-molecular gas constant

divided by the molecular weight of the solute. Now on study-

ing Thomson's work we realize that his mean Lagrangian

function is formulated for dilute solutions in which ideal laws

are satisfied. This limitation enables us to transform (16) into

the approximate form of Gibbs' relation. Provided p'/p is
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not very different from unity the argument of the exponential

function is sufficiently small to permit us to write

1 + (s/Rt) (da/dO

for the right-hand side of (16), and so

P — p' s da

P ~ ~ Rt' d^

Now, if the dividing surface is placed at the boundary between

the film and the vapor, then p — p' is the same as r/f, where

^ is the thickness of the surface film. Hence

sf dcr

^ ^ ~ ^Rtd'^'

But ^/(sf) is equal to p, and so

P dcr
, ,

which under the limitations assumed is practically the approxi-

mate form of Gibbs' equation. The details of Thomson's work
will be found in the Applications, Chapter XII. A critical

inspection of the two formulae, Gibbs' and Thomson's, shows

that they are not so similar as one imagines. We have already

mentioned that the assumptions made concerning the dilute

nature of the solution places a limitation on Thomson's result

not ostensibly present in Gibbs'. Added to that, it is possible

that the mathematical restrictions imposed by the neglect of

higher powers in the expansion of the exponential function may
place a further restriction on (17) which is more severe than

that necessitated by the physical assumption concerning dilu-

tion. Thomson actually makes no quantitative application of

his formulae—indeed in those days there were no data available

;

he draws from it just the same broad qualitative conclusions

which can be inferred from Gibbs' result. If the presence of a

solute lowers the value of the surface tension, so that da/dc or

da/dp is negative, then T is positive by Gibbs' equation and
p' < p by (16), which we can write in the form



SURFACES OF DISCONTINUITY 547

p - ^^P \R^t dp,

= '^P Km Tk.

(18)

where k is the surface density of the solute, not in Gibbs' sense

of an excess, but of the actual amount in the film. If, on the

other hand, the surface tension is increased by increasing con-

centration of the solute, V is negative or p' > p, and the solution

is less concentrated in the surface film than in the bulk of the

phase; there is "desorption." Actually in the approximate

form of Thomson's relation, viz. (17), a is differentiated with

respect to p, the equivalent of the volume concentration in the

surface; to make it the exact counterpart of the approximate

form of Gibbs' equation it should be

p;_da_

^ ~ ~ Rtdp''

No doubt under the severe limitations imposed (which we have

just referred to) this change is justified, but it is well to notice

that in Thomson's actual result the concentration which is the

variable on which a depends is the surface concentration. In

Gibbs' adsorption law the variable is the chemical potential and

it matters not at all whether we refer to the potential at the

surface or in the bulk of the phase, since by the equations of

equilibrium they are equal; when we approximate we naturally

use the approximation for the potential in terms of the bulk

concentration. This indeed will serve as a cue to raise a small

point which, as the writer knows from experience, occasionally

causes some perplexity. The surface tension is of course

measured at the surface and we cannot help feeling that it should

be directly dependent on the concentration there. When one

sees the expression da/dc it is not altogether unpardonable to

feel somehow that in this differential coefficient a is the surface

tension at the surface of a hypothetical solution in which there

is no concentration at the surface. Any such idea must be

carefully avoided. Such a condition would of course be physi-

cally unrealizable, and the conception is entirely valueless. To
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repeat it once more, cr is a function of t, m,, y.^, etc., quantities

whose values in the bulk of the solution are meant, and any
approximations make <r still a function of physical variables as

measured in the homogeneous mass. The writer is not aware

that anyone has attempted to use Thomson's formula (16) or

(18) in numerical calculation. The feature of it just men-
tioned would render it difficult; but if it were possible it would
probably produce some improvement on the results calculated

by the approximate form of Gibbs' relation. To show this

suppose we write x for {—\/Rt) (da/dK); x will be positive

when there is actually a surface excess, i.e., when {dd/dK) is

negative. Equation (18) would then be

P X?' X?

The approximation would be

- = \ -\- X.
P

Clearly, since x is positive, the values of p obtained from the

first of these would be markedly larger than those obtained

from the second if x were not entirely negligible compared to

unity, and it is well-known that even in those experimental

results which show the best accord between observation and
calculation the tendency is for the observed concentration to be

above that calculated by the approximate form of Gibbs'

equation, which the second of the above equations most re-

sembles.

It also merits attention that Thomson's equation can be

readily obtained by the present-day methods of statistical

mechanics in a very direct way. If the reader will look once

more at section IV of this article (Article L) under the heading

"Statistical Considerations" he will observe in equation (10)

how the concentrations in two phases are related in simple cases

to the work required to extract a molecule from one phase and

introduce it into another. Now in the present instance the

solution in bulk may be regarded as the second phase and the
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surface film the first; a is the surface energy per unit area of the

film, meaning by that the energy possessed by the molecules

in unit area of the film in excess of what they would possess

if they were in the body of the fluid. Hence the da- in (18) will

refer to an increase in this, i.e., the work required to extract from

the bulk and bring to the surface a number of molecules given

by N^dp, where N is the number of molecules in unit mass of the

solute; for f is equal to the volume of unit area of the film and

^dp the increase in the mass of the solute in it. Hence, since

R refers to the gas constant for unit mass of the solute,

R^dp = Nk^dp,

and we see that (l/R) {da/dn) is equal to the work required

to bring one molecule from the interior to the surface divided

by k, i.e., to {0(ni) - e{n2)]/k. Thus by (10)

P
-, = exp
P \ Rt dKj '

which is just Thomson's equation. Thus, not only in the form

of the equation but also in the possibility of deducing it in this

way, one might state with some show of reason that it is really

more akin to some recent results obtained by Langmuir and

others than to Gibbs' law.

It should be mentioned as a matter of interest that Warburg
in 1890 made use of an equation, which is virtually Gibbs' ap-

proximate result, in his well-known paper on "Galvanic Polari-

zation" (Ann. d. Physik, 41, 1, (1890)). By means of it he

made some calculations on the forcing of the solute out of the

surface layer in the case of inorganic salts which raise the

surface tension of water and so are desorbed. He used a

thermodynamical argument; in an addendum to the paper he

refers to the earlier proofs of Gibbs and Thomson.

Quite a number of proofs of Gibbs' equation, usually in the

approximate form, have been published from time to time.

(See Swan and Urquhart's paper cited above.) Porter, in the

Trans. Faraday Soc, 11, 51, (1915), has derived an equation for
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concentrated solutions, viz.,

(1 — acY da
r = — ^

>

Rt dc

where c is the ratio of solute molecules to solvent molecules and
a is a factor obtained from the equation

= log
—

1 — ac J)

P being the saturation pressure of an adsorbed gas or vapor and

p its equilibrium pressure. In this the departure from the

simple approximate Gibbs' formula is attributed to the forma-

tion of loose compounds between the molecules of the solute

and those of the solvent, which is termed solvation. This has

the effect of altering the internal pressure of the solution and
with it other properties such as surface tension and compressi-

bility which depend upon the internal pressure. On account

of the existence of this solvation Freundlich has criticized the

approximate form of Gibbs' law even for dilute solutions, since

this property certainly interferes with the application of the

simple van't Hoff laws to them. Langmuir, however, has

replied to this criticism by pointing out that there are deriva-

tions of the law, e.g. Milner's, in which the gas laws are applied

only to the interior of the solution. This, of course, does not

invalidate in any case the complete form of Gibbs' law, although

even this is almost certainly limited to true solutions and cannot

be applied to colloidal solutions. This point has been empha-
sized by Bancroft (J. Franklin Inst., 185, 218, (1918)); we have

already drawn attention to the feature of the proof which im-

plies thermodynamic reversibility of the adsorption process,

and that is certainly in doubt in some instances where the

equation has been applied. Undoubtedly in true solutions

some equation of the form

holds, where /(c, t) is some function which is positive; but this
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cannot be formulated correctly until a general formula for

potential in terms of concentration has been discovered.

20. The Empirical Laws of Milner and of Szyszkowski for <x and c.

Langmuir's Adsorption Equation. FrenkeVs Equation

We shall now turn for a moment to one or two empirical

relations between surface tension and bulk concentration in

solutions. For relatively strong solutions of acetic acid Milner

{PhU. Mag., 13, 96 (1907)) found that a formula of the type

0-0 — a = a + jS log c

was satisfied, where ctq is the surface tension of water, cr that of a

solution of concentration c, and a and ^ are constants. Shortly

after, Szyszkowski (Z. physik. Chem., 64, 385, (1908)) sug-

gested a somewhat different form, viz.,

^-1^^ . 5 log (l + -^) ,

where a and 6 are constants. He verified this for solutions of

the shorter-chain normal fatty acids. It was observed that the

constant b had the same value for all the acids, while a was

different for each acid. Its values, however, for two acids dif-

fering by one carbon atom bore a nearly constant ratio, the three

carbon acid having an a 3.4 times larger than the a for the four

carbon acid, and so on. This means that 1 + (c/a) is a larger

quantity for the same concentration the longer the h3^drocarbon

chain in the acid, and so in this homologous series of acids the

diminution of surface tension at a given concentration increases

rapidly in amount as the hydrocarbon chains are lengthened,

which is just an example of a well-known rule due to Traube

that the capillary activity of a member of an homologous series

increases strongly and regularly as we ascend the series. For

by the Gibbs' simple formula

c da
^ ^ ~Rtdc

hao C

lit' c + a
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Thus to obtain the same surface concentration we require for

each successively higher member of the series a bulk concentra-
tion about one third of that of the previous member, and so the
higher members are more and more "capillary active," to use a
common term which designates the property of causing a lower-
ing of surface tension and being in consequence adsorbed in

excess quantity at the surface. It will be observed that, if c is

large compared to a, Szyszkowski's formula approximates to that
of Milner. A relation has just been found from the former, viz.,

where g is a constant at given temperature and would be in fact

the upper limiting value of r if the law held for extremely high
concentrations. Now this relation is virtually equivalent to an
equation deduced by Langmuir {J. Am. Chem. Soc, 38, 2221,

(1916)) for the adsorption of gases on a solid surface

(plane crystalline). Although not of special interest now, it

may not be amiss to mdicate Langmuir's argument in broad
fashion, inasmuch as Gibbs at a later point in his treatment
deals with the conditions at a surface separating a solid from a
fluid.

Langmuir's special hypothesis is that the molecules of the
gas are "condensed" on the crystalline surface when they strike

it, and do not in fact rebound in an elastic fashion as sometimes
postulated in kinetic theory of gases, except in a minority of

impacts. There is a good deal of evidence that this is actually

the case, and that in general the molecules remain on the
surface for a longer or shorter time depending on the attractive

forces between the solid and the adsorbed layer, and on the tem-
perature. There is therefore a concentration of molecules on
the surface whose amount depends on the average length of time
during which the molecules remain upon it. This state of

affairs obviously resembles what happens when molecules of a
solute pass from the solution into the surface layer and so it

is not surprising that there should be a formal resemblance in

the laws deduced in the two cases. Indeed Langmuir's analysis

could be easily adapted to give a theoretical foundation for
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Szyszkowski's formula in the latter case. A further assumption

is that the adsorbed layer is one molecule thick and that no

further adsorption occurs in a second layer beyond this. This

assumption is also in keeping with what are nowadays believed

to be the conditions at the surface of a solution, a matter to

which we shall devote some attention later on, as it is one on

which Gibbs' equation brings important considerations to bear.

Let a fraction 6 of the surface be covered with adsorbed gas, and

the rate at which molecules evaporate from unit area of the

adsorbed layer be ad, a being a function of the temperature and

depending also on the attractive forces. The rate at which gas

molecules unpinge on unit area of the surface is proportional to

the density of the gas and the average molecular velocity, i.e.,

to p0 (t is the absolute temperature). Since p = pt this rate is

therefore proportional to p/t^. Therefore the rate of condensa-

tion (which by the postulates we take to be comparable with

and proportional to the rate of impact) on unit area of the bare

surface can be written as ^pt~\ where j3 is a constant. We
suppose that no condensation occurs on the top of an adsorbed

layer. (That is the second postulate above and assumes that

the attractive forces of the solid do not extend appreciably

through the first layer,—a reasonable assumption on our present

knowledge.) Thus the rate of condensation on unit area of the

surface of the adsorbed layer will be

^pt-Kl - 9)

since a fraction 1 — is bare. Hence in equilibrium

/3prKl - d) = a9

,

from which we easily obtain

P
e =

P + oi^

P

p + a

where a is a constant depending on attractive forces and tem-
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perature. If n is the number of molecules actually adsorbed

per unit area at any moment, and Um the maximum number
which could possibly be adsorbed if the unit area were entirely

covered with a monomolecular layer, 6 is n/n,n, and so Langmuir's

result can be written

V
n = Um —I

(20)

The result is of considerable theoretical importance in connec-

tion with the so-called "poisoning" of solid catalysts. The
formal similarity of (19) and (20) is obvious, the pressure of the

gas being the analogue of solution concentration in (19). As
stated above, Langmuir's analysis could easily be adapted to

prove (19) and so by the aid of Gibbs' equation to derive

Szyszkowski's relation. Frenkel in the Zeit.f. Physik, 26, 117,

(1924) derives a special functional form for the constant a in

(20). On certain assumptions he shows that the mean length

of time during which a molecule adheres to the surface is equal

to T exp iii/kt), where r is the period of thermal oscillation, at

right angles to the surface, of an adsorbed molecule, u the energy

of desorption, i.e., the energy required to tear an adsorbed

molecule away, and k the gas constant per molecule. Thus the

rate of evaporation from unit area is n/[T exp {u/kt)\ and so the

constant a is equal to r~i exp {— u/kt). Also it can be shown
from the kinetic theory of gases that jS = (2Trmk)~^, where m is

the mass of a molecule. Hence Frenkel's form of Langmuir's

result can be written

P
n = n„

,

(27rm/c)i -I
p + -^ e ^«

For further information on these and similar equations the

reader can consult Chapter V of Rideal's Surface Chemistry

and Chapter VIII of Adam's Physics and Chemistry of Sur-

faces (1930).

SI. Energy of Adsorption

Returning to adsorption at the surfaces of solutions, it has
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already been stated that Thomson's equation has a close kinship

with some equations of Langmuir and others. We can enlarge a

little on this point. The surface film of a liquid is a region

where the potential energy of a molecule of the solute is greater

by a definite amount e than that possessed by the molecule

when in the bulk of the solution. It follows from the funda-

mental statistical law that since r/f is the volume concentration

in the film

r
~ = c exp

V kt)

or

r
€ = - kt log — •

Langmuir has applied this result to Szyszkowski's measure-

ments of the surface tensions of solutions of the fatty acids and

to the adsorptions calculated therefrom. If e„ and €„_i are the

energies of adsorption per molecule for acids with n and n — 1

carbon atoms, respectively, then

E„ — €„_i = — kt

'"K«X-'°^ffL.

assuming that the film thickness f is the same in all cases. In

the case of dilute solutions where c is small compared to a this

result becomes by (19)

€n - €„_i = -^^{log ttn-l " log a„}
,

since g, i.e. hao/Rt, is the same for all the acids. Now, as men-

tioned above, an-i/ctn has an almost constant value about 3.4,

so that log a„_i — log a„ is the same for any pair of successive

acids. Thus the energy of adsorption increases by a constant

amount for each CH2 group added to the hydrocarbon chain of

fatty acids. "This must mean that each CH2 group is situated

in the same relation to the surface as every other such group in

the chain, and this can only be the case if chains lie parallel
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to the surface. Hence Langmuir concluded that the molecules
lie flat in the surface, in the gaseous adsorbed films."*

Equation (19) is an example of an adsorption law deducible
from statistical considerations. We shall bring these references

to such equations to a conclusion by adapting an argument to

be found in Rideal's Surface Chemistry, p. 71, which leads to

another example of them. Let there be Wi molecules of a solute m
the surface layer of thickness f and area s, and n^ molecules of

solute in a volume V of the solution. If the layer is of the uni-

molecular type, the evidence for which we shall discuss in the

next section, there is a free volume in it of amount sf — n-iV,

where v is the effective volume of one molecule. If we add some
more molecules to the solution there will be a division into two
groups; one whose number is bn^ will be found in the layer, one
whose number is bn^ will be found in the solution. The volume
concentration of the first group will be 5wi/(sf — Uiv), of the

second bUi/V, and these two concentrations will have the ratio

exp(— u/U) where u is the energy of adsorption; i.e.,

X'
sf — iiiv V

X being written for exp{—u/kt). By integration we obtain

log {si; — Hiv) = — —^ + constant

= — \vc + constant

,

«

where c is the bulk concentration. Hence

s^ — HiV = Ce-^"".

Since Ui is zero when c vanishes, C = s^ and therefore

niv = 5^(1 — 6"^"')

* Quoted from page 128 of Adam's Physics and Chemistry of Sur-
faces. The reader must not interpret "gaseous adsorbed" as meaning
adsorbed from the superincumbent gas. It is a term applied to a special

type of film, of which we shall say more at a later stage.
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or

rii f
(1 — €-'>''")

s V

= g(l - e—) , ^

(21)

where g and a are constants.

We see that this adsorption isotherm has the same feature as

(19), viz., that tii/s the surface concentration of the solute

approaches a hmiting value g as c increases. In fact, since g is

^/v, we see by the definitions of f and v that g is the surface

concentration when the assumed unimolecular layer is quite

full. By measurements of the surface and bulk concentrations

at different states of dilution where the equation is valid we can

eliminate g and measure the constant a. By repeating these

measurements at another temperature we can determine the

value of a at this other temperature, say a' at temperature t'.

This gives us the ratio X'/X which is of course equal to a'/a.

But X = exp(—u/kt); hence we obtain

and knowing k, t and t' we can obtain u the energy of adsorption.

VIII. Experimental Investigations to Test the Validity of

Gibbs' Adsorption Equation

S2. The Earlier Experiments to Test Gibbs' Equation

The simplest conditions from a theoretical point of view for

testing the Gibbs equation exist at the boundary separating a

vapor from a liquid; however, this is not the easiest case to

test by experiment, and measurements carried out at air-liquid

or liquid-liquid interfaces make up the majority of the attempts

in this direction. When we have a binary mixture, the equa-

tion becomes (at constant temperature)

da = —Tidjii — T2dijL2.

As we have seen, this is only strictly valid for the surface of
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tension determined in the manner pointed out earlier. Practi-

cally, however, any surface in the film will serve, provided that

the values of Vi and r2 are adapted, as we have shown, to the

chosen situation. It has been customary to choose the position

of the surface so that the actual amount of one of the com-
ponents in the discontinuous region is the same as if its density

were uniform in each phase right up to the surface. This

makes one of the excess concentrations (say Ti) zero, and the

equation becomes

da = — Fgd) dfi2

.

Gibbs, himself, originally suggested this procedure and gives an
example of its application in the footnote to page 235. In a
number of the measurements, the simple formula for the

chemical potential

H = Hq -\- Rt log c

has been used, and these on the whole indicate that a solute

which lowers surface or interfacial tension is concentrated more
at the surface than is deduced by the use of this formula.

Measurements of the activity of solutes are not yet very numer-
ous, but wherever the more accurate expression for the potential

fi = Ho -{ Rt log a

can be used, the agreement is very much better, though there

still appears to be a greater concentration than the equation

would lead us to expect. However, in addition to direct tests

of the vaUdity of the equation, it has been used to investigate

the structure of the surface region, and the comparison of the

results with the properties of films of insoluble substances at

the surface of a liquid, obtained by Langmuir, Adam and others

by different means, seems to lend considerable support to its va-

lidity.

There are a number of early investigations which show
that a concentration of capillary-active solutes at the surface

actually does take place. Plateau {Pogg. Ann., 141, 44, (1870))

showed that the viscosity of the surface layers of a saponin
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solution in water was greater than in the interior. Zawidski

(Zeit. physik. Chem., 35, 77, (1900) and 42, 612, (1903)) pre-

pared saponin foams and showed by means of measurements of

the refractive index that the saponin content in the foam was

higher than in the original solution. Analogous qualitative

information was obtained by Ramsden (Zeit. physik. Chem.,

47, 336, (1904)) on the accumulation and consequent precipita-

tion of protein at surfaces. C. Benson (J. Phys. Chem., 7, 532,

(1903)) examined foams from aqueous solutions of amyl alcohol

and also observed excess concentration of the alcohol in the

foam. An important investigation was made by S. R. Milner

(Phil. Mag., 13, 96, (1907)) on solutions of acetic acid and

sodium oleate. He used the Gibbs equation in its simple form

to calculate the surface excess in the first case and brought out

the important fact that the surface excess for a normal solution

of acetic acid is only about 15 per cent less than what it is for

a solution eight times as concentrated. In the case of sodium

oleate, its high capillary activity causes the surface tension to

fall so rapidly that the (<r, c) curve quickly becomes nearly

parallel to the c-axis, and only very doubtful values of r could

be obtained. A rough experimental method gave as the surface

excess 0.4 mgm. per square meter, which Milner regarded as a

"moderately good estimate" for it at the moment of formation

of the bubbles of air which were passed through the oleate solu-

tion; but he was of the opinion that this was "very much less

than the ultimate value of the excess." He concluded that

there was an irreversible process here which actually caused the

solute to come out of solution in the surface in consequence

of excessive adsorption. As we have pointed out above, if

such is the case the theoretical conditions for an application of

Gibbs' equation do not hold under these circumstances.

Actually the first attempts at a quantitative verification of the

equation were made by W. C. M. Lewis at the suggestion of

Donnan (Phil. Mag., 15, 499, (1908) and 17, 466, (1909)). In

one set of experiments an oil-water interface was used and

solutes were chosen so as to be insoluble in the oil phase and

very capillary-active in the aqueous phase. Sodium glyco-

cholate, however, yielded results for the direct measurement of
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r which were about 80 times as great as those calculated on the
basis of Gibbs' equation. The sodium salt of congo red, methyl
orange and sodium oleate were also tried and exhibited a similar

though less marked discrepancy. Despite the experimental
difficulties of the tests, there was no possibility of ascribing

these results to experimental errors or to the use of the simple

form of the equation. The excessive adsorption was almost
certainly a characteristic of the semi-colloidal solutes employed.
Subsequently Lewis used a solute of much simpler constitution,

and one truly soluble in the aqueous medium, viz. aniline, and
measured the adsorption at a mercury-water interface (Zeit.

physik. Chem., 73, 129, (1910)). The calculated and observed
adsorption values now showed agreement as regards order of

magnitude, both being small multiples of 10"^ grams per sq. cm.
A still more successful test was carried out by Donnan and

J. T. Barker {Proc. Roy. Soc, 85 A, 557, (1911)) who measured
the adsorption of nonylic acid at an air-water surface. The T
was evaluated from the expression {— c/Rt) (dcx/dc) and cal-

culated, first, on the assumption of non-ionization of the acid

and, second, on the assumption of complete ionization. The
table gives the observed and calculated values.

Adsorption of Nontlic Acid at Air-Water Surface

Percentage
Concentration in
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behavior of mercurous sulphate, saHcylic acid and picric acid

at a mercury-water interface, but the experiments only gave

qualitative results from our point of view, as a quantitative

estimate of F could not be made. Later, Patrick and Bachman
(Journ. Phys. Chem., 30, 134, (1926)) found that the cation

is more readily adsorbed than the anion of a mercurous salt at a

mercury-water interface.

Frumkin in Zeit. physik. Chem., 116, 498, (1925) described a

method for testing the law which differed considerably in the

experimental procedure from those previously used. He worked

with lauric acid, chosen because of its relatively slight solu-

bility in water, and managed to produce a saturated layer of

the acid on the water whose concentration he could measure,

obtaining an adsorption of 5.2 X 10"'^" moles per sq. cm. Using

the ((T, c) curve in the neighborhood of saturation he calculated

r to be 5.7 X lO"'-" moles per sq. cm. He made control experi-

ments to test the accuracy of his measurements and concluded

that the error in the calculated value was not more than 10 per

cent, and that about the same Uncertainty affected the observed

amount. If this is so, Frumkm's measurements constitute one

of the most satisfactory tests yet made.

Reference should also be made to some experiments made by
Bancelin (J. chim. phys., 22, 518, (1925)) on the adsorption

of dyestuffs (at very low bulk concentration) both at liquid-air

and liquid-mercury interfaces. Rather remarkably, Bancelin

obtained fair agreement between calculated and observed

values for these solutes.

Historically, the next important contribution is that of

Schofield (Phil. Mag., 1, 641, (1926)), who observed the adsorp-

tion by mercury of its own ions from solution. However, in this

work we are concerned with somewhat wider issues than those

raised by the Gibbs capillary adsorption equation. Questions

concerning the electric potentials at the surface enter into the

discussion, and we shall postpone deahng with these until we
treat electrocapillarity towards the end of this article.

23. The Experiments of McBain and His Collaborators

The most extensive and exact experimental test of Gibbs'

equation carried out up to the present is that of McBain
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and Davies (J. Am. Chem. Soc, 49, 2230, (1927)). Brief

accounts of it will be found in the books by Adam and Rideal.

The substances examined were aqueous solutions of p-toluidine,

of amyl alcohol and of camphor. The method used for deter-

mining r was the bubble method much improved as to accuracy

over previous investigations, an accuracy of a few per cent

being claimed. If this is so, there is no doubt that these experi-

ments have left the whole matter in some doubt. Hitherto,

it had been regarded as very satisfactory that an agreement
in order of magnitude between calculated and observed values

had been reached, in view of the manifest difficulty of the

measurement of the adsorbed amounts. If the claim to high

accuracy made by McBain and his co-workers is justified, this

state of satisfaction is hardly possible any longer. The general

idea of the method is that bubbles of very pure nitrogen satu-

rated with the vapors of the solution are passed up a long

inclined tube of large diameter containing the solution. The
slope of the tube is adjusted so that the time occupied by the

bubbles in passing to the top end of the tube is amply sufficient

to insure that the surface of each bubble has attained the full

adsorption concentration corresponding to the bulk concentra-

tion of the solution, the tube being so large that the adsorption

does not appreciably lower this bulk concentration. At the

top of the inchne the bubbles rise into a vertical tube so narrow
that each bubble fills its diameter. Each bubble in the vertical

tube rapidly overtakes its predecessors and draining is so rapid

that within a few inches there is a continuous column of cylindri-

cal bubbles in contact with one another. At the height at

which draining is found to be sufficiently complete the narrow

tube is curved over and down. The films break in the down-
ward portion of the tube and collapse to a liquid which is caught

and analyzed. For a full account of the very stringent pre-

cautions taken to insure accuracy the literature should be

consulted. It must be admitted that little was left undone in

that direction. Perhaps the only possible source of trouble

has been indicated by Harkins (Colloid Symposium Mono-
graph, 6, 36, (1928)). As bubbles pass along the tube, they

oscillate in shape; this involves an oscillation in the extent of the
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drop surface. Suppose that saturation in adsorption were

attained when the surface is at its maximum value, then when a

subsequent contraction takes place the compression (in two

dimensions) thereby produced might cause some of the adsorbed

material to gather into droplets on the surface, and so more of it

would accumulate on the surface than would correspond to true

adsorption. Be that as it may, the general nature of McBain's

results may be indicated broadly thus

:

Firstly, the calculated value of r tends to a maximum as the

bulk concentration increases. Actually this might be antic-

ipated from the equation of Szyszkowski quoted earlier. Thus

according to it

(To — cr

= 6 log(-3
and

hero

T = -^
Rt c + a

which approaches a limit hao/Rt as c increases.

Secondly, the observed values of T also rise to a maxi-

mum, but during the whole course of events are definitely greater

than r calculated. The table for p-toluidine shows this.

Concentration of Solution
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all events, to the approximate character of the expression

(— c/Rt) (da/dc) which was used for T calculated ; but in a later

paper with Wynne-Jones and Pollard (Coll. Symp. Monograph, 6,

57, (1928)) he abandons this explanation, as it was found for p-

toluidine that its partial vapor pressure over an aqueous solution

was directly proportional to the concentration of the solute.

This partial pressure gives a direct measure of the activity of

the dissolved p-toluidine and so there is no difference in value

between c(da/dc) and a{da/da). That being so, McBain
repeated still more decidedly a suggestion which he had already

made tentatively in the first paper, viz., that the situation is

complicated by the existence of surface electrification effects,

and that the omission of any consideration of these vitiates the

theoretical basis of the adsorption equation, as it stands, without

an additional differential term on the right-hand side represent-

ing increase in the energy of this surface electrification when

concentration increases by a differential amount. We cannot

deal with this point now, but will return to it at a later stage

of this commentary. A further point raised by McBain and

Davies (Jioc. cit.) is that in these and similar experiments "seldom

or never have true, two-component systems been actually under

observation, although this is fundamental. Solutions of

electrolytes or substances capable of hydrolysis, such as soap,

cannot be treated as two component systems except in the rare

event that the composition of the adsorbed material is identical

with that of the solute remaining in the solution." The point

of this remark is that we are implicitly using the equation

da = —Tid/jLi — T2dn2

and making Ti zero by adjusting the surface so that we have

da = — r2(i) dn2.

But this is invalid if there are still other components present.

As McBain and Davies say "The component (or components)

actually present, but hitherto ignored, is the gas (or air) in

presence of which the surface tension is measured when bubbles

are produced." If we set Ti for the solvent equal to zero there
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are at least two other components (such as p-tokiidine and

nitrogen); "their adsorption is r2 = —(9o"/ 9^2)^3 and Ts =
— (da/dfxs)^^ each of which is readily measured, although this

has never been done. It is obvious that the two adsorptions

will mutually interfere For example, it has been stated

that the surface tension of mercury is 10 per cent lower in the

presence of one atmosphere of nitrogen than in vacuo; similarly,

nitrogen lowers the surface tension of water by about one per

cent, which would correspond to the adsorption of about 3 per

cent as many molecules of nitrogen as of p-toluidine. However,

such mutual interference cannot explain the high values of the

observed adsorptions."

As it can be stated here that McBain's explanation of the

discrepancies in terms of surface electrification effects has not

been universally accepted, it is clear that the evidence for the

complete quantitative validity of Gibbs' law, as against a rough

qualitative agreement, is far from satisfactory. In reflecting

on the various theoretical steps in the proof one naturally feels

somewhat dubious about the arbitrary placing of the surface

of division in order to get rid of one term in the differential

expression ; in discussing these matters the writer has, for exam-

ple, heard such statements as these: "Nature fixes the surface;

surely we cannot mess it about as we please." There is some-

thing to be said for this instinctive recoil from a procedure

apparently so arbitrary; yet a close investigation leaves us little

hope of evading our difficulties by pressing this instinct into our

service. For instance, let us look at Gibbs' equation [515],

where the strictly placed dividing surface is used, showing us

that

r _ r _ r
^ - y"

I 2(1) — 1 2 J- 1 / ,/•

7i ~ 7i

In this r2(i) is the surface excess as calculated, while r2 is what

we might call, if we were disposed to press the point we are

presenting, the "true" surface excess, and it would appear that

r2 is greater than r2(i)*provided Fi is positive, which is certainly

in the right direction for an elucidation of the mystery. The

value of 7i", the concentration of the solvent in the vapor phase
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in the gas-liquid experiments, is negligible compared to 7/, so

that r2 exceeds r2(i) by (72' — 72")ri/7i'. Until we know some-

thing about Ti we cannot say whether this is going to improve

matters or not. We shall have occasion in the following

section to return to this point, which we leave for the present.

IX. Gibbs' Equation and the Structure of Adsorbed Films

24- Impermeable or Insoluble Films

On pages 275, 276 Gibbs makes a very brief allusion to

"impermeable films" which may offer an obstacle to the passage

of some of the components from one phase to the other. "Such

may be the case, for example, when a film of oil is spread on a

surface of water, even when the film is too thin to exhibit the

properties of the oil in mass." The latter part of this sentence

is most significant in view of subsequent events. Gibbs con-

tents himself with pointing out that for any component which is

found on both sides of the film, but which cannot pass the film

itself, the potentials on either side cannot be proved to be equal,

and so in the adsorption equation, for example, a single term

such as —Tidni must be replaced by —Tidni — V^dn^, where

Fi and r2 refer to the surface excesses of the same component on

the two sides of the dividing surface and mi and /i2 indicate the

differing potentials in each adjacent phase.

Soon after the existence of "surface tension" became known,

it was discovered that oil films on water reduced this property

very markedly. This is of course quite a different phenomenon

from the lowering by capillary-active soluble substances. It

was Rayleigh who began accurate experimental work on the

thickness of such oil films {Proc. Roy. Soc., 47, 364, (1890)).

Some very important results were discovered by Miss Pockels

who was the first to use the method of "barriers," which by rest-

ing just on the surface of a liquid in a trough and extending

over its whole width could be used to push a surface film in front

of them so that it could be compressed or extended in two

dimensions (Nature, 43, 437, (1891)). •She made the dis-

covery that provided the area of a film formed by a small given

quantity of oil exceeded a certain critical value the surface
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tension did not differ appreciably from that of water, but as

the area was reduced below this value, the surface tension

fell rapidly. Later, Rayleigh (Phil Mag., 48, 321, (1899))

suggested that at this critical area the molecules are just

crowded into a layer one molecule thick; that they are in fact

floating objects which begin to repel one another when coming

into contact in a single layer. This accounts for the first

appearance of a diminution in surface tension at this point; a

barrier moving a small distance in the direction of the pressure

arising from this would gain kinetic energy, presently dissipated

in the general body of the fluid. The corresponding loss of

energy will be found in the fact that the expanding surface

covered by oil will not gain as much surface energy as is lost

at the contracting clean surface, which is merely a statement of

the fact that the oil covered surface has a smaller "surface

tension" than the clean, but does not imply the existence of a

physical tangential pull in the surface. Actually, as Devaux

was the first to point out, some films may acquire the properties

of a two-dimensional solid possessing a tangential rigidity in

the surface which prevents them being blown about into differ-

ing shapes.

£5. The Work of Langmuir and Adam. The Concept of ^'Surface

Pressure." Equations of Condition for Surface Phases

Great improvements in the experimental appliances were

introduced by Langmuir (J. Am. Chem. Soc, 39, 1848, (1917))

so that it became possible to measure these small surface pres-

sures, and his work has been extended with great success by

Adam. In Adam's book, already cited, will be found an

account of his work with references to the numerous papers by

himself and his co-workers. In the most recent form of Adam's

apparatus surface pressures as small as 0.01 dyne per cm. can

be measured. Also a great many tests have been made with

substances which are simpler than oils and whose chemical

constitution is better known. It is possible actually to give the

results in terms of the surface pressure corresponding to the

area of surface covered by a known number of molecules.

Thus, for the normal saturated fatty acids, no trace of surface
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pressure was discernible until the area per molecule was reduced
to 22 sq. A.* At 20.5 sq. A the pressure was very marked and
increased very rapidly for further decrease. It was a significant

fact that these figures were not altered by using different acids

provided the long-chain molecule contained a sufficient number
of groups. It was this fact which led to the introduction by
Langmuir of his well-known theory that such molecules are

oriented into vertical or nearly vertical positions in the surface,

suggesting that the sectional area of such a molecule is abouto

20 sq. A.
^ As the volume of a CH2 group is known to be about

29 cubic A, this gives 1.4 A as an approximate measure of the
distance of one carbon atom from the next in the chain, a
measure substantially in agreement with the results obtained

by X-ray analysis. This conception illuminates the whole
subject. At the end of the fatty acid or alcohol molecules

there is the group OH or COOH which is very soluble in water.

This group tends to get into the body of the water, and although
not able to drag the whole of a very long molecule in also,- it

succeeds in "anchoring" the molecule as it were in an almost
upright position. In this oriented state the molecules adhere
laterally, and this adhesion keeps them together as a ''coherent"

film showing no sign of surface pressure as soon as each mole-

cule has about 22 sq. A room for its cross section. Thus there

are "condensed" films close-packed and strongly adhering, and
"liquid-expanded" films in which adhesion and packing are less

marked. In addition Langmuir found that certain films such as

those of the short-chain fatty acids were quite different in

behavior; these appear to lie flat on the surface—the argument
has been given earlier in connection with statistical considera-

tions—and to move about independently, resembling a two-
dimensional gas. Such "gaseous films" appear to exert a

pressure, by reason of a bombardment on the barrier due to

thermal movement, entirely analogous to the three-dimensional

pressure of an ordinary gas. Just as there are no "ideal" gases

so there are no "ideal" gaseous films; nevertheless the laws

which have been discovered to hold between the surface pressure

* 1 A (1 Angstrom unit of length) = 10 ~^ cm.
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of a given amount of gaseous film and the surface area over

which it extends resemble in form the laws for gases, such as

Amagat's and van der Waals'. Actually there appear to be

processes in the surface analogous to fusion and vaporization

and a whole new "two-dimensional" world seems to be open-

ing up.

So far these remarks have been concerned with films of

insoluble or nearly insoluble materials, and have had no direct

connection with adsorption from solutions, but in the paper

already cited Langmuir used Gibbs' equation to indicate that

similar conditions exist in adsorbed films. By using Szysz-

kowski's data on the relation between surface tension and

concentration he calculated from the adsorption equation the

amount adsorbed and thus obtained the area per molecule in

the film for various bulk concentrations of the solutions of the

very short-chain fatty acids, from 3 to 6 carbons in length.

He found that with increasing bulk concentrations this tended

to decrease to a constant value roughly consistent with what

might be regarded as the sectional area of the molecule, thus

suggesting that at the limit of adsorption there exists a close-

packed unimolecular film in the surface. For the most dilute

concentrations the film is, of course, much more sparsely occupied

by the adsorbed solute molecules, and these appear to have the

properties of a gaseous film. This^is easily shown from the

Szyszkowski formula

Langmuir, interpreting o-q — <r as the "surface pressure" (actu-

ally Traube suggested this interpretation for the lowering of

surface tension in these adsorption films long ago), writes it

F = aoh log (l + H

c 1 c^ 1 c^

a 2 a^ 3 o^
= <^o&^7-o7; + o3- etc.
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If c is small compared to a
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page 65.) Indeed an equation analogous to Amagat's has been

shown by Schofield and Rideal (ibid., page 66) to represent with

some exactitude the behavior for all but the most dilute con-

centrations. It is

FiA - B) = xRt
,

where B is the limiting area of the unit mass of molecules when
crowded together in the unimolecular film, and x is a measure of

the lateral molecular cohesion, having a definite value not

greater than unity for each solute, and being smaller the larger

the cohesion. The values of B agree quite well with the values

suggested from other considerations. The equation is well

supported by its application to about a dozen solutes which

include the shorter-chain fatty acids and some alcohols. In so

far as it is valid it leads to an interesting equation as follows.

By the exact Gibbs' equation

dF = — d<x = Vdn

.

Therefore
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precise surface tension measurements of Szyszkowski. A two-

dimensional analogue of van der Waals' equation has also been

suggested, but data do not appear to be available over a wide

enough range of temperature to justify a definite opinion.

26. Unimolecular Layers and the Dividing Surface

This use of Gibbs' equation and the consistency of the

information which it gives concerning the surface structure, is

strong evidence for its validity in the case of substances such

as the shorter-chain fatty acids. Indeed, this conception of the

unimolecular Gibbs layer may throw some light on the dis-

crepancies which have raised doubt concerning its validity.

There does not appear to have been any such idea in Gibbs'

own mind. Possibly he held the view which, with the weight of

Laplace's name behind it, seems to have been prevalent in his

day, viz., that the discontinuous layer, although physically

very thin, is nevertheless many molecules thick and shows a

gradation of properties as it is passed through. Yet if the layer

is really only a molecule or two thick, the placing of the dividing

surface becomes a somewhat perplexing matter. Indeed, the

whole physical theory of placing the "surface of tension" so as

to exclude the Ci 8ci + C2 dc2 terms in the original differential

equation becomes very doubtful. Earlier in this commentary

we have somewhat expanded Gibbs' presentation of this in

order to assist the reader to an understanding of his concise

formulation, and on referring to this again the reader will see

that the basis of it is hardly tenable for a unimolecular layer.

A very significant illustration of the point involved here will be

found in two well-known calculations made by Schofield and

Rideal (Proc. Roy. Soc., 109 A, 57, (1925)) ; they refer to alcohol

and pyridine. The data for the surface tension of mixtures of

water and ethyl alcohol from pure water to pure alcohol were

known from some work of Bircumshaw, and data for the partial

vapor pressure of ethyl alcohol could also be obtained so as to

give the activity and therefore the potential. With the aid of

these the surface excess of alcohol was calculated by the strict

Gibbs' equation for over a dozen mixtures between the extreme

limits. It was found that this excess rose very rapidly until it
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attained a maximum when the mol fraction of the alcohol was

about 0.25, and the value there corresponded to an area of 24

sq. A per alcohol molecule, which indicates a close-packed uni-

molecular layer of these molecules. Thereafter the surface ex-

cess rapidly fell, and when the mol fraction was 0.75 the surface

excess was apparently no greater than it was when the mol
fraction had a value well under 0.1; this value of siu-face excess

was apparently maintained for mixtures still richer in alcohol

right up to alcohol itself. Exactly similar results were obtained

for the surface excess of pyridine at the interface between mer-

cury and mixtures of pyridine and water, care being taken to

neutralize the electric charge which is known to exist normally

at a surface between mercury and water. Now it is highly

improbable that there is really a decrease in the surface excess

with increase in the proportion of alcohol or pyridine, and the

situation shows how troublesome the interpretation of Gibbs'

equation may become in particular cases. We have seen that

it does definitely point to the existence of a unimolecular layer,

and there is also evidence, which we shall touch on later in this

commentary, that at least partial orientation of the molecules

occurs as well (just as in the case of insoluble films). Now it

might happen that with increasing concentration of the alcohol,

the more polar water molecules being replaced by weaker alco-

hol molecules, there would be a decrease in orientation with an

increase in area occupied, caused by each alcohol molecule lying

flatter in the surface. But a more probable explanation has

been given by Rideal and Schofield, viz., that there is formed

below the outer layer of alcohol, a second layer of water. "In

the derivation of Gibbs' equation, the mathematical dividing

membrane XY was so placed as to make the adsorption of the

water zero—that is, so that the average concentration of

water in volumes above and below XY were exactly equal to

those in the vapor and the liquid at a distance from the sur-

face. If there is a layer of water below the outermost layer

of pure alcohol, this will involve placing the dividing surface,

not below the alcohol molecules, but some distance above the

average level of their lowest points, perhaps more than half-way

up the molecules (owing to the thermal agitation this refers to
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the average position of the alcohol molecules)."* As the alcohol

in the bulk phase is supposed also to extend up to this dividing

surface with the bulk concentration, /or the purpose of calculating

r for the alcohol, such a gradual creeping outward of the surface

will have the effect of causing only a portion of the outer layer of

alcohol molecules to appear as "adsorbed alcohol." This illus-

trates very forcibly the difficulties that arise when we begin to

"tamper" with the dividing surface for the purpose of getting

rid of a term in the true adsorption equation for a binary mix-

ture, viz., (at constant temperature)

da = —Tidni — T2dn2-

If, however, we keep the dividing surface fixed, say at the depth

of the unimolecular layer, we can use the equation referred to

earlier,

"--('— S).dfi

(the equation [515] of Gibbs, slightly modified). This in-

cidentally shows us how the right-hand side of the equation

diminishes with increasing alcohol concentration; for with an

accumulation of water molecules in the layer just inside the

fixed dividing surface, Fi is positive and increasing and 72V71'

is also increasing in the bulk phase. This is then a way of

stating the explanation, alternative to that using the moving

surface. It has been suggested by Bradley {Phil. Mag., 7,

142, (1929)) that an additional relation, which with the above

would enable us to determine both Ti and r2 could be obtained

from the alteration in the air-liquid electric potential difference

which is dependent on the electric moments of solvent and solute

molecules in the surface layer; this would of course change with

the change in the composition of the surface. The reader is

referred to this paper for further information.

The difficulty of the situation is clear, and it is possible that

similar considerations may be brought to bear on all the

apparent failures of the Gibbs law. Unfortunately it is not

* Quoted from Adam's book, p. 131.
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easy to see how this can be done in connection with the work of

McBain and his colleagues. There the difficulty is different from

that just dealt with. The experiments on amyl alcohol, for

example, show that the measured amount at maximum adsorp-

tion was so great that if it were packed in a unimolecular layer
o

the area was only 14 sq. A for each molecule; in the case of

sodium oleate only 1 1 sq. A. It is impossible for these molecules

to be packed so tightly in a layer one molecule thick. It may be

possible, as we have stated earlier, that there may be a uni-

molecular layer with the additional material forced out into

small droplets above it here and there, the unimolecular layer

being the true adsorption agreeing with the adsorption equa-

tion. But clearly these difficulties still await solution. It is

interesting to note that a somewhat similar situation exists in

connection with insoluble oil films. The evidence for uni-

molecular layers is strong, yet there can be no doubt that the

area of an oil film can be reduced until there is no longer room

for all the molecules at their closest possible packing. The
suggestion is that the film gives way under tangential squeezing,

buckles and expels enormous numbers of molecules to form local

ridges, the rest of the film being unchanged. Adam in his book

hazards the opinion that the cases of "polymolecular" films such

as those obtained by Harkins and Morgan {Proc. Nat. Ac. Sci.,

11, 637, (1925)) are really examples of "partially collapsed uni-

molecular films, with the excess material collected into lumps

much thicker than the film itself."

X. Desorption

27. Unimolecular Layers and Negative Adsorption

If a solute raises the surface tension of a solution above that of

the pure solvent, the Gibbs' equation shows that the calculated

value of r2 (Fi being made zero as usual) is negative. This is

interpreted by saying that the surface is poorer in the solute

than the bulk phase or (alternatively) richer in the solvent. In

the nature of things "negative adsorption" cannot reach such

large numerical values as the positive ; obviously it cannot exceed

the bulk concentration of the solute divided by the thickness

of the layer in numerical amount.*

* See Gibbs. I, 274.
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The data available are not numerous, and concern aqueous

solutions of familiar inorganic salts such as the chlorides,

nitrates and sulphates of familiar metals. A table of results will

be found on page 74 of Rideal's book; these indicate that for a

given salt the increase in surface tension above that of water

varies in an approximately linear manner with the salt con-

centration. Langmuir has considered these results also from

the point of view of a unimolecular layer. The quantity of

solute which has gone out of the surface film so as to leave it

poorer in the solute than a corresponding volume of solution is

cf per unit area (where c is bulk concentration and f the film

thickness) if a film of pure water one molecule thick exists at the

surface. Hence on this hypothesis cf should equal — V obtained

by the equation

da

da

d{kc)

dc

= — kc

,

since, as we have stated, o-q — o- is approximately equal to —kc,

where A; is a constant. Hence f can be calculated. This should

be the thickness of an adsorbed water layer on the surface. Lang-
o

muir found f to be from 3.3 to 4.2 A, which is certainly the right

order of magnitude for a water molecule if it is not of an elongated

shape. More recent work by Goard, Harkins and others, using

the accurate form of Gibbs equation, finds varying values for f
o

which decrease from Langmuir's value between 4 and 5 A at
o

low bulk concentrations to about 2.5 A at high concentrations.

Adam suggests that this diminution may be due to the increas-

ing tendency of the solute to diffuse into the surface layer as

the bulk concentration increases.

The evidence for the truth of Gibbs' law in connection with

the hypothesis of unimolecular layers is imposing, and one

further remark may be made with reference to the cases of

apparent failure in the attempts to verify it by direct

measurements.
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It has already been stated that recent research shows the

existence in the case of numerous substances of surface films in

different phases, liquid, solid, gaseous, which can occur under

stable conditions at definite temperatures. If this is so the

surface layer may not always be a single phase of the whole

system ; we may have at times to consider it as a system of

phases and treat them thermodynamically just as we treat the

different homogeneous bulk phases. The usual procedure

would show that the potential of each component would have the

same value in each surface phase, still agreeing with the value

of this component in each of the homogeneous bulk phases.

Actually, in the subsection of Gibbs' treatise which deals with

the stability of surfaces of discontinuity, he considers the

possibility of a part of the surface being changed in nature while

the remaining part remains as before, and the entropy, total

masses and volumes of the whole system remain unchanged.

The changed part is to be uniform in nature and still to be in

equilibrium with the adjacent bulk phases. We shall com-

ment on this presently; but in the meantime we may antic-

ipate and mention the conclusion to which Gibbs comes (page

240). If two films of the same components can exist between

the same homogeneous masses, having the same temperature and

potentials as the homogeneous masses have for the components

in those masses, and the same potentials for components only

existing in the surface, then the film which is most stable is the

one with the smaller tension. Consequently in a stable film

consisting of two or more surface phases the surface tension for

each must be the same, for if one phase had a greater surface

tension than the other it would disappear on the slightest dis-

turbance of equilibrium. Suppose, therefore, that with increas-

ing bulk concentration there comes a point when a part of a

hitherto gaseous film begins to condense into a liquid film. This

seems to be a natural way of imagining the creation of a close-

packed unimolecular layer. A small addition of the solute to

the bulk phase would not result in an increase of bulk con-

centration; all the material would go to the surface gradually

increasing the extent of the liquid surface phase which en-

croaches on the gaseous; during this period there would be no



578 RICE ART. L

increase of <j or of the potential of the solute. Supposing now
that <7a is the value of the surface tension and /X2a the value of the
potential of the solute at a concentration below this transforma-
tion point, and ah and )U25 values above it, then {<ja

— cb)/

(m26 — /X2a) would be intermediate in value between the surface
concentration of the gaseous jSlm and that of the liquid film.

The essential point is that it would be less than the actual con-
centration in the liquid film. This is a somewhat enlarged
version of an explanation suggested by Rideal in his book, on
pages 51 and 52, to account for the fact that V observed is

nearly always greater than r calculated.

28. The Recent Experiments of McBain and Humphreys on
Slicing Off a Thin Layer at a Surface

Note-. Just as this manuscript is going to press the writer has
read in the Journal of Physical Chemistry, 36, 300 (1932), a
preliminary account by McBain and Humphreys of some fresh

experiments in progress on the determination of the absolute

amount of adsorption at surfaces of solutions, and if subsequent
results follow the indications given by these then it may be
said that very dependable evidence for the truth of Gibbs' law
by du-ect measurement is at last available. The apparatus is

extremely ingenious, and is novel in that for the first time a
static surface is involved and not one which is in motion, as in

the experiments with bubbles; the criticisms levelled against the
latter have been referred to above.

Briefly, the solution is at rest in a shallow trough of silver

surrounded by a saturated atmosphere. The ends of the

trough are paraflSned, so that the solution is made to bulge up
above them without overflowing. A uniform layer 0.05 to 0.1

mm. thick is cut off from a known area of the surface by a small

microtome blade travelling at a speed about 35 feet per second.

This layer is collected in a small silver-lined cylinder, on which
the blade is mounted, and is weighed, its concentration being
then compared with that of the bulk solution by means of a
Lewis interferometer. From the observed difference of con-

centration the adsorption can be calculated. Extraordinary
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precautions appear to have been taken against every conceivable

source of error.

The following results of preliminary trials indicate the very

satisfactory agreement now obtained between T calculated and

observed. It is no longer a matter of agreement of order of

magnitude, or a ratio between 2:1 and 4:1.

Substance

p-Toluidine

p-Toluidine

Phenol

Caproic Acid

Caproic Acid

Caproic Acid

Hydrocinnamic Acid

Hydrocinnamic Acid

Concentra-
tion

(grams per
1000 grams

H2O)



580 RICE AET. L

where C and A are given at the top of page 268. Now 7/ is

the density of the Hquid and 71" is the density of the Hquid's

vapor in the gaseous phase, so that 71" is very much smaller

than 7/; 72" is the density of the gas or vapor, whose adsorption

is being considered, in the gaseous phase
;
72' its density in the

liquid bulk phase, may be regarded as zero. Hence, practically,

A = -7iV,

C = ri72" + r2(7/ - 7/0

= ri72" + r27i'

.

Therefore

c _ _ r3_ _ £2^

A ~ 7/ 72"

'

Since Ti is zero by the choice of dividing surface, it follows that

C _ _ £2

A " ~ 72"

or

da

dp

where 7 refers to the density of the adsorbed vapor in the

gaseous phase.* Before passing on to consider the experi-

mental results we may remind the reader of the mechanical

explanation of gaseous adsorption given m the last paragraph

of section IV of this article. The existence of a surface energy

depends, as we saw, on a normal field of force existing in a

molecular layer at the surface of the liquid and also extending a

similar distance into the space above the liquid. Such a field

would cause an increased concentration of gas close to the sur-

face, just as the density of the atmosphere is greatest at the

lowest level in the earth's gravitational field. Actually the

outward attraction of this concentrated layer of gas would

* Not of the liquid's vapor; 7/' is the density of that.
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tend to weaken the field of force to which it is due and so

produce a diminution in the surface energy.

30. The Experiments of Iredale

We shall first briefly review the results obtained in Donnan's

Laboratory by Iredale {Phil. Mag., 45, 1088 (1923); 48, 177

(1924); 49, 603 (1925)). He deals principally with the adsorp-

tion of vapors of organic substances at the surface of mercury;

these have the property of lowering the surface tension of mer-

cury. The drop weight method of determining surface tension

was used and its accuracy is carefully discussed. The vapors

were generated by passing a very slow current of dry air at con-

stant pressure through the organic liquids. The adsorption of

the vapor at the surface of the drops appeared to be a fairly

rapid process; for "the period of drop formation was never less

than 3| minutes and with longer periods the weights of the drops

were not found to decrease appreciably" thus indicating that a

steady condition of surface tension had been reached. The re-

sults with methyl acetate vapor showed a fall from 470 dyne per

cm. to about 430 for a partial pressure of 40 mm. in the vapor;

thereafter the fall was much slower, reaching a value about 412

dynes as saturation of the vapor at about 225 mm. was ap-

proached. At this point there was a sudden fall of the surface

tension to about 370 dynes which is the value of the surface

tension of mercury in liquid methyl acetate. Taking the slope

of the graph, which gives da/dp at 62 mm. pressure, where the

conditions of maximum adsorption are being approached

although the vapor pressure is still well away from saturation,

and multiplying it by y for the vapor there, a value about

4.5 X 10~* gram of methyl acetate per sq. cm. is obtained.

This corresponds to about 0.37 X lO^^ methyl acetate molecules

per sq. cm. of mercury surface. This figure is near the values

given by Langmuir {J. Am. Chem. Soc., 38, 2288, (1916)) for

unimolecular layers of carbon dioxide, nitrogen, etc. "More-

over the space taken up by each molecule (27 X 10^^^ sq. cm.)

is near that required for molecules of esters and fatty acids on

the surface of water, namely, 23 X 10"^ sq. cm., and it is possible

that the same type of orientation obtains on the mercury surface.
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There appears, however, to be a somewhat abrupt change from a

simple adsorption process to a condensation." In later work Ire-

dale examined more carefully the remarkable behavior exhibited

at the saturation point of the vapor. Among the vapors studied

was water vapor in the presence of air. In this case the slope

of the {a, p) curve was practically uniform up to the saturation

point, and so the adsorption increased uniformly with the den-

sity and partial pressure of the vapor right up to the satu-

ration point. Calculation of r at this point gives a value

1.8 X 10~^ gram per sq. cm. which is somewhat less than that

required for a unimolecular film (3.8 X 10~^ gram per sq. cm.

according to Langmuir). At the saturation point there is the

same instability in the tension of the vapor-mercury interface,

its value being entirely uncontrollable and lying anywhere

between 447 and 368 dynes per cm. Iredale suggests that

the primary phenomenon is the gradual formation of a uni-

molecular layer, this being represented by the earlier portion of

the curve. After the vapor reaches the saturation value a

very thin film of liquid may be produced, the thickness of which

"is not a determinate function of the pressure and temperature,

though the most stable state corresponds to the formation of a

film, which may, from the standpoint of intermolecular forces,

be regarded as infinitely thick." Iredale also examined the

adsorption of benzene vapor on a mercury surface. This

showed one rather unexpected feature. He considered that

near the saturation point the value of r attained a maximum
and decreased slightly with a further small increase of pressure.

He also found a similar tendency in methyl acetate, though

not in water vapor. (This was criticized later by Micheli

whose work we shall refer to presently.) The maximum value

for benzene was such as agreed with an area 21 X 10~^^ sq.

cm. for each molecule, very near to Adam's value (23.8 X 10~^^)

for certain benzene derivatives on a water surface, and once

more supported the view that the vapors adsorbed on the

surface of mercury tend to form primary unimolecular films.

Further measurements were made using the sessile drop method

for measuring surface tension, and without admixture of air.

These results were in fair agreement with the previous work and
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gave much the same value for the area per molecule of adsorbed

benzene on the mercury surface. Experiments were carried

out with ethyl alcohol, propyl chloride, and ethyl bromide,

showing that, as in the previous cases, the adsorption of these

substances appears to be within certain limits a reversible

phenomenon. Iredale expresses surprise that these substances,

"which are more definitely polar than benzene and, especially

in the case of the alkyl halides, possess an atom or group more

likely to form a definite finking at the mercury surface, should

have no more marked effect on the surface tension than benzene

itself."

SI . The Experiments of Micheli, Oliphant, and Cassel

Subsequently Micheli at Donnan's suggestion {Phil. Mag., 3,

895 (1927)) took up the same problem. He examined the va-

pors of benzene, hexane, heptane, pentane and octane, all in a

high state of purity, at a water-vapor interface using the drop-

weight method. It was found that if <r is plotted against the

partial pressure of the vapor (in the vapor-air mixture) the result

is a straight line; hence F = kP, where A; is a constant. From a

knowledge oi k, Fg the amount adsorbed when the partial pres-

sure is equal to the maximum vapor pressure at the temperature

of adsorption could be determined. His comment on the re-

sults is as follows: "The fact that a linear relationship holds

between the partial pressure of the vapor and F right up to

the value F„ and also that this quantity changes so rapidly with

increasing temperature, indicate clearly that a limiting condi-

tion, such as would obtain if a closely-packed adsorbed layer

were formed, had not been reached." He also shows from his

calculations that the values for the area occupied by one mole-

cule of benzene is larger than Adam's value for a closely packed

layer of certain benzene derivatives on a water surface. "In

this case, clearly an unsaturated layer is formed." His pro-

portionality factor decreases as the temperature at which the

experiments are performed is raised. This indicates that ad-

sorption is accompanied by an evolution of heat, but we shall

postpone the discussion of this matter until we reach the com-

mentary on the subsection dealing with thermal effects.
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This work was carried out at a water surface. However,

Micheli also experimented with a mercury-air interface, sub-

stantially confirming Iredale's conclusion that at this surface

the amount adsorbed approaches a definite limiting value as the

partial pressure of the hydrocarbon vapor increases, and that

the values of the area per molecule obtained from T, in this

case agreed well with Adam's value for benzene already referred

to and, in the case of pentane, hexane, heptane and octane,

with the values also found by Adam for closely packed mole-

cules of straight-chain alphatic acids or alcohols oriented at a

water-air interface so that the OH or COOH groups are attached

to the surface. One feature of Iredale's work with benzene,

Micheli did not obtain; this concerned the point of inflexion

obtained by Iredale on his (a, log p) curve for benzene, indicat-

ing a maximum adsorption before saturation was reached, with a

subsequent diminution. Micheli remarks that such an effect

would not be probable, and draws attention to the curves of

Schofield and Rideal concerning the adsorption of ethyl alcohol

from an aqueous solution on which we have already commented

and where a similar apparent maximum exhibits itself. Micheli

states that the observed maxima really indicate that conditions

exist which render the Gibbs equation inapplicable, and is

obviously suggesting that we must look for an explanation of

Iredale's result, if it really exists, along the lines already referred

to in our previous comments on this point.

It is interesting to observe that Gibbs' own footnote on page

235 is concerned with adsorption from a vapor phase. He
quotes some figures of Quincke for the tension of mercury in

contact with air (which he takes to be practically the same as

for contact with its own vapor free of water vapor), and for the

interfacial tension of water and mercury and of water and its

vapor. They are, when expressed in present-day units, 539,

417 and 81 dynes per cm. Assuming that the tension of

mercury in contact with the saturated vapor of water is the sum

of the two latter, which is tantamount to assuming that at

saturation pressure of water vapor the adsorbed film is begin-

ning to have the properties of water condensed in mass, the

reduction in the tension of mercury by adsorption of water
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vapor is 41 dynes per cm. for an increase of water vapor pressure

of 1.75 cms. of mercury. There he leaves the calculation, but

had he known, as we know now from Iredale's and Micheli's

work, that the fall in tension is proportional to the increase of

vapor pressure, he could have finished the calculation for the

amount of the layer adsorbed just at saturation before actual

condensation into a genuine liquid water phase begins. For

da - 41

dp 1.75 X 981 X 13.6

and

dff _ 17A X 10-« X 41

^ ~ ~ '^ dp~ 1.75 X 981 X 13.6

= 3 X 10~^ (grams per sq. cm.),

since y, the density of water vapor at 20°C, is 17.4 X 10~^ grams

per c.c. This is just the figure for a unimolecular film of water

molecules, but there is no doubt that no such conception was

in his mind. Indeed, the assumption he makes above shows

this. Iredale in one of his papers has some very interesting

remarks to make on the general theory of adsorption and con-

densation, but reference to them will be deferred until we have

commented on the subsection of Gibbs' work which deals with the

formation of a new phase at the interface between two phases,

since Iredale's comments involve the theoretical considerations

in that subsection.

Another very interesting set of experiments were carried out

by Oliphant (Phil. Mag., 6, 422, (1928)). His apparatus was

adapted from one invented for another purpose by Schofield.

He found that an expanding mercury surface selectively adsorbs

carbon dioxide from a mixture of that gas with an excess of

hydrogen or argon, and that at all concentrations above 2 per

cent the carbon dioxide thus selectively adsorbed was constant

at a value about 6.5 X 10^'^ molecules per sq. cm. This very

nearly corresponds to a close-packed unimolecular layer.

Actually, Schofield's method does not involve the yda/dp rule

or the measurement of da/dp. It should be mentioned that
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Bircumshaw (Phil. Mag., 6, 510, (1928)) has found that the

surface tension of mercury in contact with such gases exhibits

some anomahes with lapse of time which have not yet been

explained. Finally, reference should be made here to the ex-

cellent work of H. Cassel and his collaborators on the adsorption

of gases and vapors on mercury and water surfaces (Z. Elektro-

chem. 37, 642 (1931); Z. physik. Chem., Aht. A, 155, 321 (1931);

Trans. Faraday Soc, 28, 177 (1932); Kolloid-Z., 61, 18 (1932)).

XII. The Thermal and Mechanical Relations Pertaining to the

Extension of a Surface of Discontinuity

SS. Need for Unambiguous Specification of the Quantities Which

Are Chosen as Independent Variables

In this subsection Gibbs makes use of the results obtained in

the previous subsection of his work, to which we have already

referred at the beginning of the part of the commentary just

concluded. The results are in equations [578], [580] and [581].

When there is one component in two homogeneous phases and a

surface of discontinuity, o- is a function of t and n (the one

potential involved). The transformation effected at the

bottom of page 265 still leaves it a function of two variables t

and p' — p". If the surface is plane there is only one variable,

t, involved; this is obvious in any case since with only one

component in two phases, say vapor and liquid, p is a function

of tf and of course o- is also.

Equation [580], which refers to two components in two homo-

geneous phases, and equation [581] are framed as if cr were

again a function of two variables, and yet a is originally regarded

as a function of three, viz., t and the potentials ni and m2 of

each component. The reason is clear. Equation [579] shows

that there are really three variables involved, t and the two

pressures; but since the surface is regarded as practically plane,

the difference between the two pressures is ignored. Actually,

since the surface is plane and p' = p", this gives us an equation

between two functions of t, ni, /X2 and thus /Lt2 is a function of t and

Hi and is not an independent variable; so o- is really a function

of t and Ml or t and p. It would be a great assistance to students



SURFACES OF DISCONTINUITY 587

of thermodynamic texts if writers would cultivate the habit of

indicating by bracketed symbols just what quantities are being

considered as the variables upon which the physical properties

being discussed are dependent,—at all events in circumstances

where ambiguity might otherwise easily arise. For example, in

the present instance, a regarded as depending on t, ni, would

be written as cr(f, ni), meaning the function of the variables t, m
which is, for any given values of t and mi, equal to the value of

the surface tension at these values of temperature and the

potential of the first component. On the other hand <t regarded

as depending on t, p would be written as (r(f, p). Of course it

would be implied in such a convention that the functional form

of <T{t, Ml) would not be the same as (r{t, p). Actually, to satisfy

the requirements of a strictly rigorous use of mathematical

symbolism we should write the two functions, which both repre-

sent the same physical quantity, in different ways, say f{t, m)

and g{t, p); but the situation does not really demand such rigor

and there is an advantage in indicating just what physical

quantity is being represented, provided the implication referred

to is kept in mind. Such a symbolism when combined with the

modern partial differential coefficient notation (the use of d

instead of d, not in use when Gibbs wrote his memoir), would

also clearly indicate what quantities are being regarded as con-

stant in any particular differentiation, so that the use of the

subscript after a bracket (the usual method of the thermo-

dynamic texts) would be unnecessary. Thus in equation [593]

{da/dt)p would be da(t, p)/dt and {da/dp)t in [595] would be

d<T{t, p)/dp. In [587] and [592] the differentials are total differ-

ential coefficients. Gibbs makes a special reference to this

point at the top of page 271. With only one component, say

a liquid and its vapor, p is a function of t, and <r can be re-

garded either as a function of p only or as a function of t only

and written accordingly a{p) or ait) as the case may be; so that

in [587] the total differential coefficient symbol would still be

correct and we would write it as
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In [592] p is a function of t, and so Hs a function of p and we
have

da{t) dt(v)

and the right hand side by a well-known proposition of the

differential calculus is equal to

da(p)
V dp

The reader whose acquaintance with mathematical technique

may be limited should not regard these remarks as idle comments
on mere mathematical "niceties." Actually, if the method
suggested were more widely used, and not merely in thermo-

dynamic texts, it would conduce to clarity of exposition and

consequent ease of understanding on the part of the reader.

S3. Alternative Method of Obtaining the Results in This Section.

Total Surface Energy

The methods by which Gibbs arrives at the results of this

section are easy to follow and eminently physical. It may not

be out of place, however, to obtain them by a more analytical

method which will also help to illustrate the remarks just made.

Thus the energy of the whole system consisting of two phases

and surface of discontinuity with n components is a function of

the variables 77, v, s, mi, 1712, . . . nin, since

€ = tri — pv -{- as -\r Mi^i + M2W2 . . . + finmn*

and

de = tdr] — pdv + ads + iJ-idmi + fi^drn^ . . . + fJ-ndnin.

We should write the functional form which represents the energy

in these variables as e(r], v, s, mi, m2, . . . ) but actually, with the

assumption of a practically plane interface, we have an equation

p'{t, Ml, M2, . . .) = p"{t, m, /i2, . . .)

.

* See Gibbs, I, 240.
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This gives us one equation between the variables and so we

can reduce them from w + 3 in number to n + 2; the most

convenient set of variables is then r/, v, s, n, Vi, . . . r„_„ where

7-j = mi/nin, n = nii/nin, etc. So we write the function for c as

i{rj. V, s, n, r2, . . . ) and

de{-n, V, s, ri r2, . . . ) = tdr{ — pdv + ads + vi dn + va drj + . .
.

,

where vi, v-z, etc. are functions of r], v, s, n, r^, ...

The other three Gibbs functions are then

yP{t, V, S, ri, rg, . . .) = e - tr],

^(t, p, s, n, rz, . . .) = e - tr] + pv,

xiv, P, s, n, rg, ...) = e + pv,

with the differential equations

d\l/{t, V, s, n, r2, . . .) = —vdi — pdv

+ ods \- vidn -\- . . .
,

d^{t, p, s, n, ra, . . .) = -vdt -{- vdp

+ <^ds -\- vidri -{ . . .
,

dxiv, P, s, n, ra, . . .) = tdri + vdp

+ ads -\- vidri -\- . .

.

From the second of those we have

9f («, P, s, ri, ra, ...)

dt
= - iC^, P, s, n, ra, ...)

and

d^{t, p, s, n, ra, ...)

ds

By cross differentiation

dr]{t, p, s, ri, ra, .

ds

a{t, p, s, n, ra, ...)*.

dajt, p, s, n, ra, ..)

dt

(22)

Actually <r is only dependent on t, p and n — 2 of the ratios n, ri, .
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This is equation [593] ; the left-hand side is the rate of change of

entropy with increase of surface, while t, p and the composition

of the masses are unchanged (this is the condition stated in

the paragraph preceding [593] in Gibbs), and so is equal to

Q/t. In the right hand side the variables p, n, r^, ... are kept

unchanged in the differentiation; in Gibbs' case no ratios occur

in the variables on which a depends, since he is dealing with two

components only and there would only be one ratio r, and even

this does not appear since we have just stated in the footnote

that in general <r depends on only n — 2 of the n — 1 ratios

ri, r2, ... as well as t and p. Indeed c depends only on n

variables; for we know it can be expressed as a function of

/, m, y.i, ... nn in general, but the assumption of the equality of

pressures in the two phases reduces the number of variables to n.

The addition of Q to cr gives the total energy acquired by the

surface when extended one unit of area if the temperature,

pressure and composition of the phases remain unchanged.

This quantity

<r(f, p, r) - « -^ .

is sometimes called the total surface energy, a being called the

free surface energy. With the exception of a few molten metals,

liquids exhibit a decreasing surface tension with rising tem-

perature, and so as a rule total surface energy is greater than free

surface energy. In many liquids the relation between a and t

is linear, so that the total surface energy does not vary with

temperature. Actually, if the variation is not zero, we can easily

see that the ordinary specific heat of a liquid will vary with the

extent of surface offered by a definite mass of it which will

change with a change of form in the mass. For

^ d^vjt, p, s, r) ^ d dr}{t, p, s, r)

dt ds ds dt

* For brevity let r stand for the series n, u, ... r»_i.
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Now tdrj/dt is the ordinary heat capacity of the mass of the

fluid, and if the left hand side of the equation is not zero, the

specific heat will depend on s.

The fact that extension of the surface of a liquid (all the other

variables remaining constant) involves cooling in most cases (as

is obvious since, in general, heat must be supplied to maintain

the temperature constant) can be seen very easily from mechan-

ical considerations. We can imagine the system of liquid and

vapor to be contained in a flexible but non-expanding enclosure

which will permit a change of extent of surface without altera-

tion in volume, etc. of the two individual phases. In enlarging

the surface some molecules must pass from the interior to the

surface; i.e., must travel through the molecular cushion against

the inward attracting field of force there. This involves an in-

crease of potential energy, and with no supply of energy from

without there must be a diminution of molecular kinetic energy,

which means a fall of temperature.

The equation [593] or the form which we have given it above

can be written in another form involving the total surface

energy. Thus

a(t, p,r) - t = <x{t, p,r) +t —

Also, by the third equation of (22), we see that

dxjt, V, s, r) dyjt, p, s, r)

^s
^=^

^s + ^(''P'^>'

where on the left-hand side we suppose that Gibbs' "heat

function," x, is expressed in terms of the variables t, p, s, r.

Hence

,, X .
da(t, p, r) dxjt, P, s, r)

c{t,p,r)-t—^^—= '

This will be found on careful examination to be equation 22

of Chapter XXI of Lewis and Randall's Thermodynamics.

The equation [594] of Gibbs can be obtained by similar
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methods. Thus by the second equation of (22)

dp

and

dUt, V, s, r)

= v{t, p, s, r)*,

= <^ii, V, r).
ds

Hence by cross-differentiation

dv(t, p, s, r) _ dajt, p, r)

ds dp

The left-hand side is the quantity — F in Gibbs' text. This

equation also appears in Lewis and Randall's book as equation

19 of Chapter XXI.

34. Empirical Relations Connecting a- and t. Degree of Molecular

Association in Liquids

We have referred above to the approximately linear relation

between surface tension and temperature for many liquids.

Also, since surface tension must vanish at or near the critical

temperature of a liquid, the relation should then be

(T = Co(4).
where o-q is a constant for the liquid and tc the critical tem-

perature. Almost 50 years ago Eotvos from a not too rigorous

argument suggested that the constant o-o should vary as the

number of molecules in unit area of the liquid surface; since

the number of molecules per unit volume varies inversely as

MV, where M is the molecular weight of the liquid and V the

specific volume of the liquid, ao would then vary inversely as

(M7)* or directly as (D/M)^, where D is the density of the liquid.

About ten years later Ramsay and Shields, in a series of well-

Note that V is the volume of the whole system.
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known researches, found considerable support for the law pro-

vided M was taken to be the molecular weight of the liquid

and not of the vapor. Indeed this work was used to calculate

the degree of association in many liquids. Ramsay and
Shields actually made another slight modification of Eotvos'

law, writing it

<i)(^ = ki^-^) (tc-t- d),

where 5 is a small number, approximately 6. The "Eotvos

constant" k, they found to be 2.1. However, later research

has shown that the number k is not a constant for all liquids,

and that the use of this law as a method of measuring degree of

association is not reliable. Other suggestions have been made,

such as one by van der Waals based on thermodynamical

reasoning, viz.,

o-Q ( ^ !)

In this equation n is a constant for all liquids and

o-o =A;(pc^O%

where k is a constant for all liquids and pc and tc are critical

pressure and temperature. Experimental research shows that

this result also is not exact; although n for a number of

common organic liquids does not vary by more than a few per

cent from 1.21. Katayama (Set. Reports Tohoku Imp. Univ.

[1], 4, 373 (1916)) has suggested a modification of Eotvos' law

in the form

•m^ = \~iir) ^^^ - ^^'

where d is the density of the vapor; and actually an elimination

of tc — t from this and the equation suggested by van der

Waals, taking 7i to be 1.2, gives a relation

a = C{D - dy
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discovered empirically by McLeod (Trans. Faraday Soc, 19, 38,

(1923)) which holds accurately for a great number of organic

liquids over a wide range of temperature. In it C is a con-
stant, different for each liquid, and the relation is of great value
in comparing densities.

As stated, these relations all have an important bearing on
molecular complexity in liquids, a problem which still awaits
solution. In applying them it is assumed that M changes with
temperature since with increasing temperature polymerized
molecules tend to dissociate into the simple molecules which
exist in vapor, and the assumed truth of the expressions enables

relative values ofM to be found at each temperature. Although
too great reliance cannot be placed on the conclusions deduced,
Bennett and Mitchell (Zeit. phijsik. Chem., 84, 475, (1913) and
Bennett {Trans. Chem. Soc, 107, 351, (1915)) have shown that

the ''total molecular surface energy"

(-9 (Mvy

is a better quantity to use for this purpose than the "free

molecular surface energy"

of Eotvos, and that this leads to more consistent conclusions

concerning molecular association.

35. Heat of Adsorption

Returning to Gibbs work, the reader will find on pages 271,

272 a reference to the "amount of heat necessary to keep the

phases from altering while the surface of discontinuity is ex-

tended." If dcr/dt is negative, as appears to be the general

rule, this heat is positive and if not supplied the temperature of

the surface will fall, causing an increase of tension. Actually, if

da/dt were positive, an increase of tension would also occur since

in this case the heat would be negative, so that if transfer of

heat were prevented the surface would warm up. Now this

heat must be carefully distinguished from "heat of adsorption,"
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which is heat required to get rid of adsorbed molecules on the

surface, and bears some resemblance to latent heat. We can

best illustrate its nature by a reference once more to MicheH's

work on adsorption of gases (Phil. Mag. 3, 895 (1927)). As

stated earlier, he showed, if P is the partial pressure of the

vapor, that

r = kP,

and his results also show that for a given vapor over the water

surface the constant k decreases markedly with rise of tem-

perature. Thus for pentane at 25°C., A; is 75 X 10-^; at 35°C.

it is 35.8 X 10-^; for hexane the decrease is from 106 X 10"^ to

55.5 X 10-^ and for heptane from 256 X 10"^ to 115 X 10-^ a

rise of ten degrees roughly halving the value of k in each case.

This means that a rise of temperature causes desorption, the

partial pressure P being kept constant. Thus desorption

requires heat and adsorption is accompanied by an evolution of

heat. We can, of course, use the well-known Clapeyron rela-

tion to obtain this molecular heat of adsorption. Thus from

the equation

d log P„

heats of adsorption can be calculated in the same way as latent

heats are calculated, where P„ is the partial pressure of the

vapor when n mols are adsorbed per unit area and Hn is the heat

of adsorption at constant temperature and pressure at the same

stage of adsorption. If P„, and P„2 are values of P„ at the tem-

peratures ^1 and ti, then as a first approximation

_ R k t2 (log Pm - log Pn2)

h — h

Also, if ki and ki are the values of the constant k for ti and U,

kiPni = k^Pn2 , and therefore

_ R h tj (log ^2 - log ki)

ti — ti
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Thus "the heat of adsorption is independent of the particular

value of n, so that each equal increment in the amount adsorbed

is accompanied by the same heat evolution. This is, of course,

only possible when the adsorbed layer is so diffuse that the

amount already adsorbed has no effect on further adsorption."

Micheli calculates the heats of adsorption for pentane, hexane,

and heptane, and finds them to be 13.6, 11.7, 14.6. He notes

that the probable error may amount to 20 per cent and so he

takes the three results to be roughly the same ; at all events they

do not show any sign of increasing with the number of carbon

atoms in the molecule; even an accuracy of only 20 per cent

precludes that possibility. From this he concludes that the

molecules do not lie flat on the surface, for then we should

expect the heat of adsorption to be roughly proportional to the

number of carbon atoms in the molecule. (The reader will

recall a similar line of argument by Langmuir in section VII

of this commentary.) * 'These considerations, then, furnish some

additional support for the conclusion that an end CH3 group

forms the only point of attachment to the water surface."

A good deal of work on heat of adsorption and "heat of

wetting" has been carried out at the interfaces between solids

and gases or vapors, but reference to this will be deferred until

we reach the subsection of Gibbs' treatise which deals with

solid-fluid interfaces.

S6. Dependence of a on the ''Age" of a Surface

With reference to the subject discussed on pp. 272-274 of

Gibbs' work, namely, the effect on the surface tension of creat-

ing a fresh surface, it may not be out of place to mention the

suggestion sometimes made, that because ordinary liquids, even

"pure," are constituted really of different molecules (since they

differ in degree of polymerization or chemical activity) they

should display a surface tension different at a fresh surface from

that which would exist there some time after formation. This

argument is clearly based on the adsorption law and the assump-

tion that there are at least two types of molecules in the liquid,

one of which produces a higher surface tension than the other.

On forming a fresh surface, the composition of the surface layer
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would be identical with that in the interior, but with lapse of time

the molecules affording the greater surface tension would tend

to leave the surface and a fall in surface tension would be

observed. In his book (page 152) Adam criticizes the experi-

mental evidence which has been brought forward to substantiate

the hypothesis on which this argument is built, pointing out

that the purely mechanical effects of the appliances employed

could easily account for the initial elevation of water in a

capillary tube apart from the effect of the postulated increase

of surface tension at the beginning. He states that until

apparatus capable of dealing with liquid surfaces not older than

0.005 sec. has been devised, the question cannot be regarded as

settled. Undoubtedly contamination produces change in

surface tension.

XIII. The Influence of Gravity

S7. The Variation of p, a, m, p.2, • • • with Depth in a Liquid.

An Apparent Inconsistency in Gibbs' Argument. The

Argument Justified

Before proceeding to consider the question of stability of

equilibrium it will be well to dispose of the subject of equilibrium

in itself and to proceed at once to deal with the subject matter

treated on pages 276-287 of Gibbs' treatise which is the natural

continuation of the considerations raised earlier on pages 144-

147. The conditions obtained there still hold, with the addi-

tional important equations [614] and [615]. There is a certain

economy in the notation at the outset of this subsection. In

[599], for instance, djDe^ stands really for the sum of a number
of terms such as

8fDe'y + SfDe"^ + SfDe'"^ + . . .

each referring to one homogeneous mass, while 8j^gzDm^ is a

double sum such as

dfgzi' Dm,' y + bfgzi' Dm-l y ...

+ 8fgz,"Dm/'y + hfgz^'Dm^'y . .

.

+ etc.
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Also Sj'Des consists of as many terms as there are surfaces, and

similar remarks apply to Sj'gzDm^. It will be quite sufficient

to limit the system to one with two homogeneous masses and one

surface of discontinuity.

The transformation from the equation [599] to [600] is one

which calls for careful scrutiny on the part of the reader. The
difficulties are hinted at in the beginning of the paragraph

succeeding equation [600], but perhaps the fact that they are

fully met in the transformation may not be so "evident" to

every reader as it was to Gibbs. Take for instance one inclu-

sive term such as Sj'De^ in [599]. (We omit accents and

consider it as referring for the moment to either homogeneous

mass.) We know that

De^ = tDr]^ - pDv + fiiDmi^ + mDmz^

and so Sj'Di^ should apparently be equal to

SftDriy - 8fpDv + SfniDmiy + 8fnJ)miy.

But if we carry the sign of variation, 5, within the sign of

integration, we ought in strict mathematical procedure to write

Sj^tDrjy as J'ditD'qy), bfpDv as J'8(pDv) and so on. Instead

they are written J'tdDn], J'pSDv, etc. Later, near the top of

page 280, XpbDv is transformed back into J'dipDv) —J'SpDv,

and to the unwary this might seem to a veritable "trick"

in order to get the first two terms of equation [611] and

thereafter the equation [612]. The matter seems still more

mystifying when we consider an inclusive term in [599] such as

Sj^gzDmy] for it is written J'SigzDmy) and expanded to

J'gzSDmy + SgSzDmy, and not merely left as equivalent to

the first integral of that sum. However, the solution is not

obscure when pointed out. Looking back to [15] and [497] we
recall that the conditions of equilibrium without gravity are not

8{t7]) - 8{pv) + Simmi) + Sifjuiui) =

but

t8r} — p8v + fii8mi + iJizSnii = 0.
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When we take gravity into account p, c, ni, m2 are no longer

constant throughout a given homogeneous mass or on a given

dividing surface; they are now functions of position as well as of

7], V, s, Wi, W2, and vary in value from point to point in one phase.

Considering a given infinitesimal element of volume Dv in the

unvaried state, it will change in size to Dv + ^Dv and will

move to a new adjacent position; the value of p at its new

location will vary not only for the reasons which would cause

variation without influence of gravity and which have been

involved in the earlier treatment of equilibrium, but also because

it has moved to a different position; and the veriest tyro in

hydrostatics knows that if a difference of level is produced pres-

sure will vary. This is where great care is needed; when

p8Dv is written in [600], the 8Dv is multiplied by the pressure

which existed where the element Dv was situated before the varia-

tion was conceived to take place. A similar remark applies to

fynbDmi^, fcdDs, fixiWmi^, etc. Now the term fpWv
should be written

fp'bDv' + fp"bDv", (23)

and considering the first integral in this we can regard it as the

sum of two parts, one in which the varied positions of the Dv'

still remain in the volume occupied by the single accent phase

before variation, and one in which the varied positions of the

Dv' are to be found between the original and varied situations

of the dividing surface. To evaluate the first part we shall for

the moment represent the element Dv' before variation by

Dva and after by Dvh, Dva being situated at x, y, z and Dvb at

X -\- 8x,y -\- 8y,z -{- 8z. The value of the first part is equal to

fpa'iDvb' - DvJ) = fp^Dvi' - fpa'DvJ.

But since the extent of integration is the same for the second of

these as for the first we can write this equal to

fp^Dv,' - fpiIDVi! = /{pa' - Pb')DVi'

= f{v'{^i y, 2) - p'ix -^ 8x,y -h 8y, z + 8z)]Dv'

/I'' ^ aa; dy ^ dz
J
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Thus we have the first part of the integral fp'bDv' in (23).

The second part will be the integral fp'bNDs throughout the

region between the two positions of the dividing surface, for p'

is the pressure which existed where the element bND8 was before

it moved into the region originally occupied by the double

accent phase. Hence in (23) f'p'bDv' is equal to the sum of a

surface integral, and a volume integral, viz.,

In the second integral of (23) we must, in the same way, first

integrate

dv" dp" dp" \ ^ „

throughout the original region occupied by the double accent

phase and then subtract from this the surface integral fp"bNDs.

Thus we find that

fp'bDv' + fp"bDv"

= j{p'- p") bNDs - /(!' bx +
I'

by + f bz) Dv'

/(
dp" dp" dp" \ ^ „

for which [609] is a condensed form.

With reference to the term fabDsy we see in just the same way

that it is equal to the change produced by the variation in the

integral faDs, minus the value of the integral fbaDs, where

h(T is given by [608]. The term bfaDs consists of two

parts. To see this, imagine normals drawn to the surface s

at points on the boundaries between the various elements Ds.

The normals projecting, as it were, from the boundary of a given

Ds will form a tube which will cut out on the varied position of s

a corresponding element of area whose size isDs[l + (ci + c^) bN]*

All the original elements of s will thus mark out a defined

* See the note on curvature p. 12 of this volume.
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(and much the larger) part of the varied surface. This con-

tributes to the variation of SaDs the amount S^i^i + C2) 8NDs.

But around this large portion of the varied surface there

will be a narrow "rim" bounded by the varied position of

the perimeter and by the line obtained by projecting the perim-

eter of the original surface on the varied position of the

surface. Between an element Dl of the varied perimeter and

the corresponding element of this projection there is a distance

8T, where 8T is the "component of the motion of this element

which lies in the surface and is perpendicular to the perimeter."

Thus this rim can be conceived as consisting of elements of area

dTDl, and we obtain in this way the second contribution to

dJ'aDs, viz., SabTDl; thus we see that

/ cbDs = / o-(ci -f C2)8NDs + / adTDl

f/da- da \ ^

J \oa>i OC02 /

These two (condensed) terms of the original condition of

equilibrium [600], viz. — SyWv + fabDs, are the two which

offer the most trouble in being transformed into a convenient

form. When we replace them in [600] by the expressions just

obtained we can rewrite the condition [600] in the form

ft Wyf + ft SDrj'

+ fW + gz.') 8Dm,'^ + /(mi" + gzx") 8Drm"^

+ /(mi" + gzi') ^Dm,'

+ /(m/ + gz2') bDm-r + finz" + gz-n 8Drm"^

+ finz' + gz^') dDm2^

dx' dy'

fj, 8x" + „ ,

dx dy
+ /{k+S^^" + S-^^"+S^.'7o»'
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+ [[[(v" - V') + ^(ci + C2)] hN + gV Sz^

r da da 1} ^
|_daJi 00)2 J)

+ fadTDl = 0.

Now we introduce the usual conditions, viz.,

f8Dr,y + fdDrjs =
,

fSDmi'y + f8Dmi"y + /5Dwi^ =
,

fbDrrii'^ + fWm2"y + fWm^s = Q
,

and in addition to these the further conditions that

Sx', by', 8z', 8x", 8y", 8z"

are arbitrary, and that

8z^ = 8N cos 6 + ai5coi + a25w2

,

where aiScoi + a25co2 is the tangential part of the displacement of

a point on the surface, ai and a2 being functions of coi and wj

and the angles between the vertical and the directions in the

surface defined by 6coi and 80)2.

It follows from the conditions of equilibrium and these addi-

tional conditions that

t = a, constant throughout the system,

Ml' + 9^1 = Ml" + gzi" = Mi^ + gzi^,

M2' + gz2 = M2" + 9Z2" = M2^ + gzi^K

^' _ ^' = n
dx' dx"

"'

^ _ ^' = n
dy' dy"

"'

dp'

[605]

[617]

dz'

dz"

= - gy

= — gy
ft

[612]



SURFACES OF DISCONTINUITY 603

p' - p" = a(ci + C2) + ^r cos 6. [613]

Also

gT (ai Soji + 02 5co2) = t 5coi + ~ 5w2.
ocoi aw2

This means that for any arbitrary displacement of a point in

the surface in a direction tangential to the surface the variation

8a in o- is equal to ^r multiplied by the vertical component of

this displacement; for a reference to the expression for 8z^

above reveals that this is the meaning of ai5wi + a28u2. Hence

we have

'i
= sr. [6141

To summarize the matter we see that the potential of any

component does not remain constant throughout a given phase;

it decreases with altitude. What remains constant throughout

the phase is /i + gz, and the constant value of this for a given

component is the same in each homogeneous phase and on the

surface of discontinuity. The pressures p' and p" and the

surface tension a are functions of t and the constants Mi, M2, and

are therefore functions of z, and their rates of change with

respect to z are given in [612] and [614]. They are independent

of X and y. We have omitted the last result

faSTDl = 0.

This has been written so far in too simple a form, in order to

avoid causing trouble at the moment by an awkward digres-

sion. We have been considering, it will be recalled, two homo-

geneous phases and one surface of discontinuity. This would of

course be realized if one phase were surrounded entirely by the

other, but as in that case the dividing surface would have no

perimeter at all the condition written would be meaningless.

However, we are not necessarily confined to this case, but if we

treat two phases in a fixed enclosure, then we must include the

wall of the enclosure as a "surface of discontinuity" as well as the

dividing film between the two phases. It is true that we assume
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that no physical or chemical changes take place in the wall,

and no energy changes so caused are therefore involved, but

the perimeter of the dividing surface may move along the wall

(the creeping of the meniscus in a capillary tube up or down is a

familiar example) and the condition above must then be written

f(ai8Ti + CX28T2 + azbTz)Dl = ,

where 8T1 is the tangential motion (normal to Dl) in the dividing

surface, 8T2 the tangential motion in the surface between the

single accent phase and the wall, dTs that in the surface between

the double accent phase and the wall, and o-j, cr2, 0-3 are respec-

tively the three free surface energies between the two phases,

and between each phase and the wall. This means that at any

point of the perimeter

(T18T1 + 0-25^2 + (Ts8Ts = ,

and this is the well-known condition

ci cos a + 0-2 — o"3 = ,

where a is the contact angle between the dividing surface and

the wall. Actually, in the general case of several homogeneous

phases and dividing surfaces, the condition is interpreted in a

similar way for a number of surfaces of discontinuity (at least

three) meeting in one line, as is shown at the bottom of page 281

of Gibbs' treatise.

The constants Mi, M2 are the potentials at the level from

which z is measured (positive if vertically upwards). It follows

that p', p", 0-, r are functions of t, Mi, M2, z. If determined by

experiment these functions enable us to turn [613] into a differ-

ential equation for the surface of tension as shown in pages

282-283. Equation [620] is an approximate form of this

differential equation. We refer the reader to the short note on

curvature (this volume, p. 14) for an explanation of the left-

hand side of it.
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XIV. The Stability of Surfaces of Discontinuity

38. Conditions for the Stability of a Dynamical System

When the stabiHty of a dynamical system is being investi-

gated, the potential energy of the system is expressed as a

function of the coordinates of the system. If the system were

at rest in any configuration this function of the coordinates for

this configuration would give the whole energy of the system.

If this configuration is one of equilibrium then the partial

differential coefficients of the function with respect to different

coordinates are severally zero; for if /(xi, Xi, xs, . . .) represents

the function, Xi, Xi, Xz, ... being the coordinates, we know that

to the first order of magnitude f{x\^ Xi, xz, . . . ) must not vary in

value when xi, x^, Xz, ... receive small arbitrary increments

bxi, 8x2, dxz, . . . Thus

9/ 9/ 9/— 8x1 + — 8x2 + — 8xz+ . . . =0,
dxi dX2 dxz

and since 8x1, 8x2, 8xz, . . . are arbitrary, it follows that

9/ 9/ df— = 0, r^ = 0, r" = 0, etc.
dxi ' dx2 ' dxz

We can express this simply by the condition

8f{xi, X2, xz, . .
.
) =0.

Now the equilibrium may be stable, unstable or neutral.

If we wish to investigate the matter in more detail we must

consider the value of A/(a:i, X2, xz, . . .). This is equal to the

value of f(xi + 8x1, X2 + 8x2, xz + 8x3, . .
.
) — f(xi, X2, xz, . .

.

)

when higher powers of 8x1, 8x2, 8xz, etc. than the first are re-

tained in the expansion of f(xi + 8x1, X2 + 8x2, xz + 8xz, . . .).

In many cases it is sufficient to retain the second powers

and neglect those that are higher. For convenience we write

^1, ^2, ^3, ... for 8x1, 8x2, 8xz, . . . Then by Taylor's theorem
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A/(a:i, X2, X3,
9/ df df

dxi dX2 dX3

+ 1

+ 2

ay

aa;i2
^' ^ aa;2'

32/ ^ 32/

+

32/

3a:i 3x2
^1 $2 + 2

32/

3xi 3X3
^1^3 +

+ 2
92/

3rc2 3x3
^2 $3 + ]

The values of df/dxi, df/dXi, etc, are zero when xi, xi, xt, ... are

the values of the coordinates for the configuration in question.

For convenience let us represent the values of d^f/dxi^, d'^f/dx^^,

.

.

. d^f/dxidXi, . . . for the same coordinates by the symbols

flu, 022, . . . ai2, . . . The symbol 021 would represent d^f/dXidxi,

but by the law of commutation for partial differentials this is

the same as a^. Now if the configuration is one of stable

equilibrium, the value of /(xi, X2, X3, . . .) is less at the equilibrium

configuration than for any neighboring configuration. Hence
if the equilibrium is stable the quadratic expression

ail^l'* + ^22^2^ + «33^3^ + 2ai2^i$2 + 2ai3^i6

+ 2a23?2?3 + . .

.

is positive for any arbitrary values of ^1, ^2, ^3, ... In short

it is a "positive definite form."* The conditions which must be

satisfied by the coefficients an, 022, . . . an, . . . for this to be

the case are well-known and can be most readily expressed in

terms of the determinant

Oil
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and its minor determinants. Thus if the form is to be definitely

positive, this determinant, the first minors obtained by erasing

any row and a corresponding column, the second minors ob-

tained by erasing any two rows and the corresponding columns,

the third minors obtained in a similar way, and so on until we

reach the individual constituents of the leading diagonal, must

all be positive quantities. If this is not so the form will have

negative values for some sets of values of ^i, ^2, ^3, ... and so

the system will for some displacements not tend to return to,

but will move further away from, the original equilibrium con-

figuration. Indeed if the first minors, third minors, fifth minors

and so on had one sign; the determinant, the second minors,

the fourth minors and so on, the other; the system would be

unstable for any displacement whatever.

39. Restricted Character of such Conditions as Applied to a

Thermodynamical System

In the investigation of the stability of a thermodynamic

system a similar procedure can be followed, but it suffers from

one limitation which Gibbs discusses. The energy of the

system is regarded as a function of the thermodynamical

variables, which in the present instance specify the condition of

the homogeneous masses and of the film separating them. For

equilibrium 6e must be zero for any arbitrary infinitesimal

variations of these variables—^at least, arbitrary apart from the

familiar conditions such as [481].* For stable equilibrium Ae

will be positive for all possible variations of the variables within

the assigned limitations. If we then proceed to apply the

method just outlined we must conceive e to be formulated as

a function of the variables, (the entropy, masses of components,

volume, area of film) and the first and higher differential coeffi-

cients also so expressed and the tests applied. (See the proof

for the thermodynamic system as given on pages 105-115,

especially [173] et seq.) But this assumes that in any state,

other than the initial one, whose energy content needs to be

* This restriction in arbitrariness would render the analytical pro-

cedure in such a case somewhat more complicated than that indicated

above, but would not invalidate the general idea.
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considered, we are regarding the energy as expressible in the

same functional form of the altered values of the variables, and

this implies that such other states are states of equilibrium.

In consequence, this method limits us to the consideration of

the stability of the initial state with reference to the neighboring

equilibrium states, but not with regard to all neighboring states,

among which may be non-equilibrium states. In the purely

dynamical problem, all states of the system, equihbrium or not,

have their potential energy expressible in terms of the coordi-

nates; but in the thermodynamical problem all the states of

the system cannot have their energy expressed in terms of the

variables. Indeed certain values of the variables inconsistent

with equilibrium may "fail to determine with precision any

state of the system." The question of instability would of

course offer no difficulty in this case. If near the equilibrium

state in question there exist one or more other equilibrium states

which under the usual conditions possess less energy, the origi-

nal state is certainly unstable; that requires no consideration of

non-equilibrium states. However, although there may exist

neighboring states of equilibrium which might prove, on investi-

gation by the method outlined, to be states of greater energy,

we cannot be so definite about the original state being one of

stable equilibrium; for the method does not preclude the pos-

sibility of the existence of non-equilibrium states of smaller

energy. Having drawn the reader's attention to this matter,

which we shall take up later, we proceed to a commentary on

the subsection.

40. Stability of a Plane Portion of a Dividing Surface Which

Does Not Move

At the outset Gibbs deals with the problem of stability with

the limitation that the dividing surface film is plane and uniform

and is not supposed to move. He directs attention to the

possibility of a small change taking place in the variables which

specify a small portion of the fihn, and which are a small group

of the entire collection of variables specifying the whole system.

Denote the small part of the film by Ds; its variables are the

temperature t, its entropy Dt]^', and the masses of the com-
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ponents in it DrUa^', Drrib^', . . . Dnig^', Dnih^', . The change

does not in the first instance involve an alteration in t, nor in

the position or size of Ds; but Drria^' is changed to Dma^", etc.,

and Dri^' to Dri^"; in short, the single accent indicates the initial

state, the double accent the state after change. Of course the

changes of mass in this small portion of the film must be drawn
from (or passed into) the remaining portion of the system, i.e.

,

the rest of the film and the homogeneous masses. Similarly

as the total entropy must remain constant the rest of the

system must experience a change of entropy equal to Drj^'—Drj^".

The homogeneous masses are assumed to be relatively so great

that these small changes in them do not practically affect

the values of the potentials Ha, f^b, ... of the components a, h,

.

.

. which are both in the volume phases and the surface phase, so

that no accenting is required in writing them. A similar remark

applies to the large remaining portion of the film. However,

as regards the g, h, . . . components which only occur at the

surface, the value of the potentials will alter in Ds from /Xg',

Hh, ... to Hg", fjLh", . .
.

, but for the rest of the film they will

remain at their original values fig', nh, . . . for the reason already

specified, viz., that the changes of masses and entropy in this

part of the film are relatively too insignificant to effect a change

in the potentials. It is very important to keep in mind the fact

that it is assumed that there are components in the surface

which are not in the homogeneous masses; otherwise the discus-

sion of this particular special case would be pointless. The new
condition of the portion Ds of the film is supposed to be one

which is still consistent with equilibrium between it and the

neighboring homogeneous masses. (This of course places the

limitation mentioned above on the generality of the investiga-

tion. It will be quite definite in its answer concerning instabil-

ity, but leaves a possibility of failure to lead to a definite conclu-

sion concerning stability.) In consequence, the energy of the

small portion, Ds, of the film will be De^", where D^" is the same
function of the variables t, D-q^", Dnia^", etc., and Ds, that

Z)es' is of t, Drjs', DiUa^', etc., and Ds. The energy of Ds is

therefore increased by Dt^" — D^'. The energy of the rest

of the system is increased by an amount which is equal to
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t8r]' 4- tia'^rria + Hh'^rrih . . . + ixg'hvfhg' + lihhmh + . • .

where 677', 5ma', etc., are the increases of entropy and of the

masses of the various components in the rest of the system.

But we have seen that these increases are Dtf' — Drj^",

Dma^' — Dnia^", etc. Hence the increase in the energy of the

rest of the system is

tiDri^' - Dr,s") + tiJ{Dm.^' - Drua^") . .

.

+ tio'il^m/ - Dm/') + . .

.

(24)

The increase in energy of the whole system is therefore

D^" - D^' + tiDri^' - Dr}S") + fiaiDma^' - Dnia^") . .

.

+ IX,'{Dm/ - Dm/') + ...

where we have dropped as unnecessary the accents over Mo,

Hb, . .
.

, the potentials which do not alter between the first and

second state. Now by [502] applied to the small portion of the

film, which it will be remembered is in an equilibrium condition

in both states

De^' = t D/ + 0-' Z)s + yiaDma^' ... + fx/ Dm,^' + . .
.

,

De^" = t D/' + (t"Ds + tioDm/' ... + iiJ'Dm/' + . . .

,

where a' and a" are the values of the surface tension in the small

portion in the two states. Hence we easily see that the increase

in energy of the whole system is equal to

ia" - <j')Ds + (m/' - n,')Dm/' + (m." - HK')Dm/' + . . . (25)

This is the expression which occurs just a little below the middle

of page 241, stated for a small portion of the film Ds. If this

is a positive quantity for all changes, infinitesimal or finite, the

system is stable. To discuss instability we must consider two

different cases. The expression (25) may be negative even

when Dwo*', . . . Dmg^', . . . differ by infinitesimal amounts

from Dma^", . . . Dmg^" , . . . and therefore nj, tih, . . . o-' differ

by infinitesimal amounts from Hg", nh", . . . <r". If this be so,
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the system is definitely unstable in the first state. However,

it may be possible that the expression (25) is positive for

infinitesimally small values of a" — a', iij' — nj, nh" — iJ-h, etc.,

but would be negative for finite values of these changes. The
system would satisfy the theoretical conditions of stability

which, as any student of dynamics knows, only compare the

state of a system with other states infinitesimally near it. Yet

the system, as Gibbs points out, would not be stable in the

practical sense; for a disturbance which, while being small,

would be sufficient to carry the system beyond the infinitesi-

mally near states of larger energy would bring it to states of less

energy from which it would not tend to return to the first state.

Perhaps it may not be out of place to remind the reader that the

quantities Dnia^', Drria^", etc., are not variations of mass; they

are the small masses initially and finally present in the small

part of the film. Further, that Drria^" — Drtia^', etc., are not

necessarily small compared to Dma^', Drria^", etc. They are

small compared to the masses in the rest of the film and the

homogeneous masses; that is why we can use them correctly in

the expression (24). But since they are finite changes in

respect to the small portion Ds of the system, they produce

finite changes in the surface tension and the g,h, ... potentials

there, so that we can regard a" — o-', iig" — Hg, nh" — fj-h, etc.,

as finite differences if necessary. This small digression on the

meaning of the D symbol may serve to illuminate the point

about practical instability.

The argument can now be extended to the whole film.

Having effected the change in one small part of the film, we can

carry it out for another small part, changing entropy and masses

there so as to produce the g,h, ... potentials and surface tension,

fjLg", iJLh", . . . cr", which exist in the first small part, and so on.

This is simply the procedure indicated by the integrations on

Gibbs, I, 240. The changed condition in the film is therefore

uniform in nature throughout and is one which could exist in

equilibrium with the homogeneous masses in their practically

unchanged condition. The difference of energy in the whole

system for the two states of the film is

(a" - a')s + w/'(m/' - m/) + mtS"{y^H" - n[) + . . . (26)
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41. Three Conclusions Drawnfrom the Analysis in Subsection (40)

This disposes of the analytical steps on these pages of Gibbs'

treatise. There are three conclusions based on them. The first

appears at the top of page 240. As presented it is somewhat
elusive, but we can put it as follows. It is possible that the

potentials n/\ iih", . . . which correspond to the masses Wa^",

nih^", . . . mg^", ruh^", . . . may be respectively equal to the

potentials ix/, nh, . . . which correspond to Ma^', nih^', . . .

fn/', nih^', . . . (Of course, the potentials ^a, M6, • • • remain

unchanged in any case.) If this is so, then by (26) {a" — (t')s

must be positive if the single accent state is to be a stable state

of equilibrium; i.e., g" > a'. There appears to be a contradic-

tion here; we have seen that o- is a function of t and the potentials

Mo^, Mb^> • • M(7^, fJ'h^, • and it appears absurd to assume that

<t" is different from o-' at all if Ha, Hb, . \i.g\ t^h, ... do not

differ in value from Ha, M6> • • • )"»", M^", • • • But this is to over-

look the possibility of a being a double-valued or multi-valued

function of the temperature and potentials, so that if the

variables ^a, M6> • • • M^j y-n, . • experience a change of values

corresponding to changes in the masses of the components, and

presently retake the same values, the surface tension may not

retake its original value. (We have already made use of this

result in an earlier part of this commentary to show that if

there are, say, a "gaseous" and a "liquid" phase in the surface

of discontinuity, they must, if stable, have the same value of a.)

The second conclusion drawn concerns the sign of a. In

the argument so far there has been no displacement or def-

ormation of Ds. It is implied also that s is practically plane.

If Ds being plane is deformed, its area must increase. This

will necessitate the withdrawal of small amounts of the com-

ponents from the homogeneous masses or from the rest of the

film in order to maintain the nature of the film in Ds unchanged.

These amounts, as before, will be infinitesimal for the rest of the

system. The amounts will have gone from a place where the

potentials have been at certain values to a place where they are

at the same values. This will cause no change in the energy

of the system; the term of the energy expression which will

have altered will be aDs which will become a{Ds + 8Ds).
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The energy change will be adDs. For stability this must be

positive, and as 8Ds is positive, a must be positive. The

paragraphs on pages 240, 241 elaborate this.

The third conclusion occurs in the paragraph beginning

towards the bottom of Gibbs, I, 241. It is very elusive indeed

and the final sentences of the paragraph are not very happily

chosen for a reader not expert in mathematical technique. First

of all the reader must realize that there may be a whole con-

tinuous series of states of the system differing in the nature of

the film, which will be states of stable equilibrium. A change

from any one of them to any state infinitesimally near it, whether

a non-equilibrium state or one of its equilibrium neighbors, will

involve an increase of energy. Let the single and double accents

refer to two neighboring infinitesimally different states of stable

equilibrium. We have seen then that

(a" - a')s + W - m/)w/" + W - Hk')mH'" + • • •

must be positive. But exactly the same reasoning will show

that

{a' - a")s + (m/ - lij')^/ + U' - tJ^h")m,^' + • • .

must also be positive. Now write fXg for /x/', Hh for ixh^', .

.

.

Hg -{ Afig for fXgS", fx h ^ A)U/, for nh^", etc.; o- for a', (t -\- Acr

for a", m/ for Mg^', Mh^ for Mh^' , ... m^ + Anig for m/",

rrih + Anih for w^-s", etc. From the expression given four lines

above we obtain the result

s(-Ao-) + m/(- Arrig) + mh^{— Amn) + ... > 0,

which is just the equation preceding [521]. Considering [521] we

may write it, remembering that Hg, Hh, . . . are the only quantities

which are varying,

d<r da—— Aflg + — AHh + . . .

OUg dfXh

1 r av
, , av

, ,
av "1

+ 2{^' (^''«)'

+

w ^^'-'^
• • + %7;^ ^"'^"^ +}

-t- higher powers < — TgAfjLg — ThAfXH — . ..
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Now by [508]
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da-

dfXg

da_ _
Olih

Hence, if we neglect the cubes and higher powers, we can write

(AmJ2 + ^-. (A/x,)2 . . . + 2 777- ^^Ji,^^lH + . . . < 0.W dfih^ dfigdnh

Now at the outset of this section of the commentary, on page

606, we dealt with the conditions which render such a quadratic

expression always positive or always negative in value. We see

that in order to comply with the present condition of negativity

a series of determinants beginning with

}
, and so on,

dfihdno duk

will be alternately negative and positive for the values of the

variables Hg, nh, ... which exist in the "single-accent" film,

i.e., ng^\ iJih^' . . . Looking at the question from a purely mathe-

matical point of view, if, in addition to these conditions,

ba da— , — , . .

.

djjLg dnh

were all zero for the same values of Hg, Hh, . . . then a regarded as

a function of Hg, iJ^h, ... would have a maximum value for these

same values of Hg, nh, ... This is the meaning of the cryptic

remark at the end of the paragraph (p. 242). But of course the

"necessary conditions relative to the first differential coefficients"

are not fulfilled; in other words da/dug is not zero for the values

HgS', fXh^', ... oi Hg, fjLh, . .
.

; it is equal to — Tg\ and so on. To

be sure, the conditions for the second differential coefficients are

satisfied, but for a reader who is not familiar with the concrete

forms of these conditions, the way in which the conclusion is
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stated in Gibbs' text is somewhat confusing. We have limited

the matter to the second differential coefficients, as that is suffi-

cient to make the meaning of the sentence more apparent to

the reader. (As the order of Hg, ma, m», • • • is immaterial, the

conditions are, that the constituents in the principal diagonal

of the determinant

av

dfikdug

av

av av

dfXgdnh dugdm

av av

av

dfjLhdm

av

dfjLidug dfiidnh dfifi

and all the minors of the third, fifth, seventh, etc. order, formed

by erasing the necessary number of rows and corresponding

columns, shall be negative, while the minors of the second, fourth,

etc. order formed by similar erasures shall be positive in value.)

4^. Determination of a Condition Which Is Sufficient though Not

Necessary for Stability when the Dividing Surface Is

Not Plane and Is Free to Move

The investigation so far has been limited by the proviso that

the surface is plane and does not move. The removal of this

limitation renders the problem more difficult, although it is

easy to derive a condition which in this case will insure stability,

without actually being necessary for it. Gibbs' treatment of this

occurs at the very end of this subsection, on pages 251, 252, but

it is so relatively simple compared to the other material of the

subsection that the reader may find it helpful to have his

attention directed to it at once. To make the presentation as

direct as possible, consider a system with two homogeneous

masses separated by one surface of discontinuity, the whole

enclosed in a rigid envelop. We can suppose that two fine tubes

inserted through the envelop put each mass in communication
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with a very large external mass which contains all the compo-

nent substances at suitable temperature and potentials; this is

also enclosed in an external rigid envelop and bounded inter-

nally by the envelop enclosing the system. A movement of

the surface of discontinuity in the system entails in general a

change in the volumes of the homogeneous masses of the system.

This does not involve any change in the potentials of the

various components in them or in the surface (in so far as they

are components in the surface) ; for the amounts of components

withdrawn from or passed into these masses are passed into or

withdrawn from the external mass, and that is so large that the

amounts are relatively too small to affect the potentials in it.

For the two masses we have equations such as these

:

Ae' = t At)' - p' Av' + fjiiAmi + . . .

,

Ae" = t At?" - p"Av" + yuAmi" + ...,

and an equation

Ae'" = t At?'" + fnAmi" + ...

for the external mass, since its volume does not change. For

the surface

A^ = t Aijs -\- (tAs + MiAmi-s + . . .

The variations may be finite* since t, ni, ^2, ... remain constant;

p' and p" are not necessarily equal since we are not assuming

the surface to be plane, but since each of them is a definite

function of t, /xi, 1J.2, . . ., each remains constant. Now if

Ae' + Ae" + Ae"' + Ae-^ >

the complete system is stable as regards the movement of the

surface. Since the total entropy and masses are constant we

can state that if

aAs - p'Av' - p"Av" >

* Finite, that is, with reference to the system; they are small com-

pared to the external mass.
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the complete system is stable. Now if the complete system is

stable, the original system (without communication with

external mass) is certainly stable. For blocking up the tubes

and isolating the original system is equivalent to imposing a

mechanical constraint on the complete system; and it is well

known in mechanics that if a dynamical system is in a stable

state of equilibrium, the imposition of a constraint does not

upset that condition. Indeed this fact is intuitively obvious.

The inequahty [549] is simply the same result extended to a

wider system. But, of course, the condition may not be

necessary for stability of equilibrium as regards movement of the

surfaces; in short it insures stability for the system under wider

conditions than are actually envisaged at the outset and so

under more restricted conditions than these the system might be

stable without [549] being satisfied,

43. Gibhs' General Argument Concerning Stability in Which the

Difficulty Referred to in Subsection {39) Is Surmounted

The general argument of Gibbs on the conditions of stability

or instability will be found on pages 246-249, (On pages

242-246 he discusses the problem by a more specialized method

which can be passed by for the moment.) At the outset of the

argument he raises the point which we have already noted, that

if we use an anal3rtical method, analogous to that employed in

dynamics, we are virtually excluding from consideration those

states of the system which are not in equilibrium and for which

the fundamental equations are not valid and the usual func-

tional forms for energy, etc. have no meaning, since in these

states the systems cannot be specified with precision by values

of the usual variables. That is dealt with on page 247. He
proposes then to surmount this obstacle by introducing the

consideration of an "imaginary system" which is fully de-

scribed at the top of page 248. This system agrees with the

actual system in all particulars in the initial state, which is one

of equilibrium for both systems, though whether it is stable or

not for the actual system is the point under consideration. His

argument, however, may be framed so as to exclude any express

consideration of his imaginary system and may appear simpler
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on that account. We may,for simplicity of statement, consider

a system of two homogeneous masses with one dividing surface;

the statement can easily be extended to cover wider cases. Let

us suppose the system is varied to a state in which the condi-

tions in the phases and dividing surface are not conditions of

equilibrium as regards temperature and potentials, and the

dividing surface is changed in position ; also let it be found that

this is a state of smaller energy than the unvaried state, the

total entropy and total masses however being the same as

originally. Now imagine that the dividing surface is "frozen,"

as it were, in the varied position. (This is equivalent to the

postulate of Gibbs as to constraining the surface by certain

fixed lines.) If left alone, the system in this "frozen varied"

state would tend to a new state of equilibrium; we are conceiv-

ing that its total energy is not altered from the varied value,

nor, of course, the individual volumes of each phase; the total

masses are not to vary either, but there may still be passage of

components through and into or out of the dividing surface (its

rigid condition is not to interfere with that). In this third

state (second varied state) the entropy will of course have

increased above that of the first varied state and so above that

of the original state of equilibrium. Now by the withdrawal of

heat (the rigidity of the system being still preserved) we can

arrive at a third varied state, which is also one of equilibrium,

in which the total entropy, etc., will be as originally, but the

energy less than that of the second varied state and therefore

less than that of the original state. Of course, on imagining the

surface now to be "thawed out," that is, the constraint on it

removed, we cannot be sure that the varied pressures established

in the phases and the varied tension in the surface will be con-

sistent with the curvature of the dividing surface, which must of

course remain in the same varied position all the time (for if it

moves from this the volumes and therefore the potentials will

change from the values arrived at in the last state and might

not be in equilibrium in the two phases in the final state). The
point, however, is that if there is a non-equilibrium state

infinitesimally near the original state which is one of less energy,

there is also a quasi-equilibrium state infinitesimally near which
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is also one of less energy—using the word "quasi-equilibrium"

to designate a state in which the equilibrium conditions for the

temperature and potentials are satisfied, but not the mechanical

condition which connects the difference of pressures in the two

phases with the tension and curvature. More than that, if

there is no quasi-equilibrium varied state which has less energy

than the unvaried state there is no non-equilibrium varied

state which has less energy; for as we have just seen if there

were one such non-equilibrium state there must be at least one

such quasi-equilibrium state. Thus if there is no equilibrium

state, or quasi-equilibrium state, infinitesimally near to the

given state which has a less energy than that state, it is one of

stable equilibrium. Now all such states, equilibrium or quasi-

equilibrium, are states for which e is given by the fundamental

expression in terms of the variables 77', 77", 77^, v', v", s, w/,

rrii', . .
.

, and so we can apply the analytical method of maxima
and mimima outlined above to the solution of the problem of the

stability of a given state, without concerning ourselves about the

mechanical equilibrium of the dividing surface in any adjacent

state.

44- Illustration of Gibbs' Method by a Special Problem

The problem with which Gibbs illustrates this method on

pages 249, 250 concerns the system which we have used, for

simplicity, to expound the method, with the limitation that the

edge of the surface of discontinuity is constrained not to move,

so that the two fluid phases are, as it were, separated by an orifice

to the edge of which the film adheres. The whole is enclosed

in a rigid, non-conducting envelop. Suppose a small variation

takes place from this condition of equilibrium, so that the

volumes change from v' and v" to u' + 8v' and v" + 8v''' where,

of course, 8v' + 8v" = 0. This will entail a change in the

position and size of the surface, its area becoming s + 8s. The

total quantity of any component remains unchanged, but the

potentials in the masses and at the surface change. Since the

first component has a given amount for the whole system

liv' + 7i"v" + TiS = constant,
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and therefore

+ U'7^ + e^"^ +s— 5M2 + etc. = 0.
\ dfX2 dfJL2 dH2/

(This is the equation [546] on page 251, generahzed to deal with

the variation of several potentials and not merely of one.)

There are several points about this equation which require

careful consideration before we proceed, for they reveal the

nature of the assumptions implied. First, it is clearly assumed

that in the varied state the potentials of any component are still

equal in the two masses, and also equal to the varied potential

of that component at the surface; for example, the first com-

ponent has the potential /xi + 8ni everywhere. Thus we are

assuming that the varied state is one which does "not violate

the conditions of equilibrium relating to temperature and

potentials." Second, since the equation is meaningless unless

dji'/dni, dji'/dni, 9ri/a;Lti . . . have definite values, we are

assuming that 7/ = dv'/dni, 7/' = dv"/diJLi, Ti = —da/dni

and so on, and that dji/dfjLi, etc., are obtained from these by

further differentiations. So it is implied that the fundamental

equations are valid. The equation is not quite in the form of

[546]; to make it so we should have to write the first three

terms in the form

(T;-7'; + r:|,)a.'.

But this implies that s is a function of v'; otherwise ds/dv' has

no meaning. This, however, is taken care of by the necessary

condition of stable equilibrium that the surface of tension has

the minimum area for given values of the volumes v' and v"

separated by it. This minimum-area condition is not sufficient

for stable equilibrium, but it is necessary, and therefore in

discussing the stability of a state of equilibrium there would be

no necessity to proceed further if we knew that it was not satis-

fied. This condition therefore gives a unique value to s for a
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given value of v' (or v"; v' + v" is constant). So s is a single-

valued function of v', and ds/dv' has a definite meaning. We
can obtain n — 1 similar equations

(.'-." + r,^).' + (/£ + ."^' araX
+ s — 5mi + etc. = 0,

etc.

These n equations give us the theoretical means to calculate

the n quantities d\i\ldv\ dyti/dv' , ... in terms of the state of the

system. In this way we see, as is stated at the top of page 250,

that all the quantities relating to the system may be regarded as

functions of v'. Thus we can obtain d-p'/dv'; for it is equal to

dux dv' ^ dti.dv'
'^

• • • " ^' dv'
"^ ^''

dv'

Similarly

dy" „djii
.

„dji2

dv'
- '''

dv' + ^^ dv'^ -

and

da djii dyii

d^'
^ ~ ^'d? ~

^'d^'
~ •••

In the initial state we assume that p' — p" = o-(ci + C2);

in the varied state the pressures and surface tension p' + 8p',

p" + bp", (J -{- b(T are of course the same functions of t,

Ml + ^Mi, ... as p', p", a are of t, ni, ... But nowhere

do we have to assume that

(p' + bp') - ip" + Sp") = (<r + 8a) (ci + dci + c, + 8c,),

so that the varied state need not he a state of equilibrium as regards

the condition expressed by equation [500].

The energy of the system, depending as it does on the variables

of the system, can, as we have just seen, be expressed as a func-

tion of v'. The energy in the varied state is by Taylor's

theorem
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de , I dH
, „

For equilibrium de/dv' must be zero. For stable equilibrium

we must have the additional condition

dH'

The amplification of this condition on page 250 to the form [544]

is easy; in [544] we regard dp'/dv', dp"/dv\ da/dv' as given

by the equations above, and of course ds/dv', d^s/dv'^ can be

calculated from the geometrical form of the system and the

fixed perimeter of the film. Equation [547] is the result for the

special case when one potential only is variable.

45. An Approach to this Problem from a Consideration of the

Purely Mechanical Stability of the Surface

Thus we have learned the general theoretical method of

dealing with stability when sufficient knowledge is available

concerning the functional forms of the various energy functions.

It involves no trouble concerning the mechanical stability of

the surface of discontinuity, which in a manner of speaking

takes care of itself. However, it is interesting to approach

the problem from that angle as well, and this is what Gibbs

does in the pages immediately preceding those on which we

have just commented. Going back we take up this aspect at

the bottom of page 244 where a system just like the one we have

been considering is posited. (We are not assuming a circular

orifice.) Passing by the two short paragraphs at the top of

page 245 (which are unimportant for our present purpose) we

have the relation for equilibrium

p' — p" = o-(ci + C2),

where, as before, p'
,
p", <r are functions of y' the volume of

one phase. A slight variation of the surface of discontinuity

will cause a change in p' — p", a and Ci + Ci. If there is to

be stability the surface must tend to return to its original
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position and (p' + 8p') — (p" + 8p") must be less than

(o- + 5<r) (ci + 8ci + C2 + 5C2), so that

8{p' - p") < (ci + C2)5<r + a 8(ci + C2).

As every one of the variables can be represented as a function of

v' it follows that, for mechanical stability of the surface,

djci + C2) dp' dp" da
" dv' ^ dv'

~
dv' - ^'' + ^^

'cb''

Now it can be shown that

ds

where s is the area of the surface, bounded as it is by the edge of

the orifice. (See the note on curvature, p. 10 of this volume.)

Hence it follows that

d^s dp' dp" d(T ds
'^
d7^ ^ di/

~ ~d7 ~ d^'"dv''

which is just equation [544]. The problem can be completed

as on page 251. Thus we see that the same conclusion is

reached as before when we took no special heed of mechanical

stability and merged that stability, as it were, in the general

method of dealing with stability with reference to the neigh-

boring equilibrium and quasi-equilibrium states. This provides

still further justification for the validity of the general method.

The only point of special importance about the problem on

page 245 concerns the assumed circularity of the orifice. One
then has special values for ds/dv' and d^s/dv'^. These can be

derived from the special geometry of the case as outlined in the

middle of page 245; by the aid of the equations there one can

prove that

and

dr
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and so equation [547] takes on the special form [540] in this

case.

The reader will now find no difficulty in following the matter

on pages 242-244. The special corollary concerning the system

in which "the interior mass and surface of discontinuity are

formed entirely of substances which are components of the

external mass" (of which a drop of water in an indefinitely large

mass of vapor is a good illustration) offers a good example for

applying the sufficient test which is given on page 252, and on

which we have already commented. Thus, the interior volume

being v' and the radius r, let the radius increase to r + 8r. Now it

is a feature of the method, which must not be overlooked, that

As and Av' are not to be taken as SirrSr and iirr^Sr respectively;

that overlooks the higher powers of dr which are vital for the

purpose of the test. Actually, if we merely retain first powers

of 8r, 8s = SttSt, 8v' = ^ivr'^br and 8v" = -^irr'^br', therefore

S(a5s) - S(p5?;) = {<T.87rr - (p' - p")47rr2}5r,

which is zero (as it should be for equilibrium). But

As = 87rr5r + 47r(5r)2,

and

Av' = ^TcrHr + 47rr(5r)2 + y {brY = -Av".

Hence

2(0- As) - 'LivAv)

= 47r«T(5r)2 - 47rr(p' - v") i^rY - J ip' - v") (5r)'

f . 2{8rY\
= ^ivaU8ry - 2{8rY - ^]
= - 47r(T(5r)2

(provided 8r is small compared to r). This is negative for any

sign of 8r. Hence the sufficient test of stabihty is not satisfied.
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Of course this test is not conclusive on the matter; it gives

strong presumptive evidence that the system is not stable, but

as it is not absolutely necessary for stability the matter has

to be cjinched by the necessary test which is actually applied in

the text. This goes beyond the purely mechanical considera-

tions, and uses the fact that p', p" and a do not change if there

is a large enough external mass to draw on to maintain con-

stancy of composition in the phases. Hence if p' — p" = 2cr/r

then p' — p" > 2(r/r' if r' > r, and so the internal sphere ex-

pands encroaching on the outer phase ; whereas p' — p" < 2aI
r'

ii r' < r and the internal sphere gradually disappears as the

outer phase encroaches on it.

The treatment of stability on pages 285-287 will now be

easily followed. Certain obvious generalizations to be intro-

duced when gravity is taken into account are given there, the

result in [625] being, for instance, a wider statement of the result

[549] on page 252.

XV. The Formation of a Dififerent Phase within a Homogeneous

Fluid or between Two Homogeneous Fluids

4-6. A Study of the Conditions in a Surface of Discontinuity

Somewhat Qualifies an Earlier Conclusion of Gibbs Con-

cerning the Stable Coexistence of Different Phases

The possibility of the stable coexistence of different phases has

been treated earlier in Gibbs' treatise without reference to the

special nature of the surfaces of discontinuity separating them.

(See pages 100-115 of Gibbs.) There it is shown that if the

pressure of a fluid is greater than that of any other phase of

its independently variable components which has the same tem-

perature and potentials, the fluid is stable with respect to the

formation of any other phase of these components; but if the

pressure is not as great as that of some such phase, it will be

practically unstable. ''The study of surfaces of discontinuity

throws considerable light upon the subject of the stability of

such homogeneous fluid masses as have a less pressure than

others formed of the same components . . . and having the same

temperature and the same potentials. ..." Suppose for in-
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stance we have two phases of the same components whose pres-

sures are the functions p'(t, mi, M2, . . .) and p"(t, ni, m, . . .) of

temperature and potentials (written p'(t, ju) and p"(t, ju) for

brevity). A surface of discontinuity between two such phases

would have a surface tension which is the function a{t, mi, M2 . . )>

or (T{t, ju), of the same temperature and potentials. For
the purposes of the argument we are assuming that these

functional forms are known. Now if the surface were plane,

the condition would not be one of equilibrium; the phase for

which the pressure function has the larger value at given values

of t, Hi, H2, ... would grow at the expense of the other. Actu-

ally, if the phase of greater pressure, say the single-accent phase,

were confined in a sphere whose radius is equal to

2 (Tjt, m)

p'(t, m) - p"it, /x)

there would be equilibrium when surrounded by the phase of

smaller pressure. However, as we know, if the second mass is

indefinitely extended the equilibrium is unstable (provided

there are no components in the internal phase which are not in

the external), and the first mass if just a little larger will tend to

increase indefinitely; while one a little smaller would tend to

decrease, leaving the field to the second mass. So under cer-

tain circumstances the mass of smaller pressure, if indefinitely

extended around the mass of larger pressure would be the one to

grow, thus somewhat qualifying the conclusion from the earlier

part of Gibbs' discussion. However, since the possibility of

this qualification depends on the smallness of the internal mass

of the higher pressure phase, it becomes necessary to take into

account the case where this mass "may be so small that no part

of it will be homogeneous, and that even at its center the matter

cannot be regarded as having any phase of matter in mass."

Pages 253-257 of Gibbs treat this problem. The reader is to

keep in mind that the phase which might be conceived to grow

out of this non-homogeneous nucleus under favorable circum-

stances is supposed to be known, with its fundamental equa-

tions, as well as, of course, the second phase inside which it may
grow; i.e., p'(t, /x), p"{t, /x) and ait, m) are to be regarded as
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known functions. Let E represent the energy of the system if

the space were entirely filled with the second phase; then

E -\- [e], by the definition of [e] in the text, is the energy of the

system with the non-homogeneous nucleus formed inside. But

of course [e] is not the e^ (nor are [77], [mi], . . . the same as rj^,

mi«, . . . ) by means of which a is defined. As usual, we postu-

late a definite position for the dividing surface, a sphere of

radius r. For the purpose of defining e^ this is supposed to be

filled with the homogeneous phase of the first kind right up

to the dividing surface, the second phase occupying the space

beyond ; the energy then would be

E+v' (e/ - 6/0,

4
where v' = i^rr^, and so

o

es = E + [e]- {E + v'(ey' - e/')}

= [e] - v'iey' - e/O,

with similar definitions for rj^, mi^, ... as in the text.

47. The PossihiliUj of the Growth of a Homogeneous Mass of One

Phase from a Heterogeneous Globule Formed in the Midst

of a Homogeneous Mass of Another Phase

Imagine the heterogeneous globule to be formed in the midst

of the originally homogeneous mass of the second phase, the

formation being achieved by a reversible process and the globule

being in equihbrium. The additional entropy and masses,

Iv], [wi], [mi], ... in the space where the globule is situated

are supposed to be drawn from the rest of the system, which

may be conceived to be so large that these withdrawals do not

appreciably affect the temperature and potentials in the exterior

parts. The change of energy in the exterior will be a decrease

of amount

t[v] + MiNi] + M2N2] + . . .

The increase of energy in the space occupied by the globule is [c].

Hence the increment of energy in the whole system, above
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that of a system in which the second phase occupies the whole

space, is

[e] - t[r]] - ni[mi] - )U2[W2] - . . .

,

which is denoted by W (Equation [552]). This is a function of

the temperature and potentials and is independent of any

selected situation for the dividing surface; so we write it W{t, ju).

Now, as Gibbs himself notes at the outset of this subsection,

the method of selecting the surface of tension in former cases

is hardly applicable here, and it is not at all clear just how

he proposes to select it since his remarks concerning the

Ci8ci + C25C2 terms do not appear very convincing. As he says,

the |(Ci — C2) 5(ci — C2) term does not concern us for spheri-

cal surfaces. But what of the ^(Ci + C2) 5(ci + C2) term?

However, on closer investigation it becomes clear what he

does. In the earlier parts he showed that the special choice

which got rid of the Ci8ci + €2602 terms placed the dividing

surface so that it satisfied the condition

p' - v" = o-(ci + C2),

so here he takes the dividing spherical surface to have a radius

given by

2 a{t, ix)

r =
v'{t, n) - p"{t, m)

This is tantamount to assuming that the ideal system which

replaces the heterogenous globule and exterior mass, supposed

to be in equilibrium, is a homogeneous sphere of the first phase,

an ideal surface with the tension ait, ju) and the exterior mass of

the second phase, which is in equilibrium mechanically, as well as

with regard to temperature and potentials. The radius of this

surface then becomes a definite function of the temperature and

potentials; for as is shown on page 254

as = e^ — tt]^ — nirrii^ — ^2^2^ — . . .

= TF + v'{v' - V"),
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and since

r(p' - v") = 2cr,

and

47rr^

s = 47rr2, v' = -y-,

it follows easily that

W{t, m) = \ Sa(t, m) = hv'lp'it, m) - P"a, m)},

and so

3 W(t, m)

^ p W{t, m)T
1_ 47r(r(f, m) J

[556]

The reader can now follow the course of the reasoning on

pages 256-257. If, for given values of temperature and poten-

tials, there are two phases possible with different pressures such

that equilibrium is possible with an inner /iowogre/ieows sphere of

the higher pressure phase, an exterior phase of lower pressure

and a surface of discontinuity, we see that since r in [556] is then

a real positive quantity and p' — p" is positive, W{t, n)

is positive for these values of t, mi, M2, • • • In other words, this

system has actually greater energy than the system made up

of the lower pressure phase alone, and so there would be no

tendency for the latter system to transform naturally into the

first. If however, by any external agency, the spherical mass

of this size and constitution were formed, then it would be

unstable, as we have seen, at least if the external mass is

indefinitely extended, which means in practice that if any

disturbance caused a small increase in the size of the sphere, it

would tend to increase still further up to a limit set by the

extent of the exterior phase. Now if, by alteration of the tem-

perature and potentials of the system, we find values ^o, Mio,

JL120, ... for which

p'(to, juo) = p"(fo, Mo),
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then W{tQ, fxo) is infinite for these values. It is to be noted that

near the top of page 255 Gibbs says that W can only become

infinite when p' = p", which is true enough in view of [555] or

[556]; for since at such values of the potentials equilibrium

between the two phases could only occur at a plane surface, r

must be infinite, and so W might be infinite, but not necessarily

infinite on account of [556], since by that equation r could be

infinite when p' = p" even if W were finite. But in any case W
could not be infinite under other conditions. However, on

page 256, Gibbs says quite definitely that when p' = p" the

value of W is infinite, thus invoking implicitly some other reason

than the purely mathematical, but not perfectly cogent,

argument just cited. Apparently it is the physical fact that an

infinitely extended sphere of the first phase will have an excess

of energy of infinite amount over the same sphere of the second

phase, since v'{iY' — c/') tends to infinity with v' if €y' — ty"

remains positive and finite, which must be assumed to be true

or otherwise the discussion would be pointless. Returning

therefore to the state indicated by the values to, yuio, M20, • .

.

let the temperature and potentials change gradually from these

so as to make p'{t, n) increasingly greater than p"(t, n) ; W{t, n)

will gradually decrease. It may ultimately reach the value

zero, but if it does so then r and a will also vanish for the values

of t, Hi, H2, ... which make W vanish, the difference p' — p"

still being finite. For any values of temperature and potentials

in the range up to this stage the conditions of stability remain

as stated ; the second phase is stable, there would be no tendency

for a "fault" to form in it. At this stage the matter is in doubt.

The argument in the last few lines of page 256 is very subtle

indeed. The quantity r may be zero, but this does not imply

that a heterogeneous globule might not exist in equilibrium

since r is not the radius of the globule. If, however, the

globule dimension vanishes when r is zero, Gibbs says that the

second phase would be unstable at the corresponding value of

temperature and potentials. To see this we must remember

that if, at any values of temperature and potentials, we created

by any physical means the internal mass corresponding to the

finite r for these values of t, ni, H2, . .
.

, then the slightest dis-
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turbance causing a slight growth in its size would cause the

first phase to encroach on the second; but, of course, finite energy-

would be required for the initial creation of the sphere before the

infinitesimal disturbance in the right direction is applied.

But if conditions were such that "zero globule" corresponded

exactly to "zero r," no finite energy would be required to create

the globule ; any infinitesimal impulse in the right direction pro-

ducing any globule however small would produce one larger

than the "critical globule," which in this case is "zero globule,"

and at once the encroachment of the first phase on the second

phase would begin. This argument does not apply if the globule

does not vanish when r reaches zero, and the second phase is not

unstable in the strict sense. Gibbs clearly regards the second

case as the most general in nature. Doubtless he had in mind
the example of the formation of water drops in saturated vapor.

This instance is a good illustration of the application of the

abstract reasoning of these pages. When a drop of water is in

equilibrium with its vapor in a large enclosure, the vapor, over

its convex surface, is supersaturated as compared with vapor

over a plane surface; there is a tendency, on the slightest dis-

turbance in the right direction, for the drop to grow in size (as

we have frequently pointed out); as it does so its surface

flattens and the equilibrium vapor around it decreases in pres-

sure and density, as it naturally would do if it were being in part

condensed. Nevertheless, it is a commonplace physical fact

that it is next to impossible to start condensation in a mass of

saturated vapor quite free from dust particles or ions.

48. The Possibility of the Formation of a Homogeneous Mass
between Two Homogeneous Masses

We now pass on to the possibility of the formation of a fluid

mass between two other fluid masses. The latter are denoted

by the letters A and B. In the discussion on pages 258-261

they are supposed to be capable of being in equilibrium with

one another when meeting at a plane surface, so that the func-

tions p^it, n) and psit, ij) are to be equal to each other for all

values of t, ni, /X2, • • • On page 262 the problem is generalized,

but in the meantime this condition is to be kept well in mind.
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Now a third fluid mass C is conceived to exist, made up entirely

of components which belong to A or B; i.e. C, having no com-

ponents other than those in A and B, might conceivably form

at the surface dividing A and B, and we are once more supposed

to know the fundamental equations of this fluid C so that

Pc(t, m) is a known function whose numerical value can therefore

be calculated for given values of t, ni, /X2, • • • In addition,

(TABit, m), (^Ac{t, m)> <^Bcit, fJi) are also known functions. For the

problem to be not merely trivial it is essential that (XAsit, /x)

should not be greater than (7Ac{i, m) + o-Bc{t, n). To see this

conceive a very thin layer of C to be situated between A and

B. This is equivalent to a dividing surface between A and B
whose surface tension is o-^ c + ctb c- Referring to the previous

subsection on conditions of stability (Gibbs, I, 240), we see

that if aAB > ctac + o'sc this is a more stable state than

if A and B exist with the ordinary surface of discontinuity

between them having the surface tension (Tab, which is presum-

ably greater than (Tac + (^b c- Thus for such a condition the

problem is settled offhand—the layer of C would certainly

form on the slightest disturbance. The problem is really

worth considering if (Tab ^ <tac -\- (^bc, or if ctab < c^c + csc-

Although in the latter case a plane film of C would obviously be

unstable for a reason similar to that just given, a lentiform film

might develop and so a quite definite problem is posited in this

case also. In a paper on emulsification (J. Phys. Chem., 31,

1682, (1927)) Bancroft criticizes the statement that vab cannot

be larger than cac + <^b c, but seems to be under a misapprehen-

sion as to the situation. Gibbs on page 258 does not assert

that as a general rule for three such fluids cab cannot be greater

than (Tac -\- (tbc'i he merely, for the purposes of the problem he is

discussing, rules out of account fluids for which such an in-

equality would be true, presumably (as the writer has pointed

out definitely) on the grounds that the problem does not

exist; it is solved in the very statement of such a condition.

Now if the temperature and potentials have such values that

Pc < VA{t, ij) (and of course < psit, m)), the phase cannot

form under any circumstances ; for if it formed as a plane sheet

between A and B (or as an anticlastic sheet for which Ci + C2
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is zero) p c would have to be equal to Pa or pa, and if in the form

of a lentiform mass p c would have to be greater than Pa or pa.

Hence A and B in contact would be quite stable as regards the

formation of C in such a range of values of t, ni, IJ.2, . . . If we
now consider the range of values of these quantities for which

Pc(t, m) ^ PA{t, ijl), we have to deal with the two cases

which arise; (1) when ct^bC^ m) = (^Acit, m) + <rBc{t, m);

(2) when CAsit, m) < <^Ac{t, fx) + (Tscit, /x).

(1) If pc(t, m) = PA{t, m) there would just be equilibrium with

a plane sheet of C between A and B, since the surface tensions

between A and C, and B and C would just balance the surface

tension between A and B in the portion where A and B meet.

On the other hand if we varied t, ni, 1x2, • to values t', ^i/,

H2, ... such that pc(^', mO > ??A(i', m')> (PsCi'jM') still remaining

equal to Pa (f, n') as postulated originally) , then equilibrium could

not be maintained unless the surfaces separating A and B from

C became concave towards the latter phase, tending towards a

lens form. This would upset the balance of the surface ten-

sions at the edge where the surface A-B meets the surfaces

A-C and B-C, The conditions of this equilibrium can, for

purely mathematical purposes, be regarded as equivalent to the

equilibrium of three forces. Now the directions of the forces

equivalent to cac and cbc are no longer opposite to that equiv-

alent to (Jab- The force equivalent to (Tab is greater than the

resultant of the inclined forces equivalent to <tac and cbc since

(Tab = (Tac + (Jbc* Hence the edge tends to move outward,

i.e., the mass C tends to increase and in so doing draws on the

masses A and B for material, and so alters the phases in such a

way as to bring them to such values that the equality of p c to

Pa will be restored. We see that in this case there is a tendency

for the mass C to form between A and B.

(2) If (Tab < (JAC + (Tbc the argument of the previous para-

graph breaks down. Clearly, no plane sheet of C can form

between A and B when pc = Pa, the force equivalent to ctab

being too small to pull it out, as it were, against the force equiv-

* As is well-known, this is a convenient way of dealing with the fact

that if an outward displacement of the edge were made there would be a

diminution of free surface energy.
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alent to oac + (Tbc If, however, the temperature and poten-

tials are such that pc > Pa, then presumably a lentiform mass

might be in equilibrium both as regards pressures and also

surface tensions, since the resultant of the force equivalent to

<tac and ffBc being less than their numerical sum could pos-

sibly be equal and opposite to the force equivalent to ctab-

However, the argument on pages 259, 260 of the original shows

that the existence of such a lentiform mass would yield a

system of greater energy than the one from which it starts.

Hence in general there would be no tendency to form it. The
mathematical steps of the argument will offer no trouble pro-

vided the reader notes one or two points. Let us designate by X'
the center of the surface EH'F, and by X" that of the surface

EH"F. The cosine of the angles between EI and the tangent

to EH'F at E is (r' — x')/r'. The area of the spherical cap,

represented by EH'F in Gibbs' Figure 10 and denoted by Sac, is

known to be 2x(l - cos e')r"^, where d' is the angle EX'H';

so that, since cos 6' = (r' — x')/r', the area is 2Trr'x'. The

volume of the spherical sector standing on Sac with its centre

at X' is ^Sac-t' = ^irr'^x'. The volume of the cone standing

on the base Sab (i.e., the circle with EF as diameter) is

f Sab-X'I = ^rR^ir' — x'). Hence the volume of the spheri-

cal segment between Sab and Sac, being equal to the difference

of the sector and cone, is as given in [566].

So far we have maintained the condition pA{t, n) = psit, n).

If, however, this condition be abandoned, and if the functions

are such that in general pA{t, fj.) > psit, m), all the preceding Hne of

reasoning can easily be adapted to the wider condition. This is

done on pages 262-264. As before, the condition (Xab > (Tac + (Tbc

is set aside. If <tab = o-ac + (Tbc, a thin film of C would just be

in equilibrium between the surfaces of A and B, which would

have a curvature given by Ci + C2 = (Pa — Pb)I(Tab provided

that

, . (TBcit, fl) PA(t, m) + (TAcit, (J.) PB{t, H)
Vc^t, n)

= —
, [571]

as proved on page 262. If pc(t, n) were less than this critical

value the film would not form. If the values of i, /xi, m2, • • •
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were in the range for which pc{t, m) is greater than the right-

hand side of the above equation, the film would form, tending to

get into the lens shape at first and then, as its growth drew on

the adjacent masses A and B for material and modified the

potentials so as to restore the condition given by equation [571],

would spread out in the film again. If, as in (2) of previous

paragraphs, the phases are in such a condition of temperature

and potentials that cab < oac + obc, we can show that a mass

Fig. 5

of C will not tend to form on the surface between A and B,

curved as before to the radius given above, even when p c(^ m)

is greater than the critical value on the right hand of [571].

This requires a repetition of the proof on pages 260, 261 with the

surface DEIFG in Figure 10 of Gibbs regarded as curved and

not plane ; the adaptation of it to this wider geometrical con-

dition is given on page 263 (see Fig. 5). The area represented

by EH'F is Sac, by EH"F Sbc, by EIF Sab. Va is the volume

represented by EIFH', Vb by EIFH", and Vc is the sum of these.
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The geometry of the figure is not so simple now, and we cannot

make a direct calculation of W as on page 261. The device

which Gibbs uses is stated with such conciseness in the sentences

toward the bottom of page 263 that the implications involved

in them had better be more fully expounded. If the state

indicated did form in a natural way, it would happen in some

such fashion as this. Beginning at an initial stage of tem-

perature and potentials to, mio, M20, . . . for which

. (TBcito, Mo) PA(to, /Xo) + (TAcito, JUq) Vsito, Mo)
Pc{to, Mo)

= —
^

>

we would gradually alter the temperature and potentials in

such a way as to make pc(t, n) grow larger than the value of

the corresponding expression on the right-hand side when (t, fj.)

is substituted for (^0, Mo). Notice that this would probably

involve a gradual change in the curvature of that portion of the

surface not embraced by the lens of C, as pA(t, m) — Pait, m) and

(TAsit, m) would probably change in value as t, mi, M2, • • • change

in value. The process would end up in the condition and size

indicated in the figure. Now to judge if this would happen

naturally we need not consider so complicated a change. We
have only to conceive any reversible process in which the system

begins as imagined with the lens of C formed, and ends up in a

final state in which A and B are separated by a surface having

the same curvature, but with no lens there. That is, in the final

state the temperature and potentials would be the same as they

are at the end of the process which is supposed to have formed

the lens originally. This is the process conceived by Gibbs,

and what we have to do is to determine the sign of the energy

change in this conceived process. During it the pressure in A
and in B, as well as the surface tension between A and B, will

remain at one set of values ; i.e.
, Pa, Pb, (Tab will be constant during

the process. We are also to conceive that between A and C and

between B and C are membranes which gradually contract, keep-

ing at constant tensions which are equal to the values of

(Tac and aBc in the initial state of this process, i.e., when the lens

of C exists in its fully formed state. These membranes are not
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to be permeable. The necessary amount of the fluids A and B
can be fed in from large reservoirs through narrow tubes let in

through the exterior envelop of the whole system, and the

liquid C can be passed out through a similar tube into a reservoir

of C in which the potentials and pressure can be adjusted; for

throughout this process the one variable is the pressure of the

fluid C in the gradually contracting lens. It is very necessary to

observe that for equilibrium at each stage of the process this

pressure increases with contraction of the lens, as can be readily

seen by considering the simple case of a spherical membrane

contracting with a constant external pressure on it and a con-

stant tension in it. This conceptual process may help the reader

to realize that the sentence near the bottom of page 263,

beginning: "It is not necessary that this should be physically

possible . . . ," is not an entirely arbitrary statement support-

ing a doubtful line of reasoning. Now let x stand for this

internal pressure which increases from a value p c which exists in

the fully formed lens and ends up at a larger value p c" when the

lens just disappears. During the process the values of the

surface areas between A and C, and between5 and C will change,

and we will represent them as functions of x^ viz. Si{x) and S'iix),

respectively; the initial values of these functions are S>ac, Sbc

and the final values zero. The value of the part of the surface

which would lie between A and B extended into the lens, and

which decreases as the lens contracts, we will represent by

S3 (a:) ; its initial value is Sab and final value is zero. Similarly

Vi(x) and V2{x) will respectively represent the volumes between

the surface A-C and the surface A-B extended into the lens,

and between the surface B-C and the surface A-B so extended,

while V3{x) will represent their sum, the volume of the whole

lens at the stage when the internal pressure is x. The initial

values of Vi(x), V2(x) and ^3(2;) are Va, Vb and Vc respectively;

their final values are zero. Now consider the function of x,

f{x), defined by

fix) = (TAcSiix) + (TBcSiix) — (Tab Si(x)

+ Pa Vi{x) + Pb Viix) — xvi{x).
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The initial value of this function is the quantity W defined in

equation [573]. Its final value is zero. If we differentiate it

with respect to x we find that

df{x) = [(Tag dSi{x) + (Tbc dSiix) — (Tab dsaix)

+ Pa dvi{x) + Pb dviix) — X dv3{x)]

— V3(x)dx,

and by the fact that there is equilibrium at every stage of this

process, which is conceived to take place reversibly, the expres-

sion inside the square brackets on the right-hand side is zero.

Hence

df{x) = —Vi{x)dx.

Integrating we obtain

f(pc") - Kpc') = - r^" v,(x) dx.
JPC

Since the upper limit pc" is larger than pc, as we have men-

tioned above, and since V3{x) is a positive quantity throughout,

the integral on the right-hand side must be positive also.

Therefore the expression on the right-hand side is negative.

Hence

SiPc') >Kpc").

But/(pc") is zero, since at the final stage Si (a:), S2 (a;), . . . and

V2,{x) are all zero. Hence /(pc')> or W, is positive. Now W is

the energy excess in the initial state of the system over the final

state. Since it is positive, the initial state of the system has

really more energy than the final state, and moreover it is free

energy, as the expression [573] shows. Thus the initial state

would be unstable and so would not tend to form.

The treatment of stability given by Gibbs in this subsection

and the one preceding must form an important part of any

body of principle from which one may hope to obtain in time

a satisfying explanation of the colloidal state. Looking back to



SURFACES OF DISCONTINUITY 639

page 241 of Gibbs, the reader will see that he comes to the con-

clusion that "the system consisting of two homogeneous masses

and the surface of discontinuity with the negative tension is

... at least practically unstable, if the surface of discontinuity

is very large, so that it can afford the requisite material without

sensible alteration of the values of the potentials." In conse-

quence Gibbs excludes from the discussion of stability surfaces

with negative tensions. Nevertheless the proviso about the size

of the surface is important; for if it is not satisfied the con-

clusion may not be entirely valid, and so stability might be

insured in cases where the interfacial surface is very small.

Another instance where the conclusion might not be justified

would arise if one of the masses took the form of a stratum so

thin that it no longer had the properties of a similar body in a

less laminated shape. (See the remark at the bottom of Gibbs I,

page 240.)

The reader's attention is drawn to these points because in

the treatment of the colloid state negative interfacial tensions

must come into consideration. A large drop within another

medium will only break up "spontaneously" into two or more

drops if the free energy of the latter system is less than that

of the single drop. As the sum of the surfaces of the separate

drops is certainly greater than the surface of the parent drop,

this is impossible with a positive interfacial tension; but a de-

creased free energy becomes a possible result if the tension is

negative. In a paper published in the Z. physik. Chem., 46,

197 (1903) Donnan showed that from the point of view of the

Laplace-Gauss theory of capillary forces (briefly outlined in the

introductory sections of this article) it was possible to introduce

negative interfacial tensions and draw the conclusion that "in

certain cases the theory leads us to predict the spontaneous

production of extremely fine-grained heterogeneous mixtures,

in which one phase is distributed throughout another in a state

of very fine division." Of course the difficulty of the problem

is not in simply applying the notion of a negative tension, but

in demonstrating that at a certain critical thickness the free

energy of a film which is thinning out reaches a minimum and

thereafter increases if further thinning is continued, or that at
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a definite size a drop reaches a similar critical state as regards

its free energy.

Considerations of space prevent us from anything more than

a passing reference to this very important theoretical problem

;

but the interested reader will find further discussions, which

bring in thermodynamical principles and the effects of surface

electric charges, in papers by R. C. Tolman (J. Am. Chem.

Soc, 35, 307, 317 (1913)) and N. von Raschevsky (Z. /. Physik,

46, 568 (1928); 48, 513 (1928); 51, 571 (1928)). In particular,

Raschevsky's papers emphasize the fact that in addition to the

purely surface phenomena a further important factor consists

in the rate at which differences of concentration arising from a

fast enough velocity of diffusion may give rise to inhomo-

geneities in the drop.

XVI. The Formation of New Phases at Lines and Points of

Discontinuity

49. The Possible Growth of a Fifth Surface at a Line of Dis-

continuity Common to Four Surfaces of Discontinuity

Separating Four Homogeneous Masses

Pages 287-300 deal with fresh possibilities in the way of new

formations in addition to the natural processes studied in pages

252-264. It might be possible under certain circumstances for

a new surface phase to develop in a system consisting of more

than three homogeneous masses. If there were three homo-

geneous masses a surface of discontinuity would already exist

between any pair, but if four masses were in existence and four

surfaces of discontinuity had one line in common, there would

be no surface between two pairs of the masses, and the problem

arises as to the possibility of the growth of a fifth surface be-

tween such a pair. This problem is treated in pages 287-289.

The condition of equilibrium used is stated in equation [615].

In Figure 11 on page 287 of Gibbs, the common line is supposed

to run perpendicular to the plane of the paper. We consider

ci, 0-2, o's, 0-4 to be the four tensions in the surfaces A-B, B-C,

C-D, D-A of which the lines in the figure are supposed to be

sections by the plane of the paper. Conceive any virtual dis-
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placement of the line of discontinuity to an adjacent position

which is cut by the plane of the paper in a point 0'. (Not as

represented in Figure 12, however, but with four displaced Imes

all branchmg from 0'.) If the resolved components of the

displacement, perpendicular to the line of discontinuity and

lying individually in the surfaces, are 6Ti, 8T2, 8T3, 8Ti, then

the system of surfaces is in equilibrium if

<TidTi -\- (X28T2 + asdTz + aidTi =

for all possible displacements 00'. That is condition [615].

Since the components of the displacements are actually parallel

to the lines OA, OB, OC, OD it appears that this is just the same

as the well-known "virtual work" condition for the equilibrium

of four coplanar forces which could be conceived to exist in the

plane of the paper, with magnitudes ai, 0%, az, a and with direc-

tions along the four hues.* Or for that matter we could

consider the system of conceptual forces "swung round"

through a right angle so that their directions would be at right

angles to the four surfaces as Gibbs conceives them to be drawn;

such a change in orientation would not affect their equilibrium,

if it existed before the change. Gibbs' Figure 13 is the usual

polygon -of-forces diagram drawn on this principle. Now sup-

pose that two masses of the liquids A and C were brought into

contact with one another and were found to have a surface

tension larger than that represented by the length of ay in

Figure 13; the condition represented in Figure 11 would be per-

fectly stable, since free energy does not tend to increase. If,

however, this tension were less than that represented by 0:7,

the condition would be practically unstable; but to come to a

definite conclusion in that case one would have to go more

fully into changes in the several components and potentials in

the four homogeneous masses occasioned by the development

of the surface represented by O'O". Smiilar considerations in

relation to the diagonal /3§ would govern the possible growth

of a surface between the masses B and D.

* The reader must guard against the inference that the surface

tensions are really tangential forces in the surfaces. We have already

referred on p. 510 of this article to the convenience, but the physical

unreality, of this conception.
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50. The Possible Growth of a New Surface at a Point of Meeting

of a Number of Lines of Discontinuity

We might have a system in which there is more than one Hne
of discontinuity, these hnes meeting at a point. The latter

half of page 289 has a very concise statement about the stability

of such a system as regards the development of fresh surfaces

at the point. Any reader who is not trained in solid geometry
or lacks the power to visualize diagrams in space may require

some assistance here. Let us begin with the simplest case of

four different fluid masses. In this case there will be six

surfaces of discontinuity, and four lines of discontinuity. The
easiest way to realize this is to drive three nails into a drawing

board, calling them X, Y, Z. Attach three threads to them
which can be drawn tight and knotted at a point above the

board. A fourth thread, tied to the other three at 0, is stretched

tight and tied to another nail U, in a support above 0. One
can then see that we can have one mass of fluid in the pyramid
OYZU, one in OZXU, one in OXYU and one in OXYZ. Let
us call these masses A, B, C, D, respectively. The surface

between B and C is OXU; between C and A, OYU; between A
and B, OZU; between A and D,OYZ; between B and D, OZX;
between C and D, OXY. There are four lines of discontinuity

OX, OY, OZ, OU. Since the surfaces OXY, OXZ, OXU
meeting in the line OX are in equilibrium, three forces having

magnitudes proportional to (tcd, ctbd and (Tbc, and directions

normal to these surfaces, are in equilibrium, and can be repre-

sented by the sides of a triangle whose corners we shall name
/3, 7, 5, the side yb representing aco, 5/3 representing aoB, &y
representing gbc In the same way, if the surfaces OYX,
OYU, OYZ meeting in OF are in equilibrium, three forces

odc, (tca, (Tad normal to these surfaces can be represented by the

sides of a triangle 8ya, where a is a fourth point not in the plane

of I3y8. The figure a^y8 is a tetrahedron, and it will now be

easy for the reader to see that the equilibrium of the other two
triads of ^rfaces, viz., OZX, OZY, OZU and OUX, OUY,OUZ
is related in a similar way to the triangles fiba and a^y. In

short, the tetrahedron a^yb is a geometrical representation of
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the whole state of equilibrium if it exists. The six edges of the

tetrahedron are perpendicular to the corresponding surfaces

and represent by their lengths the six surface tensions. The
four sides of the tetrahedron, viz., the triangles ^y8, ya8, a^b,

a/37 are perpendicular to OX, OY, OZ, OU, respectively, and if

the tetrahedron ajSyd were drawn with the point inside it,

the four points a, /?, 7, 8 would be respectively situated in the

masses A, B,C, D. It is hoped that in this way the reader may
grasp the meaning of the earlier sentences of the paragraph,

where the "closed solid figure" is the tetrahedron in our illus-

tration for four masses. (There is a small misprint in the

second sentence of the paragraph. Beginning after the second

comma of the sentence it should read "the edges to the sur-

faces of discontinuity, and the sides to the lines in which

these surfaces meet." Notice that "edge" refers to a line of the

representative tetrahedron, and "side" to a triangular face of

this tetrahedron; "line" and "surface" are retained for the

physical lines and surfaces of discontinuity in the system.)

After this is grasped, consider a greater number of masses whose

dividing surfaces intersect in pairs in lines all of which meet in

one point 0. Any group of four masses which have six dividing

surfaces between them, say, A, B, C, D can be represented as

above by a tetrahedron a^y8. Suppose there is another mass

A ', which has three dividing surfaces with the masses B, C, D,

but has no dividing surface with A, having only the point

in common with A. The condition for equilibrium of these

surfaces is bound up with a tetrahedron q:'/375 where a' is on the

opposite side of Py8 to a. All the edges of this double tetra-

hedron will have the right directions and lengths to corre-

spond to the surfaces and their tensions. If now a new sur-

face were to develop at between A and A' and to be in

equilibrium, the normal to this new surface would be parallel to

aa' and the tension of the surface AA' would be represented by
aa', so that for stability with respect to such a formation the

tension of the surface between two masses of A and A' would

have to be greater than that represented by aa'.
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51 . Some General Ideas and Definitions Concerning the Possibility

of a NeiD Homogeneous Mass Being Formed at a Line

of Discontinuity or at a Point of Concur-

rence of Such Lines

Of course bulk phases might develop at a line of discontinuity

or at a point where such lines meet. Gibbs considers the first of

these possibilities in the subsection beginning on page 289, the

second in the subsection beginning on page 297. The argument

in each case runs on very much the same lines as in the treat-

ment in pages 258-264 of the possible formation of a new phase

between two phases, although it might not appear so on first

B

Fig. 6

reading. We shall recast the argument in pages 289-297 so as

to bring out this feature.

First of all there must be certain relations between the surface

tensions in order that the problem may not be trivial. In the

first instance aBcit, n), crcAit, m), o-^b(^, M),must satisfy conditions

of equilibrium, which necessitates any one of them being less

than the sum of the other two. Now we assume that we know

of a phase D and that we know for it the functional forms of

(TAoit, fi), (TbdH, m), (Tcoit, m) as well as Voit, m)- The values of

(Tbc, <rcA, (Tab determine the angles at which the surfaces B-C,

C-A, A-B meet where no phase D exists. If the phase D is

formed and is in equilibrium, (Tad, obd, (Tab will have to satisfy
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certain conditions; so also will (Tbd,(^cd, (Tbc, and aco, ctad, oca.

For instance, if oab > cid + obd no formation of D would take

place naturally; the problem of stability as regards formation

of Z> is settled at once. Thus for a problem to exist at all we

must postulate

CfiC ^ o'bd "T O'er),

<^CA = <^CD + ^AD,

CTaB = O-AD ~\~ CFbD-

If now it happened to be true that cab = o-ad -\- o-bd we might

have the formation of Z) as a film between A and B, as in

Figure 6. This would resemble the similar cases dealt with on

pages 259-264 of Gibbs; the film would form if po were

greater than a certain critical pressure

(TadPa + (TbdPb

(Tad -j- (Tbd

If (Tab < (Tad -h (Tbd we would not have formation of D in this

way even in a lentiform mass, the argument being once more

that of pages 259-264. But taking the tension conditions to be

(Tbc ^ (Tbd "r (Tcd,

(T CA <^ (Tcd "I (Tad,

(Tab <^ (Tad ~r (Tbd,

we may consider the possibility of the mass D forming as a fil-

ament of triangular section stretching along the direction of the

original line of discontinuity. If the three pressures Pa, Pb, Pc

were equal, the sections of the surfaces B-C, C-A, A-B by the

plane of the paper would be straight lines, as in Figure 14 of

Gibbs, da, db, dc being the continuations of these lines. If the

pressure po happened also to be equal to Pa (or Pb or p c) the

sections of the surfaces A-D, B-D, C-D by the paper, i.e, the

lines be, ca, ab would also be straight; but if po 9^ Pa the surfaces

A-D, B~D, C-D will be cylindrical with their generating lines per-

pendicular to the plane of the paper (Fig. 7) . Thus the lines be,
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ca, ah will be circular with their convexity outward if po > y^,
but with their convexity inward if po < Pa. In general

however Pa, Pb, Pc would not be equal, and in that case the lines

da, dh, dc with their continuations would be curved also, and
the convexity or concavity of any of the lines be, ca, ab would
be determined by the conditions as to whether Pd > Pa or po <
Pa, etc. If Pd = Pa; of course be is straight. (To avoid
awkward digression later we deal with a few geometrical facts

Fig. 7

now. The total eurvature of a limited curved line is the exterior

angle between the tangents at its extreme points and is equal

to the sum of the two angles between the chord joining these

points and the tangents. The angles of a curvilinear triangle

are the angles between the pairs of tangents drawn to pairs of

adjacent sides where they meet. It will be easily seen that the

excess of the sum of the angles of a curvilinear triangle over two

right angles is equal to the algebraie sum of the total curvatures
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of its sides, the curvature being reckoned positive for a side if

it is convex outwards, negative if concave. On account of this

convention of signs it will be seen that the excess may be posi-

tive, negative or zero, showing that it is possible for a curvilinear

triangle to be like a rectilinear in having the sum of its angles

equal to two right angles.) If now a mass of the phase D can

exist in equilibrium there is an equilibrium for each of the three

triads of tensions at each of the new lines of discontinuity; there

is also an equilibrium for the triad of tensions at the original

line of discontinuity whose section by the paper is d. We
construct a rectilinear triangle whose sides represent the mag-
nitudes asc, (TcA, (Tab. Its angles must then be the supplements

of the angles between the tangents (or normals) at c^; so we can

Fig. 8

set it in such an orientation that its sides are parallel to the

normals at d. This is the triangle ajSy of Figures 15 and 16 of

Gibbs. On ^y we can construct a triangle ^y8' whose sides

represent the magnitudes <tbc, <tcd, (^db', its angles must be the

supplements of the angles between the tangents or normals at a.

(The sides of this triangle are not parallel to the normals to the

surfaces at a unless da is a straight line.) Similarly we can

construct triangles 7Q!5" and a^8"'. There are various ways in

which the lines a8", ab'", etc. can fall. If the lines da, dh, dc

are straight and abc a curvilinear triangle convex inwards,

they fall as in Gibbs' Figure 16; if convex outwards they fall as in

Figure 8 of this text. Another case is shown later in Figure 9.

Only in special cases when the angles of the triangle abc are
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together equal to two right angles (not necessarily confined to

rectilinear triangles) can the situation for equilibrium be repre-

sented as in Gibbs' Figure 15. The case represented by Figure 16

is said by Gibbs to be one in which the tensions of the new sur-

faces "are too small to be represented by the distances of an in-

ternal point from the vertices of the triangle representing the

tensions of the original surfaces," as is the case in Figure 15.

The cases represented in Figures 8 and 9 of this text are said to

be of the type in which the tensions of the new surfaces are

too large to be represented as in Gibbs' Figure 15.

52. The Stability of a New Homogeneous Mass Formed at a Line

of Discontinuity. A Summary of the Steps

in the Argument

Having laid down these general ideas and definitions Gibbs

proceeds to the argument concerning the stability of a mass

formed in this way. It is long and detailed, covering more

than four pages, and it may be well for the reader first

to glance through a summary of the steps, with certain details

left out which can be filled in later. (In following such details

at first, one is apt to lose the thread of the argument.)

The first step is on page 292 and concerns equilibrium, stable

or not. It is shown that if Ws and Wv are the two quantities

defined in [626] and [627] then if the system is in equilibrium

Ws = 2Wy.

(Notice that a similar type of numerical relation holds for cog-

nate quantities in cases of equilibrium treated previously. See

equations [563], [564], [569] of pages 260, 261.) It is also shown

that for equilibrium the quantity Ws — Wv must be at a maxi-

mum or minimum value as compared with any configuration

(equilibrium or not) of the surfaces adjacent to the equilibrium

configuration, i.e., so long as tensions and pressures are main-

tained unchanged at the values corresponding to the tempera-

ture and potentials throughout the system.

In the second step it is shown that, since for stable equilibrium

Ws — Wv must be at a minimum value as compared with

adjacent configurations, there is instability if Wv is a positive
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quantity (and therefore also Ws, since Ws = 2Wv). If Wv is

negative the system is stable. (One can hardly say that this is

"shown." It can be inferred from the proposition that Wv°^Ws^,

proved on page 293, but the inference is not an obvious one; and

on the face of it there appears to be a puzzling contradiction

between this proposition and [633]. The contradiction, of

course, is only apparent; but the reader is asked to defer these

difficult points until later and to proceed along the general

line of argument.)

The third step shows how these ideas are to be applied to any
given set of circumstances. If the pressures and tensions are

known, the figure ahcd can be constructed for the appropriate

configuration of equilibrium, if it exists. For since the

relative magnitudes of the tensions determine all the angles

round the points a, h, c, d we can find the angles of each

of the curvilinear triangles hcd, cad, abd, abc. Also since

Pd — Pa = ^ffAo/rAD, . . , Pb — Pc = 2cTBc/rBc, . . . , we can calcu-

late the six radii of the curvilinear sides. The angles and radii

are sufficient data to construct the various triangles, if they are

consistent with the possibility of a construction ; if they are not,

of course no such equilibrium configuration exists, and the

problem of stability does not arise. If the construction is

possible it shows us that the relative magnitudes of the quan-

tities Vd, Va, Vb, Vc (which are the areas of the curvilinear

triangles abc, hcd, cad, abd) i.e., the volumes of the mass D per

unit length normal to the plane of the paper, and the parts

into which it is divided by the surfaces B-C, C-A, A-B) can

be determined. These can therefore be taken as known in

terms of the tensions and pressures. An inspection is now
made of the quantity

VaVa + VbPb + VcPc

Vd

If the pressure po is greater than this it is obvious that Wv as

defined in [627] is positive, and from the second step the equilib-

rium of the mass D is unstable so that a disturbance producing

a small increase in it would result in a tendency for it to increase

still further. If it so happened that this volume Vd were small
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enough it would mean that the equiUbrium of the Hne of dis-

continuity at d, without any formation of the phase D, would be

at least practically unstable ; for if a small filament of the phase

D should be formed a little greater than Vd in size per unit length

the formation of more of the phase would tend to occur.

On the other hand, if po happened to be less than the expression

written above, Wv would be negative, and the equilibrium of

this filament of the phase D would be stable; any small dis-

turbance increasing it would not tend to cause further growth

but the filament would tend to return to its equilibrium size.

Were Vd small enough this would be tantamount to saying that

the equilibrium of the original Une of discontinuity was stable.

On pages 294-296 Gibbs goes into more detail concerning this

for each of the three special cases where the tensions can be

represented as in his Figure 15, or are too small to be so repre-

sented, or are too large.

53. The Details of the Argument Omitted from the Summary
in {52)

Let us now return and fill in the omitted details. We know

from earlier parts of Gibbs' treatise that when the values of tem-

perature and potentials remain constant, so that all the tensions

and pressures are determined, the equilibrium of any configura-

tion is determined by the test that for any deformation of the

configuration to an adjacent configuration, equilibrium or not,

the variation

S(t5s - 2p5v = 0,

and if the equilibrium is stable the variation

2o-As - SpAv > 0,

which means that for given values of the tensions and pressures

the quantity

'Zas — Spy

is a minimum for a stable configuration of the surfaces and

volumes. (For convenience we denote the points where the
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lines in which the section by the paper cuts the exterior envelop

of the whole system by the letters e,f, g.) Then

So-s = CAD-hc + (TBD-ca -\- (TcD-oh + oTBc-ae + (TcA-hJ + (TAB-cg,

since the lengths of the curvilinear lines be, ca, ah, ae, bf, eg,

are equal to the areas of the respective cylindrical dividing

surfaces for that part of the system which lies between two

sections unit distance apart. Also

Xpv = Pa -fbeg + Pb geae + p c • eabf + po • abc.

Now let us subtract from Zas — Xpv the quantity

(TBc-de + (TcA-df + (TAB-dg — pA-fdg — PB-gde — pc-edf

which is unchanged in value by any variation of the surfaces

A-D, B-D, C-D. The result of this subtraction is

(TAD'be + (TsD-ea + crcD-ab — aBc-dd — ccA-bd — CAs-cd

— (pD-abe — pA-bcd — pa-ead — pc-ahd).

This is the quantity Ws — Wv of page 292, and since it differs

from Xcrs — 2py by a quantity which is unaltered by any

variation of the surfaces A-D, B-D, C-D, it is also a minimum
for a stable configuration provided the tensions and pressure

are given. This leads directly to Gibbs' equation [629]. In

order to grasp what Gibbs is doing in the subsequent portion

of page 292, let us consider what would happen to the equilib-

rium configuration which involves a mass of the phase D were

the six functions (TBc(.t,iJ.), . . . <TAD{t,iJ^) to be changed to slightly

different functions of t, m, H2, . . ., say (rBc'{t,n), .

.

. aAD'(t,fx),

while the pressures still retained the same functional forms as

before. This would involve a slightly different configuration,

causing a change in the areas to Sbc + dsBc, • • Sad + dsAo,

and in the volumes to Va + dvA, ... if equilibrium is to be

preserved. For this configuration we should have

. Ws = (Tad'(Sad + dSAo) + . . . —(TBciSBC + dsac) — . . .

W/ = Pd(vd + dvo) — Pa(va + dvA) —
. . .,



652 RICE ART. L

so that

(W/ - Ws) - {Wy' - Wy) = {cad' - <rAD)SAD + CAD'dSAD + • . .

— ((Tflc — (TbcjSbc — Cbc CISbc — • • •

— Pd dvo -{ PAdvA-{- ...

or, at the Hmit,

dWs — dWy = (Tad dSAD + Sad d(TAD + . • .

— (Tbc dSBc — Sbc d(TBc — • • •

- Pd dvo + PAdvA + ...

But since [629] is true for any small change in the configuration

it is true for the change indicated by dsac etc., so that

(TAD'dSAD I • • • (TBcdSBC • • •

- Pd dvo + PAdvA -\-
. . . =0,

and from this it follows that

d{Ws — Wy) = SADdcAD + . . . — SBcd(TBC — . . .

which is equation [630]. Now this change in Ws — Wy
accompanies small changes in the functional forms which express

aBc, etc. in terms of t, jjli, H2, • • • but not in the forms for Pa,

etc. Suppose these changes to be of such a nature that the

tensions all diminish in the same ratio, the pressures of course

not altering. Since
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Thus the figure representing the configuration would shrink so

that the lengths of the lines in the figure would be proportional

to the changing values of the tensions; therefore

(Tad • o'xo = {Sad "T CISad) • Sad

or

((Tad + da-Ao) : (Tad = (Sad + dsAo) : Sad,

and so

Sad d(TAD ^= (Tad uSad-

Hence

d{cFAD Sad) = 2sad ddAD,

etc.

Thus it appears that

d{Ws — Wy) = i d{(TAD SaD+ . . . -(TbC SbC— . . )

= h dWs.

Since Ws = when Wv = 0, it follows that

Ws -Wy = l Ws

or

Wa = 2Wy.

This disposes of the details in the first step. Turning to the

second we again consider a variation of the type just considered

from the equilibrium configuration, i.e., such that the new
figure a'h'c'd remains similar to abed. This varied configura-

tion is of course not one of equilibrium for the actual tensions

and pressures, but this is of no importance as regards the

conditions of equilibrium and stability of the unvaried con-

figuration; Ws and Wy' can be reckoned for this varied con-

figuration, but of course Ws is not equal to 2Wy since this



654 RICE ART. L

configuration is not one of equilibrium; actually Ws' in-

volves the same <xad, etc., as does Ws, but a different Sad] in fact

w/
Ws
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of triangles is employed, viz., that the area of a triangle

whose sides are a, h, c in length is

l[(a + 6 + c) (6 + c - a) (c + a - 6) (a + 6 - c)]K

54' Consideration of the Case When the New Homogeneous Mass
is Bounded by Spherical Lunes

To follow the reasoning in the last two paragraphs of this sub-

section (pp. 296, 297) one must visualize somehow the form ofD in

Fig. 9

this case. First imagine (Fig. 9) a thread stretched between two

points I and m; mark two points between I and m on the thread

and call them di and c?2. The thread represents the original

line of discontinuity, and three surfaces B-C, C-A , A— Ball con-

taining the thread divide the space round the thread into three

portions, each of which contains one of the fluids^, B, C which

are supposed to be in equilibrium at these surfaces. Now
consider a plane drawn at right angles to the thread with

di and c?2 lying on opposite sides of it. Let the thread cut the
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plane in d, and let de, df, dg be the line sections of the plane by
the three surfaces. If a, h, c are three points on de, df, dg, we
can conceive an arc of a circle drawn through diadi and similarly

arcs also drawn through dihd2, dicd^. Further, we can conceive

a portion of a sphere (a "spherical lune") drawn so as to connect

the arc ^16^2 with dicdi, etc. The mass D, if formed, is supposed
to be inside the space bounded externally by three such lunes,

and the lune joining dihd^ with dicd^ is the surface D~A, and so

on. We now name various portions of surface as follows.

The lune dibd^cdi is named Sad, and so on. The portion of the

surface B-C which is marked off between the arc diadi and the

line diddi is named Sbc- It is in fact the portion of the surface

B-C which is, as it were, destroyed by the formation of the

phase D. Similar definitions are given to Sca and Sab- Simi-

larly Vd stands for the volume occupied by the phase D and
Va, vb, Vc for the volumes of the three portions of it originally

occupied by the phases A, B, C before the phase D was formed.

The discussion of the stability follows the same course as before.

Representing the expression

Cad' Sad + . . . — (^bcSbc — • • •

by Ws, and the expression

Pd Vd — PaVa — PbVb — Pc Vc

by Wr, we have to investigate when Ws — Wv is a minimum or

maximum in the assumed state of equilibrium. (Its variation

is zero when we neglect higher powers than the first of the

variations of the variables.) We can find the ratio of Ws to Wr
in an equilibrium state by the same method as before. The only

difference in the result is that although, in the changes of size

which keep the figure similar to itself, cxad, (Tbc, etc. all vary as the

linear dimensions of the figure (since, for instance, ^cjadItad is

to be maintained constant and equal to pt> — Pa), the surfaces

Sab, etc. vary now as the squares of the linear dimensions.

From this it follows that

d{(TAD Sad) = 3cr^o dsAo
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so that the analogous result to [632] is

d(Ws — Wr) = i d{(rAD Sad+ • . . — (Tbc Sbc— ' . .)

= ^dW.

and it follows that

Hence

3)

Wa= IWy

Ws- Wy == i Wy.

In the subsequent steps one need only consider conditions of

temperature and potentials for which pD{t, m) is greater than the

other pressures. Clearly the figure would not be possible

otherwise.

55. The Stahility of a New Homogeneous Mass Formed at the

Point of Concurrence of Four Lines of Discontinuity

In the last subsection on stability we have to return to the

equilibrium considered in the last paragraph on page 289 and to

the commentary thereon. Exactly the same principles are

applicable as before, and there will be no difficulty experienced

in following the argument, once the figure has been visualized.

The modification in the thread diagram used in commenting on

page 289 can easily be indicated. Above the drawing board

used there we place a wire frame in the shape of a tetrahedron

abed, with the vertex d uppermost and the base ahc nearest the

drawing board. Tie aioX,h to Y, cto Z and d to U, which is

above the frame, by tight threads. We now conceive the

phase D to be in the space in the truncated tetrahedron abcXYZ
between the surface ahc and the exterior envelop of the whole

system, and so on. The phase E is supposed to form inside the

tetrahedron. We are not to suppose that the surfaces abc,

etc., i.e. E-D, etc., are necessarily plane, nor for that matter

the surfaces D-A, etc. There are ten of these surfaces now.
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viz. E-A, E-B, E-C, E-D, D-A, D-B, D-C, C-B, C-A,

B-A, and when we construct all the triangle-of-force diagrams

for the various triads of equilibrating tensions we can fit them

together as follows. The original system of A, B, C, D being in

equilibrium round a point we can construct a tetrahedron of

forces for this equilibrium, as pointed out earlier, and call it

a^yd. (It is of course rectilinear.) Now in the new system we
have, for instance, at the point a of the system a similar equilib-

rium existing for the surfaces E-B, E-C, E-D, B-C, B-D, C-D.

Hence we can construct a rectilinear tetrahedron of forces for it,

and we can arrange three sides of it to coincide with ^yS, with

the fourth vertex at a point e'. Similarly a tetrahedron

€"y8a can be constructed to represent the tensions of the

surfaces E-C, E-D, E-A, C-D, C-A, D-A, and one t"'ba^ to

represent the tensions of the surfaces E-D, E-A, E-B, etc., and

finally e""a^y to represent the tensions of E-A, E-B, E-C, etc.

In the special case when all the surfaces in the system are

plane, the four points e', e", t'" , t"" coincide at one point c

inside a^yb, and the tetrahedron a^yb can be oriented into a

position in which its six edges and the four lines ea, e)3, ty, c5 are

normal to the surfaces in the system.

As before, we construct an expression Zo-pSp — S(r„ Sn, where

Sp stands for a new surface which has been formed in developing

the system with the phase E from the original system without

E, and s„ stands for a portion of one of the original surfaces

which has disappeared. We call this expression Ws- As before,

Wr = PbVb - VaVa — VbVb — VcVc ~ PdVd,

where Vb is the volume of the phase E, and Va, etc. the volumes

of the parts of it originally occupied by the phases A, etc. We
can now prove that Ws =

I Wv\ for in this case the preservation

of similarity of shape in a conceptually growing phase E would

require the tensions to vary with linear dimensions of the

figure E (the pressures not changing) while the surfaces Sp, Sn

vary as the square of the linear dimensions. The argument

proceeds in the now familiar way. If we are considering the

stability of the system without the phase E, we need only

consider the conditions relating to the system when the amount
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of phase E formed is very small. In that case, for purely

geometrical calculations, we can regard the faces of tetra-

hedron abed and also the portions of the surface D-A etc. within

it as plane. This means that the tetrahedron a^yS is similar to

ahcd and the point e is situated within it just as is the point c

within abed (e is the point which we originally named 0).

This justifies the various steps in the geometrical argument
leading to [641].

XVII. Liquid Films

[Gibbs, I, pp. S00-S14]

56. Some Elementary Properties of Liquid Films. The Elasticity

of a Film

Since soap solutions are generally used for experimental

illustration of the properties of liquid films between two gaseous

phases, it may be of advantage to mention briefly some of the

most striking facts concerning such solutions. In the first

place it is remarkable how great a reduction is produced in the

surface tension of water by quite small concentrations of soap.

This is, of course, due to the excess concentration of the capillary

active soap in the surface layer. Actually, when the bulk con-

centration of a sodium oleate solution attains 0.25 per cent

the surface tension has decreased from about 80 dynes per

centimeter to about 30, a figure at which it remains during fur-

ther increases in concentration. However, it is known that

these values are only attained some time after the formation of

the surface layer. If the surfaces are continuously renewed

nothing like such a lowering of surface tension is observed.

Thus Lord Rayleigh obtained for a 0.25 per cent concentration

a "dynamic" surface tension equal to that of pure water, as

distinct from the "static" value given above. Even a 2.5 per

cent solution with a continuously renewed surface recorded 56

dynes per centimeter, or about twice the "static" value. This

can only mean that the specific surface layer with the very low

surface tension takes some time to form. Some work by du

Nouy (Phil. Mag., 48, pp. 264, 664, (1924)) on extremely dilute

solutions shows that concentrations as low as 10~^ hardly affect
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the surface tension initially, but after two hours produce a drop

of about one-third in value. This fact should be borne in mind

in considering the variations in the tension of soap films which

are instanced by Gibbs, and of which many illustrations can be

found in A. S. C. Lawrence's book on Soap films: A Study in

Molecular Individuality (London, 1929).

Of course the thin film between two gaseous phases is not to be

regarded merely as a very thin layer. As Gibbs clearly states

at the top of page 301, it is in general a hulk phase with two

surfaces of discontinuity each with its appropriate dividing

surface and superficial energy or tension. One point must

however be noted; owing to its thinness any extension of its

area finds no large source of the capillary active substance to

draw on so as to maintain the surface layers in the same condi-

tion, and the resulting reduction in excess surface concentration

produces an increase in the surface tensions and therefore in the

combined tensions or "tension of the film." This gives rise to

the conception of an elasticity of the film, analogous to that of a

stretched string or membrane. This will of course have different

values according to the conditions imposed, just as occurs in

the case of deformable solids. A formula for the value under

the conditions prescribed at the bottom of page 301 is worked

out by Gibbs on pages 302, 303. In the case of solids or

fluids, what is called the "bulk modulus of elasticity" is defined

by the quotient of an increase of external uniform pressure on

the surface by the resulting decrease in unit volume, i.e., by

— 8p/{8v/v) . The definition ofE in [643] is analogous to this. 2cr

being regarded as the tension of the film. If Gi and G^ are the

total quantities of Si and S2 per unit area, as defined in [652]

and [653], then under the conditions prescribed GiS and G^s are

constant, so that

Gids + sdGi = 0,

Gids -\- sdGi = 0.

These yield [644]. The rest of the analysis on pp. 302, 303 is of

a simple mathematical character and can be easily followed. It

will be noted that the statement after [655], that E will be

\
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generally positive, is based on the assumption that /i2 in general

increases in value with G2. It is clear that the elasticity is not

simply dependent on the thickness of film. The extension

must produce some change in the concentration of the com-

ponents in the actual surfaces of the films, so that in a film held

vertically, for instance, the conditions of distribution of the

components in successive elements of the film must be different

as we move up and down. Draining away of the liquid from

the interior of the film does not of necessity cause a change in

tension even although the thickness diminishes. The statement

in parenthesis at the very bottom of page 303 may be justified

as follows. All the other potentials except those of Si and S2

remaining constant, a change in composition with respect to

these components produces a change in a given by

da = —Tidni — T2dfi2.

In the argument just preceding we have chosen the dividing

surface so that Fi is zero. Then r2(i) is positive on the assump-

tion that *S2 exists in greater proportion at the surface, as

compared with the interior, than Si. Suppose, however, that

we choose the dividing surface so that r2 is zero. This makes

ri(2) negative, and we have of course

d(T = — Ti(2) d/JLi.

But a reduction of ^Si by evaporation, S2 remaining constant,

makes the potential of Si diminish so that dfxi is negative in

value. In consequence Ti(2)dpLi is positive and therefore da is

negative.

Pursuing the commentary for the moment, before reference to

more recent experimental evidence on these matters than that

offered in Gibbs' treatise, we find that on page 305 we meet some

remarks on films gradually approaching the tenuity attained by

the films which show interference colors by reflected light. The

elasticity of a thin film is greater than a thick one as we can see

from the equation [650] ; for E increases as X diminishes so long

as the interior retains the properties of the matter in bulk, and

so the quantities 71, dr/dn2, dT2a)/dii2 are not different in value
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for the thick and thin films. This is held by Gibbs to justify

his statement near the top of page 305 that, just as the film

reaches the limit where the nature of the interior begins to

alter, the elasticity cannot vanish and the film is not then

unstable with respect to extension and contraction, a statement

which has proved to be a remarkably acute prevision of the true

state of affairs despite the qualifications of the following

paragraph; for quite recent investigation has shown that the

thinnest possible film, that showing black by interference, is

remarkably stable under proper conditions, and the old idea

that thinning necessarily leads to rupture has been disproved.

57. The Equilibrium of a Film

Returning to the thick film, Gibbs shows on page 306 how the

mechanical conditions for its equilibrium can be approximately

satisfied by regarding it simply as a membrane of evanescent

thickness, its plane being placed between the two dividing

surfaces of the film according to the rule which connects the

line of action of the resultant of two parallel forces with the

lines of action of the forces. But the following paragraph

shows that such a method of dealing with these conditions of

equilibrium is really inadequate, and that the film is not really

in equilibrium when it apparently is at rest and the conditions

called for by this restricted point of view presumably satisfied.

The argument reverts to the equations developed on pages

276-282, and resembles in some particulars the line of reasoning

on page 284. Thus according to [612] since the pressure in the

film satisfies

"^ = — gill + 72 + . . .)

it should decrease rapidly with height in a vertical film, yet by

[613] if we suppose p' to be the pressure at an interior point

and p" the pressure in one of the contiguous gaseous masses

the value of p' anywhere in the film must be between the

pressures of the gaseous masses for a film in any orientation,

since

p' - Pa' = o-a(ci + C2) + ^(Sr) cos Ba,

Ph" - p' = (Tb{ci 4- C2) + £7(2r) cos dh,
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where the suffixes a and b refer to the two faces of the film.

This means that in a vertical film both these conditions cannot

be established, and in the thick film apparently in equilibrium

the liquid is in reality draining away between the faces towards

the bottom.. As was noted in somewhat similar circumstances

on pages 283, 284, there will also be considerable doubt as to

the adjustment of the various potentials to equation [617].

If this adjustment took place, then by [98]

dp = yid/ii + y^dni

= - g(yi + 72 + ...)dz

since Hr + gz would be constant in the film if the condition

[617] were true for the r"* component. But this is equation

[612] which we have just seen cannot hold; so the assumption

that [617] is true for all the components leads to a contradiction.

Thus there must be at least one component for which the con-

dition [617] is not true. It might appear that this requirement

could be met if this one component were a component not

actually present in the contiguous masses, since then iir + gz

in the film for such a component cannot exceed a certain

constant Mr, viz., the value of the potential in the gas at the

level, 2 = 0, but is not necessarily equal to it. However, as

Gibbs points out, one such component is not enough, the

situation being similar to one already discussed on page 286.

If there were only one such component, it must satisfy equation

[617] or else the condition [614] will not be obeyed. For by [508]

dar = — Tidni — Vidii^ ... — T^ dyir,

where the suffix r refers to this special component not found

in the gaseous masses.

Hence

da = g{Vi + Tj . . . + Vr-i)dz - T, d^r.

But by [615] (which, unlike [612], must be satisfied even for

apparent equilibrium)

d(T = g{Vi + V2 ... + r,-i + Vr)dz,
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and so

dur = — g dz,

or Hr -\- gz = constant throughout the film. However, if

there are two such components, r and s, a similar line of reason-

ing will show that

Trdur + Tsdfx, = - g{Tr + T,)dz,

which only necessitates that

Trinr + gz) + Tsins + gz) = constant,

but not two such independent conditions.

In following up the arguments on pages 307-309 the reader

may possibly be familiar with Poiseuille's formula for the efflux

of liquid from a narrow tube, in viscous flow and under a pres-

sure gradient which is small enough to permit the motion to be

zero at the wall of the tube and not to cause turbulent motion.

It is

Trpr^ dp^
'^^ ~~^

~dl

where m is the mass crossing any section in unit time, p the

density, t? the coefficient of viscosity, and d-p/dl the pressure

gradient along the length I of the tube. This makes the

volume of flow per unit time, i.e., 7n/p, proportional to the fourth

power of the radius, other things being equal, and this would

require a mean velocity across a section equal to

pD^ dp

32»7 dl

(where D is the diameter), and so proportional to the square of

the diameter. The formula for the mean velocity of flow

between parallel plates at a distance apart equal to D (again

for non-turbulent slow motion) is also known to be

pD^ dp,

12r, dl
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or 8/3 times the corresponding Poiseuille value for equal

values of D. It is this fact which enables Gibbs to convert

Poiseuille's experimental result for tubes into the result [657],

somewhat greater than [656], but of the same order of magnitude

and sufficiently approximate for the purpose in hand.

Towards the end of the succeeding paragraph there occurs

one of those almost casual statements, so common in Gibbs'

writings, which have the appearance of extreme simplicity but

are not so easy to justify as one might imagine. Somewhat
earlier we have shown how the evaporation of Si, would diminish

the tension of the film. (This volume, p. 661, referring to

Gibbs, I, 303.) This implies that if we have two elements such

that the ratio of the quantity of S2 to the quantity of Si in the

first is greater than the corresponding ratio in the second, then

the tension in the first element would be smaller than in the

second. Suppose the second element to be in equilibrium at

the level which it occupies, and that the first element should

happen to be situated at the same level. Clearly a small strip

of the film lying between this first element and the part of the

film immediately above this level would not be in equilibrium.

The pull upwards on this strip, which would be balanced by the

pull downwards on it if the second element were below it, is

greater than the pull downwards on it due to the first element

;

thus the first element would tend to rise and of course to ex-

perience a stretching and have its tension increased.

In the final paragraph of page 309 the observation referred

to is now generally known by the name, the "Gibbs ring," and

we shall comment on it presently when giving a few details

concerning experimental work on films.

Passing on to the middle paragraph of page 310, the writer

supposes that the reasoning by which the stated conclusion

"may easily be shown" is as follows. We have already seen

that a vertical film is not an example of true equilibrium, and

although the variation of a with the height z necessitates varia-

tion of some at least of the potentials with z, since equation

[508] must be satisfied, the law of variation is not necessarily

the genuine equilibrium law [617]. For, if that were valid for

all the potentials, p would have to vary with z according to the
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equation [612], whereas, owing to [613], pis practically constant

throughout the interior of the film. The law of variation to

which the behavior of the potentials will actually approximate

may be worked out in the simple case dealt with in this para-

graph. Let *Si be the water and S2 the soap, which exists in

excess at the surface, so that r2 > Ti; we may take it that in

the interior 71 > 72. Since

and

da = — Ti dn\ — V2 d/jL2

da , .

it follows that

TiMi + r2ju2 + (Fi + V2)gz = constant.

Moreover, since the pressure is practically uniform through-

out the interior

dz '

and so by [98]

or

dm dn2

TiMi + 72M2 = constant.

From these two equations in /xi and H2 we can eliminate fii

and obtain

(ri72 - r27i)Mi + 72(ri + T2)gz = constant.

Since by our assumptions the coefficient of ni in this is

essentially negative while that of z is positive, it follows that

fii, the potential of the water in the film, increases as we rise.

On the other hand in the atmosphere the potential of the water
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will fall according to the usual equilibrium rule [617]. As

they are supposed to be equal at the midway level it follows that

above that level the potential of the water in the film is greater

than that in the atmosphere and there the water will escape

into the atmosphere from the film, with the reverse process

occurring below. Following a similar line of argument the

reader will now find that the subsequent statements on page

310 are not difficult to verify. -

The material in pages 312, 313 will be referred to in the brief

account of experimental work on soap films which follows.

58. Foams. The Draining of a Film. The "Gibbs Ring"

Apart from the blowing of soap bubbles the most common
illustration of the existence of liquid films is to be found in

foam, which is really a collection of bubbles of various sizes

which coalesce according to the following simple rule: when

three films meet they intersect in a line and their planes are

equally inclined, i.e., at an angle of 120°. Six such films can

meet at one point with the four common edges also passing

through this point in a manner which we have already discussed

at an earlier stage of the commentary. Thus in the interior of

the foam each bubble is bounded by hexagonal plane faces (in

general irregular hexagons). The pressure of the confined gas

is everywhere the same. Only the outer faces between the foam

and the atmosphere are curved to any extent, and only at these

faces is there any difference of pressure on the two sides. The

whole mass quickly drains to the "black stage" by the inter-

connected liquid channels. The existence of foam indicates

the presence in the liquid of capillary active substances such

as saponin. Such substances are to be found in many plants,

and the occurrence of stable foams is very marked on that

account in tropical rivers.

Actually the line of intersection of three films is not a "line"

but a channel of finite cross-section which is in the form of a

curvilinear triangle as in Figure 10, where A, B, C, represent

three adjacent bubbles, D being the channel of liquid. On
account of the curvature the pressure of the gas in A, B or C
is greater than the internal pressure of the liquid in D, while
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the liquid pressure in the films between A and B, etc. is practi-

cally equal to that in the gas. This state of affairs causes the

"suction" referred to by Gibbs on page 309, and the liquid is

forced by this excess of pressure from the films into the channels,

thus assisting other influences such as gravity in the draining of

the films. When a film of soap solution is drawn up from a

mass of such solution at the mouth of a cup, we have a ring

shaped channel of this kind where the film meets the horizontal

surface of the general mass and into this "Gibbs ring" there is a

considerable draining of the film by this suction and gravity.

59. The Black Stage of a Soap Film

In general a newly formed soap film passes through a regular

succession of changes. Recently, much more light has been

thrown on the nature of the succession by improvement in the

methods for preventing mechanical shock, sudden large changes

of temperature and, more especially, contamination of the solu-

tion. In this way it has been shown that the fundamental

change is the thinning down to the black stage, so that the black

stage is the only film in true equilibrium. It is true that it can

hardly be called a stable equilibrium in the accepted sense of

stability since the black stage is extremely susceptible to me-
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chanical shock, being much less resistant to this than the

thicker, colored films. Nevertheless, with extraordinary pre^

cautions soap films have been kept "alive" for many days, and

in one case certainly for a year. For further information on the

preparation of the solutions and on the experimental technique,

the reader can consult Lawrence's book already mentioned.

In a vertical film the black stage appears at the top and

gradually spreads downwards, the boundary between it and the

thicker film immediately below being quite a sharp horizontal

line. In the lower part of the film illumination by mono-

chromatic light shows, by the appearance of horizontal bands

of color across the film, that stages of different thickness succeed

one another, the whole mass draining all the time and the

banded appearance going through characteristic changes accord-

ingly. In a horizontal film the black appears as a small circular

disc. The sharp boundary between the black and the adjacent

part indicates a change in thickness with a very steep gradient,

involving changes occasionally as much as several hundred

to one between black and adjacent parts, and never less than

ten to one. As stated on p. 662 of this volume, it used to be

believed that the appearance of black necessarily led to early

rupture of the film, but this is not a fact provided shock and

contamination are avoided. The thinning of a horizontal film

in this way is of course not due to gravity; actually the Gibbs

ring formed where the film meets the solid boundary to which

it is attached is responsible for this draining.

We have referred briefly to the normal thinning of a film,

under, of course, careful conditions, but certain abnormal

developments occur at times, and Gibbs himself knew of these

as we see on reading pages 312 and 313. Sir James Dewar

made many experiments on vertical films in which he observed

that instead of the black spreading steadily over the film, black

spots appeared in many places, especially at the thicker parts.

These spots rise to the top of the film and there coalesce to

produce an apparently normal black film, and the film settles

down thereafter to the usual course of development. This so

called "critical" behavior of the film seems to require some

definite stimulation from external sources to bring the film to

the state in which the "critical black fall" begins.
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Space permits us to mention only one more point, first clearly

established by Perrin, viz., that soap films can be "stratified,"

the layers of a stratified film being formed by the superposition

of identical elementary leaflets in suitable numbers. The
thickness of each layer is an integral multiple of an elementary

thickness which is of the order of 5 to 6 millimicrons. Actually

it is known also that under certain circumstances more than

one thickness of black film can be formed ; but the thicker blacks

do not last long and quickly give place to the thinnest. With
this extreme tenuity of the ultimate black film, it becomes
porous and the air inside a bubble which has reached the black

stage is gradually forced out by the excess of internal pressure,

thus leading to the collapse of the bubble. The reader will find

a wealth of interesting material in Lawrence's book, with abun-

dant references to original papers on the subject.

XVIII. Surfaces of Solids

[Gihhs, I, pp. 314-831]

60. The Surface Energy and Surface Tension of the Surface

of a Solid

In the first portion of this subsection Gibbs returns to the

treatment of a problem which he has previously considered in

pages 193 et seq. of the section on the conditions of equilibrium

for solids in contact with fluids, viz., the expression of the con-

dition which relates to the dissolving of a solid or its growth

without discontinuity. The problem is now studied with

regard to the effect of the existence of surface energy on the

course of events, a point not raised in the earlier discussion.

He defines his terms for surfaces between a solid and a fluid in a

manner similar to that employed for fluid interfaces, and it is

to be observed that his symbol a is now definitely associated

with surface energy and not surface tension. We have already

referred to common misconceptions in this connection in the

case of fluids, where, however, the concept of a surface tension

may prove serviceable at times as a fiction whose use can be

justified by mathematical convenience. But here the various

states of strain in a solid can perhaps justify us in the conception
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of a tension depending on a stretching of the surface arising

from a deformation of the soHd itself, but this is entirely-

different from the surface energy. In the case of a fluid the

quantity o-, whatever name we give it, is not the measure of the

work of a force stretching the fluid surface by unit amount but

of the increased energy acquired by molecules which have come
from the interior of the fluid to form a new unit of surface, the

surface itself being otherwise in the same physical condition as

before. It may be, as Gibbs remarks, that in certain cases the

actual numerical values for the two quantities in the case of a

solid approximate to each other, and so, for example, equation

[661] can receive an interpretation, as explained in the last

paragraph of page 317, which makes its content identical with

that of equation [387]. However, the writer has some reserva-

tions to make on this matter which will be given presently.

A reminder to the reader may not be out of place when he

begins to read this subsection. The words isotropic and

anisotropic can be applied to states of stress in solids, as well as

to the solids themselves. This matter has been already dealt

with in the commentary on "The Thermodynamics of Strained

Elastic Solids" (Article K) which may well be referred to in

this connection.

On pages 316-320 the equation equivalent to [387], viz. [661],

is deduced for isotropic solids. On pages 320-325 crystalline

solids are considered. The proof of [661] will offer no difficulty,

as the reader will now be familiar with the type of argument

employed. One special point alone calls for comment. If a

closed curved surface is displaced by an amount ^A'" along its

normals so as to take up a new position "parallel" to its original

form, each element of its surface, Ds changes in area by an

amount (ci + C2)8NDs where Ci and C2 are the principal curva-

tures of the element. This fact, the proof of which will be

found in the section on curvature in Article B of this volume,

is used in the expression for the increment of energy with which

the argument starts and in the subsequent expressions for incre-

ment of entropy, etc. Just after equation [661] there occurs a

statement concerning the expression p" -{- (ci + C2)a. This is

dependent on the same considerations as were used in our dis-
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cussion on p. 521 of the connection between the external pres-

sure on the spherical surface of a liquid and its internal pressure

at the surface, the quantity Ci + Ca here replacing the quantity

2/R there, R being the radius of the sphere. It is in fact

equivalent to the use of equation [500]. The writer, however,

feels that the qualification in the text concerning o- being the

"true tension of the surface" is uncalled for. If a is the free

surface energy per unit area, the same form of proof will hold

as before for the statement, and will lead to the same conclu-

sion, viz., equation [500]. It is true that in the case of the solid

the causes giving rise to free surface energy will include changes

in the relative configuration of molecules in the surface arising

from surface stretching, as well as the already familiar inward

attractions of underlying molecules ; but whatever be the causes,

o- has the same meaning in these formulae as before, and
p" + (ci + ^2)0- is the internal pressure under all circum-

stances. On the same grounds the writer is somewhat critical

concerning the remarks at the end of the first paragraph on

page 318. He feels that the conclusion there drawn is based

on a mistaken view that the surface phenomena resemble in

this respect those in a stretched membrane separating two

bodies of fluid, and he cannot persuade himself that one should

adopt any other view concerning a than those already indicated

;

if he is right in this contention and if one introduces the con-

ception of an isotropic internal pressure, he fails to see how the

familiar proof from energy considerations already used on pages

228-229 of Gibbs' work is not as valid as before. In short he

cannot satisfy himself that there is any need in these arguments

to separate artificially a certain portion of the free surface

energy, viz., that arising from stretching apart of the surface

molecules, from the whole amount of it, and to introduce it as

the sole determining factor in the difference between internal

and external pressure.

In order to convince himself of the truth of the statements

made in the second paragraph on page 318, the reader should

refer back to the conclusions drawn in Gibbs' discussion of

strained solids at the bottom of page 196, which might other-

wise not be recalled. The additional argument when gravity

is taken into account needs no comment.
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The gist of the long footnote on page 320 is that since two

pieces of ice, for example, do not freeze together spontaneously

but only under pressure, the free energy of the discontinuous

region formed between the two pieces on freezing, denoted

by (T// is not less than, and is most probably greater than, the

sum of the free energies of the two surfaces in existence before

the regelation, denoted by 2(tjw.

The argument concerning crystalline solids follows the same

course. To enable the reader to grasp the reason for the second

part of the expression on page 320, Figure 11 is supplied. It

represents a section of the crystal at the edge V which is sup-

posed to extend at right angles to the plane of the paper; BE
is part of the section of the surface s by the paper, AB a. part of

Fig. 11

the section of s'; CF is a part of the section of the surface s after

growth of the crystal, so that the angle EBC is w', and CD is

equal to bN. The face s' has, as far as the phenomena around

the edge at D are concerned, increased by an area I'BC, i.e.

V • CD cosec co' or V • cosec co' 8N; the face s has decreased by an

area I' BD or V cot w' 8N. Of course if co' is greater than a right

angle, at any edge, the term involving cot co' in the correspond-

ing portion of the summed expression will be essentially nega-

tive and the term will be virtually an addition term, as is clear

from the fact that at such an edge s increases in area.

The argument on page 322 concerning stability follows

precisely the same course as those employed earlier in the case

of fluids, on which we have already commented fully. It should

offer no difficulty. Nor is there anything in the three following
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pages requiring any special explanation, except perhaps the

remark in the footnote on page 325, that the value of the poten-

tial in the liquid which is necessary for the growth of the crystal

will generally be greatest for the growth at that face for which

a is least. The reader will note that if formation of solid

material is taking place on this face, it is the faces with larger

values of a which are increasing in size, and therefore the crystal

is receiving greater increments of energy per unit increase of

area than would be the case if growth took place on one of the

sides of low a.

It should be mentioned that attempts have been made,

especially in recent years, to measure the free surface energy

and total surface energy of solids, but with very doubtful

success owing to the inherent difficulties of the situation.

Owing to the absence of mobility the usual methods applicable

to liquids fail. However, one can resort to a method which

treats the solubility of small particles as varying with size in the

same way as the vapor pressure of small drops of liquid. The
method is theoretically sound but there are unavoidable errors

in its application. It is known that the vapor pressure, p, of a

liquid above a plane surface and p', the vapor pressure in

equilibrium with a spherical drop of radius r, are connected by

the relation

Rt v' 2(r— log — = —

'

M p rp

where M is the molecular weight of the vapor and p the density

of the liquid. The solubilities of a solid in large bulk, and in

the form of small spherical particles, are related in a similar

manner. However, there are considerable difficulties in grind-

ing suitable particles, or in preparing them by rapid condensa-

tion from vapor or by deposition from solution. It is not prob-

able that the surface atoms in such small portions will have the

same regular arrangement as in a plane surface. The reader

should consult the following papers for details:

Ostwald: Z. physik. Chem., 34, 495 (1900).

Hulett: Z. physik. Chem., 37, 385 (1901).
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Hulett: Z. physik. Chem., 47, 357 (1904).

Dundon and Mack, and Dundon: /. Am. Chem. Soc, 45, 2479, 2658

(1923).

Thompson: Trans. Faraday Soc, 17, 391 (1922).

Attempts have also been made to measure the change in

total surface energy owing to smallness of particle by determin-

ing the heats of solution for small and large particles. See

papers by Lipsett, Johnson and Maass in the /. Am. Chem. Soc,

49, 925, 1940 (1927); 50, 2701 (1928).

61. Contact Angles. The Adhesion of a Liquid to a Solid.

Heat of Wetting

Pages 326, 327 of Gibbs' treatment deal with the derivation

B

Fig. 12

from the very general method, used earlier on page 280, of the

well-known contact-angle relation [672]. The double relation

[673] is necessary for an edge. Thus if the line of meeting

receives a virtual displacement from the edge of the solid along

the face of s in contact with A (Fig. 12) so as to allow the liquid

B to come into contact with unit of area of this face, the inter-

face between A and B is reduced by an area of amount cos a,

where a is the angle YXP. (This is' in general actually an
increase since a is usually obtuse.) Thus there would be a
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change of free surface energy of amount (Tbs — (Tas — <^ab cos a.

For equilibrium this must be positive or zero, and so

(Tbs — (Tas '^ Oab COS a.

Similarly

(Tab — (Tbs "^ ctab COS /3,

where (8 is the angle QXP. If A and B are in contact with a

single face, a and jS are supplementary angles, and the signs of

inequality must be removed since the two statements would

be contradictory in that case; thus we obtain [672]. A very

good account of the measurement of contact angles is given in

Adam's book on the Physics and Chemistry of Surfaces, Chap-

ter VI, where, in addition to the well-known troubles due to

contamination, the effect produced by a movement of the

liquid along the surface of the solid is discussed, an effect

which is not sufficiently recognized in much of the literature.

The contact angle gives a very good idea of the relative mag-

nitudes of the adhesions of different liquids to a given solid.

The measure of such an adhesion is the energy per unit area re-

quired to separate the solid and liquid from contact. Thus if

(tla is the surface tension of the liquid in contact with air,

csA that of the solid in contact with air and (Tls that of the

interface between solid and liquid, this "work of adhesion" is

equal to (Tla + (Tsa — (tls- If now a is the contact angle at

which the liquid-air interface meets a wall of the solid (measured

in the liquid) we have from [672]

(Tla cos a = (Xsa — (Tls-

Therefore the work of adhesion, being measured as above, is

equal to

(tlaO- + cos a).

If the contact angle is zero the work of adhesion is equal to

2(rLA, which is the energy required to separate the liquid

from itself (since such a separation produces two surfaces in

contact with air, where there were none previously), and so if
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the liquid attracts the surface as strongly as (or indeed more

strongly than) itself, the contact angle is zero. On the other

hand, an obtuse angle of contact, such as in the case of mercury

and gl ass, indicates relatively small adhesion or absence of wet-

ting. Reference should also be made to the "heat of wetting"

in this connection. Heat generally results from the making of a

contact between the surfaces of a liquid and a solid. This

heat is the total energy of the wetting of the solid by the liquid,

and is connected with the adhesion or free energy of wetting

by the same relation as exists between the total and free energies

of a surface, as can be easily shown by combining the three

equations derived thus for the three interfaces, solid-air, liquid-

air, solid-liquid, with the definition of adhesion given above.

In fact if WsL is the work of adhesion, the expression for the

heat of wetting per unit area is

dWsL

However, there seems to be considerable difficulty involved in

calorimetric determinations of the heat of wetting, as widely

divergent results are obtained by different experimenters,

although the existence of the phenomenon has been known for

over a hundred years. In consequence, the result just quoted

has not been verified, since it would require, in addition to a

knowledge of the changes of aLA and a with temperature (which

could be obtained with sufficient precision), reliable values of

the heat of wetting, which appear to be wanting. The reader

should consult Adam's Physics and Chemistry of Surfaces and

Rideal's Introduction to Surface Chemistry, Chapter V, for fur-

ther information and references. The matters just dealt with

are also closely connected with the question of the conditions

under which a liquid will spread as a film over a solid, or remain

in compact form as a drop. For an adequate treatment of this

important point and its bearing on lubrication reference can be

made to Chapter VII of Adam's book, as space is not available

for more than a passing remark here. In the same volume a

brief account is given of the connection between contact angles
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and the separation of minerals from a mixture by the "flotation"

process.

There is of course an "adsorption equation" for a soHd-

fluid interface; it is [675] of Gibbs, or its equivalent, [678].

Reference to adsorption at a solid surface has already been

made earlier in this commentary, where an account is given of

Langmuir's deduction of his adsorption equation from statistical

considerations. Here the experimental results are once more

so difficult to interpret that the situation is far from satisfactory

as regards proving or disproving any theory. The reader is

once more referred to Adam, Chapter VIII, for an adequate

account with references.

XIX. Discontinuity of Electric Potential at a Surface.

Electrocapillarity

[Gibbs, I, pp. 331-337]

62. Volta's Contact Potential between Two Metals and Its Con-

nection with Thermoelectric and Photoelectric Phenomena

The brevity and caution with which Gibbs refers to these

matters is natural when one remembers the date of publication

of this memoir. In this connection a letter written to W. D.

Bancroft, printed at the end of the volume (Gibbs, I, pp. 425-

434) , will prove of interest, especially the paragraph at the top

of page 429. The situation has been, of course, radically al-

tered since those days, experiment having in the meantime

clarified obscurities and removed doubts inherent in any treat-

ment undertaken at that time.

Historically, the question of electrode potentials dates back to

Volta's early researches on contact potentials between metals.

The discredit into which that hypothesis fell during the nine-

teenth century was due, of course, to the extreme insistence by

the physical chemists and some physicists on the source of the

energy transformations in the cell. This led them to look for the

source of the E. M. F. of the cell entirely at the metal-electrolyte

interfaces, though it must be remembered that Volta's theory

was ably defended by many physicists, among whom must be

reckoned Lord Kelvin and Helmholtz. An account of the
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famous controversy will be found in Ostwald's Elektrochemie,

Ihre Geschichte und Lehre, or in briefer guise in the first few

pages of a paper by Langmuir, " The Relation between Con-
tact Potentials and Electrochemical Action" (Trans. Am. Eledro-

chem. Soc, 29, 125 (1916)). The great temporary success of

Nernst's "solution pressure" hypothesis still further intensified

the neglect of Volta's ideas. It was the essence of Volta's

theory that the contact P.D. between two metals is the differ-

ence between two quantities, each one being a characteristic

of one metal only, and Volta recognized that such an assump-
tion fitted very simply with the fact that in a closed chain of

different metals in series no current flows. It must be admitted

that the great discrepancies between the different experimental

attempts to measure Volta potentials militated against the

success of the theory as a working hypothesis, and led people

generally to believe that such potentials, if they existed, were

the result of chemical actions at the surfaces of metals and not

characteristic of the metals purely and simply.

But today investigation of thermionic and photoelectric

phenomena has greatly altered the status of Volta's ideas just

when the validity of Nernst's hypothesis is being seriously ques-

tioned by the physical chemists themselves. The work initiated

by Richardson on thermionic emission, and the great power
which experimentalists possess in producing high vacua and
maintaining scrupulously the cleanliness and freedom from con-

tamination of metal surfaces, has demonstrated beyond question

that electron emission from metals is an intrinsic property of

pure metals, and that for each metal there is a characteristic

quantity, viz., the energy absorbed when an electron escapes

from the metal across the surface. If this be postulated it

follows as a logical result that when two metals are in electric

equilibrium there must be a P.D. between them if their "electron

affinities" are different. (The electron affinity is defined as

the quantity cf), where e4> is the characteristic energy of escape

referred to, e being the numerical value of the electron charge.)

Further, the experimental work of Langmuir, Millikan and

others has placed the existence of this P.D. beyond the pale

of doubt. To demonstrate the logical dependence of contact
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potentials and electron affinities is not a difficult matter, but

it requires the reader to be very clear on certain elementary

points in the theory of electricity. Thus the definition of elec-

tric potential at a point is given in the words "the work required

to bring unit positive change from infinity to the point," but

it is not always borne in mind that the transference of the

charge is assumed not to disturb the existing distribution of electric

charge in space. The neglect to take account of this proviso

will lead to paradox and perplexity in some cases. Thus

suppose we have an uncharged conductor far away from all

other conductors so that it is at zero potential. Now imagine

the test positive charge to approach the conductor from

infinity; as it gets near, a negative charge is iijduced on the

proximate face of the conductor and a positive on the re-

mote; an attraction is exerted on the test charge, which means

that work has been done on the charge in coming from infinity

to the conductor. Or, if a test charge be taken away from the

conductor, the disturbance of the distribution of charge which

existed in the conductor before the test charge was placed near it

will produce an attraction on the charge, and the unwary might

therefore infer that the uncharged conductor is at a negative

potential, the potential at infinity being taken to be zero as

usual; but of course that is an erroneous conclusion and due to

neglect of an essential feature of the definition of potential.

Another point to be borne in mind (but often overlooked) is

that there is no discontinuity of potential between a point in a

charged conductor and a point just outside it. The quantity

which is discontinuous is the intensity of electric force (which

is zero inside a statically charged conductor and equal to 4tk

just outside, where k is surface density of charge), and this

intensity is the gradient of the potential. A geometrical illus-

tration can be observed at a point on a graph where there is a

sharp break in the slope. There is no discontinuity in the

ordinate y, but one in the slope, i.e., ui the gradient of y, viz.

dy/dx. If there is a discontinuity in the potential at the sur-

face of a conductor, or at an interface between two conductors,

it can only arise owing to a "double layer" of opposite charges,

say a positive surface charge and, at a physically small distance
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further out, a negative charge (either in the form of a surface

charge or in a more or less diffuse layer) not actually coincident

with the positive charge.

We can now give the theoretical connection between electron

affinities and contact potentials quite simply if the reader will

recall the few remarks on statistical conditions in subsection (9)

of this article. Conceive a metal body to be in a vacuum in

an enclosure. Electrons escape from it and gradually the metal
will become positively charged. (At room temperatures this

process would be very slow, but this does not affect the validity

of the calculations which are concerned with the ultimate state

of equilibrium, attainable of course at much greater speed at

high temperatures.) A state of equilibrium is reached (anal-

ogous to that of an evaporating liquid in an enclosed space)

when as many electrons return to the metal body as leave it in

unit time. There is no difference of potential between the

metal and a point just outside, but there does exist a difference

between the metal and a distant point, since the metal is

charged. Let the electron concentration in the metal be n and
that in the space adjacent to the metal surface n'; then we have
by a well-known statistical relation

n
= exp i-t)11

or

kt(\og n — log n') = e<t>.

If an electron travels from a point near the surface to a point

P in the "space charge" where the potential is Vp, the electron

loses kinetic energy of an amount e{V — V p) where V is the

potential of the metal body and also the potential at a point

just outside it. (It would gain that amount if the electron were

charged positively.*) This follows from the strict definition

of potential; for it is assumed that by the time the electron has

travelled a physically small distance from the surface the

* Observe that e is treated here as a number without sign; the numeri-
cal value 4.8 X 10""" of the electron charge.
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effect of its "induced charge" (i.e., the corresponding positive

charge left unneutraUzed by its exit) on it has vanished and no

further work is done against its motion on that account; that

has already been reckoned in e^ and the movement from the

surface to P produces no further disturbance of the surface

charge and no practical change in the "electron atmosphere"

or "space charge" in the enclosure, which has a very low con-

centration. Hence by the same statistical rule

np ( e\V -Yp\
= exp ( e\Y-YA \

n

or

A;/ (log n' - log np) = e{V - Vp).

Let us now consider two metal bodies not in contact with one

another but inside the same enclosure. When in equilibrium

the bodies will be at potentials Vi and V2. We then have the

following relations

kt(\og rii — log n/) = e<^i,

ktilog n/ - log np) = e(Vi - Vp),

and two similar relations for the other metal. It follows easily

that

ktlogui - 601 - e{Vi — Vp) = U log np

= kt log n2 — €(f)2
— e(V2 — Vp),

and therefore

kt

Ti — T2 = "~ (log Wi — log n2) + <^2 — 01.
B

This relation is not disturbed by bringing the metals into con-

tact; it holds for any relative position of the bodies; when they

come into contact the electron concentrations on their contiguous

parts adjust themselves to produce a double layer consistent

with the discontinuity of potential Vi — V2 across the interfacial

boundary. The body with the smaller electron affinity has its
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normal concentration reduced at the interface thus producing

the positive side of the layer there, while the excess electrons

go to increase the local concentration in the other body, produc-

ing the negative side of the layer. It will be seen that this

contact potential Vc = Vi — Vz depends on temperature.

Now long ago Lord Kelvin and Helmholtz in combating the

view that Volta potentials could be identified with the Peltier

effect, showed that the latter is really dVc/dt being thus simply

the temperature coefficient of the Volta effect. (See for exam-

ple Lord Kelvin's paper, Phil. Mag., 46, 82 (1898).) If this

is so we see that the Peltier effect, i.e., the "thermoelectric

power" of two metals is (k/e) (log Wi — log W2). But we know
that this is very feeble compared to Vc, and there is also evi-

dence from the values of electric conductivities and from recent

work on the electron theory of metals that the electron concen-

trations in different metals are of the same order of magnitude,

so that the term (kt/e) (log ni — log 712) is negligible. Thus,

practically,

Vc =
<l>2
— <^l.

This is the modern formulation of Volta's theory, expressing the

contact potential as the difference of two electron affinities,

each one a characteristic of its metal.

As regards the production of current, suppose the metals

to be in contact at a pair of faces, and bent so as to face each

other across a relatively wide gap at another pair. If an

ionizing agent were placed near the air gap, ions would be

created in the gap and be driven one way or the other by the

electric field between the two faces at differing potentials, thus

tending to annul the field. If the ionization ceases, the P.D. is

restored in the air gap ; fresh ionization will create fresh current

and so on. It will be observed that the energy of the currents

is not obtained from the surface of contact of the metals but

from the ionizing agent. This vitiates at once one of the

implicit assumptions of earlier generations of workers, viz.,

that one must look for the source of the E. M. F. at the same

place as one finds the source of the energy changes. The
function of the electrolyte, as Lord Kelvin always emphasized,
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is to discharge the charged surface of the plates. It does so by

means of the ions arising naturally from its own dissociation.

Indeed Volta had vague notions of the same kind, although

naturally he could have no prevision, in his time, of modern

ideas of dissociation and energy.

Of course this changed attitude towards the Volta effect does

not carry with it a denial of the existence of a P.D. at a metal-

electrolyte interface; it merely asserts that the metal-electrolyle

discontinuities in potential do not account for the whole of the

E.M.F. of a cell.

63. Discontinuity of Potential between a Metal and an Electrolyte

As is well known, the hypothesis of Nernst concerning the

origin and magnitude of the potential discontinuity at a metal-

electrolyte interface has been accepted until recently by most

physical chemists as an adequate formulation. Nernst's proof

of his formula is thermodynamical, and he deduces the result

M
Ve = — (log p, - log Pa)

,

where po is the osmotic pressure of the ion which is the common
component of electrolyte and electrode, ps its "solution pres-

sure" in the metal, v the valency of the ion, and Ve the excess

of the potential of the electrode above that of the electrolyte.

The "solution pressure" in the metal cannot be intuitively

apprehended like the pressure in a gas, or even like an osmotic

pressure, which at all events is open to observation by means

independent of all considerations of electrode potentials. It is

merely brought into the proof to provide a work term in a usual

isothermal cycle when electrons occupying volume v in the

metal pass into a volume v' in the solution, The proof is well

known and can be found in standard texts (e.g., F. H. Newman's

Electrolytic Conduction, London, 1930, pp. 184-185). The great

objection to the hypothesis is the perfectly monstrous values

of solution pressure which must be postulated to make the

formula fit the facts. Thus for zinc Ps is almost 10"^^ atmos-

pheres, while for palladium it is about 10~^^ atmospheres; in
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the latter case the solution would have to be so dilute round
the electrode that a quantity of it as large as the earth would
contain two palladium ions at most! With such a huge solu-

tion pressure zinc would have to part with over one gram of

ions per sq. cm. in order to attain equilibrium when placed in

an ordinary solution of a zmc salt; to avoid such an obviously

impossible result one has to make ad hoc hypotheses concerning

the extreme slowness with which equilibrium is reached. It is

true that, by abandoning the assumption that ionic atmospheres

obey the gas laws, Porter and others have shown that more
moderate values for p^ can be obtained; but investigators have

of late considered other possible explanations of metal-solution

pressure. References to these will be found in Newman's book

Chapter VI and Rideal's Surface Chemistry. A feature of

Nernst's formula is its logarithmic form, in which it resembles

the contact potential formula obtained above—indeed Nernst's

formula could be obtained by somewhat similar statistical argu-

ments provided the physical environm.ent of the metal were as

simple as in the case of contact potentials. Now Rideal (Trans.

Faraday Soc, 19, 667 (1924)) has observed that the order of

different metals as regards electron affinities is much the same

as the ordinary electromotive order. Nevertheless, the fact

that an electrode P.D. depends upon the concentration of the

electrolyte shows that it is impossible to interpret such a P.D.

entirely in terms of a quantity such as is adequate to account

for contact potentials. However, Rideal has derived a formula

in which the difference between the electrode potential and the

electron affinity of the metal is dependent on its atomic volume.

Its form is

kt
F. - * = -f(A),

where A is the atomic volume of the metal. Schofield (Phil.

Mag., [7], 1, 641 (1926)), by an argument based on Gibbs'

chemical potential of an ion, derives a formula

J. _ kt(\og c — {km — ke})
Ve — -

)

ve
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where c is the concentration of the ion in the solution, km. a

quantity "representing the concentration and environment in

the metal" and ke "represents the environment in the electro-

lyte". The solution is supposed to be dilute; in stronger

solutions log c would be replaced by the logarithm of the activity.

This is formally somewhat like Nernst's formula, km — ke replac-

ing the term containing the logarithm of the solution pressure.

Butler has derived from a statistical argument the result

y. _ u + kt{\og r + log g)

ve

where u is the energy change for the transference of one ion

from metal to solution, a the activity of the ion in solution

and r a small constant characteristic of the metal and depending

on the number of metal ions per sq. cm. of the metal surface.

(See Trans. Faraday Soc, 19, 729 (1924)).

All these formulae for electrode potentials exhibit one

common feature. They attempt to express the P.D. as the

difference of two quantities, one related to the metal and one to

the electrolyte, and in that respect they resemble the theoretical

result obtained above for a contact potential between metals;

but the quantity related to the metal can scarcely be said to be

"characteristic" of the metal in the sense that it depends only

on the metal. Thus consider the formula of Butler; it appears

in the proof that uisw2 — wi, where Wi is a loss of energy by the

ion in travelling from the surface to a certain point in the liquid

against the ordinary attractive forces of the solid and adjacent

liquid, and w^ is a similar quantity for a movement from the

interior of the Hquid to the point. A careful examination of

the proof shows, however, that the position of this point would

alter with the concentration of the electrolyte, so that Wi would

change with this concentration; and so the quantity related to

the metal depends as regards its value on the nature of the

electrolyte. But, of course, the simpler state of affairs which

holds for metals in a chain could not be true for metals and

electrolytes; for if it were, no current would flow in any complete

circuit made up of metals and electrolytes, as is true in the

case of a complete chain of metals.
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64. Gibbs' Comments on Electrode Potentials

Leaving these matters, and turning to a few brief comments
on Gibbs' own pages, we meet a statement in a footnote to page

333 to the effect that for a cell with electrodes consisting of zinc

dissolved in mercury in different proportions equilibrium would

be impossible. For, considering a certain solution, if we slightly

alter the relative masses for two constituents but maintain the

pressure constant, then dp is zero and so (mi/v)dni + {m2/v)dn2

is also zero ; so that if d/xi is positive, dn2 must be negative, or an

increase in ^i involves a decrease in nz. Hence if Hm' > y-J'

then /i/ < Hz" . Thus it would be impossible for the conditions

of equilibrium

m }V + a„Mm' = V" + a„M

to be true simultaneously.

With regard to paragraph (II), p. 334, a discharged ion going

into solution would no longer be related to other components by
equation [683] ; it would be an independent component with in

general an entirely different chemical potential from the charged

ion. If there were current flowing, a charged ion would appear

to have no definite chemical potential since it would not be in

equilibrium, but we would infer by [687] that for small currents

its chemical potential, if it were a cation, would increase as it

travelled towards the cathode, (if an anion, towards the anode)

on account of changing electric potential in the solution. The
discharged ion would not be affected by the electric field. How-
ever, the paragraph indicates the case of minor interest where

the chemical potential might remain unchanged by the dis-

charge. Paragraph (III) introduces the possibility of an

equilibrium being effected by absorption of an ion by the elec-

trodes, as in the case of the well known polarizing effect of

hydrogen bubbles in a simple copper-zinc cell. The phe-

nomena of polarization and of overvoltage can be studied in

standard texts. (See for example Chapter VIII of Newman's
book, cited above. Chapter VI of the same work gives a good

account of the experimental methods used to measure electrode

potentials.)
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65. Lippmann's Work on Electrocapillarity and Its Connection

with Gibbs' Equation [690]

The paragraph marked (IV) makes a brief reference to

electrocapillarity, and in it Gibbs derives equation [689] which,
under the conditions that govern the use of the capillary electrom-

eter, reduces to a simpler form without the second term on the
right-hand side, and this is shown to be equivalent to [690] which
is the well-known equation due to Lippmann. The fact that
the tension in an interface between mercury and acidulated

water is dependent on the electric conditions was first discovered

by Varley (Phil. Trans., 161, 129 (1871)). Two or three years

later Lippmann began a fuller investigation of the phenomenon.
He derived the equation which goes by his name, and designed

the capillary electrometer to test his conclusions.* The essence

of his experiment is the use of an electrolytic cell consisting of

sulphuric acid solution and mercury electrodes; the anode has a
large surface exposed to the solution, the cathode a very small

surface (actually the section of a capillary tube). A current is

passed, and if it is not too large the density of the current per

unit area of the anode is very small, while the current density

at the cathode is so great that the cathode surface becomes
highly polarized while little or no effect is produced at the anode
surface, and the current is stopped by the reverse E.M.F. set up.

A new state of equilibrium is produced which varies as the

applied E.M.F. from the external source is increased up to a

limit beyond which the current cannot be stopped and equi-

librium becomes impossible. The theory which he gave for his

results is essentially the theory of a charged surface—purely

electrical with no hypothesis as to the physical occurrences at a
mercury electrode. A charged conductor like a body of mer-
cury has its charge on the surface. Looking at the surface ten-

sion as if it were due to tangential attractions in the surface, the

conclusion that a surface charge should reduce the surface ten-

sion by reason of the mutual repulsions of its parts is very

Comptes Rendus, 76, 1407 (1873); Phil. Mag., 47, 281 (1874); Ann.
chim. phys., 6, 494 (1875) and 12, 265 (1877); Comptes Rendus, 95, 686

(1882).
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plausible; but there is no need to resort to this fallacious view of

the nature of surface energy. Actually there is at the surface

an amount of energy <tos due to ordinary molecular causes, where

(To is the surface tension with the surface uncharged and s the

area of surface, and in addition an amount of electrical poten-

tial energy ^QV where Q is the charge and V the potential of the

conductor. (Note that there is no hypothesis of a potential

discontinuity of amount V at the surface and a double layer of

charge.) Were the form of the conductor to change so as to

increase the surface by an amount 5s and heat to be supplied

reversibly so as to maintain the temperature constant, the

increase in the energy due to molecular causes is crods, but since

the same charge Q is on the surface its surface density will be

reduced and there will be a fall in electric potential energy, for

further separation of similarly charged particles always involves

decrease of potential energy. Hence the actual increase in

surface energy at constant temperature is less than aoSs which

means that the surface tension of the charged surface is less

than ffQ. The total surface energy is e,(s, V, t), a, function of

area, potential and temperature, and o-(s, V, t), the surface

tension, is defined in the usual way as dcg/ds. A change to a

new state of equilibrium with the variables at the values

s + 8s,V -\- 8V,t produces a change in the total energy given by
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By cross-differentiation

dV ds ^ dVds dVds

dsdV

Therefore

aa _ dQ

dV ~ ~
ds

This is the result which Lippmann appHed to the cathode

mercury surface of his electrometer. In the usual form of the

experiment a steady current is established in a potentiometer

wire, the positive end of which is attached to the large mercury

surface of the electrometer; a wire from the mercury in the

capillary tube goes to the travelling contact maker on the

potentiometer. As the contact slides away from the positive

end towards the negative, so that the potential V of the mercury

cathode above the electrolyte is lowered, it is observed that a at

first increases and then, passing a maximum, decreases until a

state of affairs is reached at which the polarization of the

cathode is unable to prevent a flow of current under the external

E.M.F. and equilibrium ceases to be possible. If E represents

this applied E.M.F., i.e., the P.D. between the positive end of

the potentiometer wire and the contact in any state of equilib-

rium, then V = Vq — E, where Va is the excess of potential of

the mercury above that of the electrolyte in the "natural state"

(i.e., when the applied E.M.F. is zero) ; and if E„i is the value of

this apphed E.M.F. in the state of maximum surface tension,

then Vm = Vo — Em, where 7™ is the P.D. between mercury and

electrolyte in this state. Since initially da/dE is positive,

da/dV is negative and so dQ/ds is positive. Now dQ/ds

measures the increase of charge required for unit increase in the

area of surface, the potential being kept constant; in other

words the charge per unit area; it is also in general a function of

s, V, t, just as Q is, and we write it q{s, V, t). Thus initially
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there is a positive charge on the mercury cathode surface. At
the point of maximum a, where da/dV vanishes, q is zero, and

on further increase in E, q becomes negative. If we write

Lippmann's result in the form

one sees that it is equivalent to Gibbs' equation [690], although

at the first glance it would seem as if there were a difference of

sign between the two results; for V" — V is the applied electro-

motive force and so [690] becomes

da^ ly,

dE
~

Oa

Since Tif/aa is the excess ionic charge at the surface, a contra-

diction apparently arises. This disappears, however, on a

little thought; one must bear in mind that Gibbs considered the

transport of electricity in terms of ions, e.g., hydrogen ions;

these only travel from one discontinuous layer to the other;

Fa' represents the excess of (hydrogen) ions in the layer of the

electrolyte adjacent to the mercury represented by the singly

accented symbols, i.e., the cathode. Thus, as Gibbs points out,

there will be a defect of hydrogen ions in this layer in the natural

state, since by his equation Tj is negative if da'/BE is positive.

This involves a negative charge in this layer which is the

counterpart of the positive charge on the mercury surface;

for of course the region of discontinuity is uncharged as a whole.

66. The Double-Layer Hypothesis of Helmholtz

It was in fact this phenomenon of the double layer of charge

which Helmholtz emphasized. Holding as he did decided views

in favor of Volta's hypothesis of contact potentials, he pointed

out that a discontinuity of potential could only exist between

metal and electrolyte for the same reason as between two metals

in contact, viz., by a condenser-like action arising from equal

and opposite charges segregated in adjacent layers of the two
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materials.* Assuming that the distribution is actually on
the surfaces in analogy to the distribution in an ideal plane

condenser, it appears that Q = csV, where c is a constant, viz.,

the capacity of the double-layer condenser per unit area. Hence

and

da

Thus

ais, F, t) = (Tr, - IcV^

or

a{s,E,t) = am- hc{V, - E)\

This leads to two results: (1) that the graph of a and E should

be a parabola; (2) that Em = Fq. The first conclusion is

certainly only true in a very limited number of cases, while

the second, although it has served for some time as the basis for

a method of determining absolute electrode potentials, is unques-

tionably not exact. It was Helmholtz who suggested the

method in question. It consisted in measuring the E.M.F. of

a cell with one electrode of mercury and the other of the metal

whose P.D. against a given salt was required; the desired P.D.

was then calculated on the assumption that the potential at the

mercury electrode was that given by the value of Em, obtained

as above. Shortly after, he suggested the use of the dropping

electrode, a method based on a similar physical picture of the

phenomenon.

67. Recent Developments in the Thermodynamical Treatment of

Electrocapillarity

Since those days the developments of the theory have been

along two main lines. We can do little more than make verv

Monatsber. Akad. Wiss., Berlin, 945 (1881). Cf. A. Konig, Ann.
Phys. u. Chem., 16, 31 (1882). See also Planck, Ann. Phys., 44, 385 (1891).
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brief reference to them in our limited space; so we shall have to

be content with giving a few of the most important references

and then conclude with some remarks, which, it is hoped,

will enable the reader to study these papers more critically

than he otherwise might do.

One line of advance has carried forward a formal development

of Gibbs' thermodynamic treatment of the phenomena at

charged interfaces. Consult for example:

Gouy: Ann. phijs., 7, 129 (1917).

Frumkin: Z. physik. Chem., 103, 55 (1923).

Frumkin: Z. Physik, 35, 792 (1926).

Frumkin: Ergeb. der exakt. Naturwiss., 7, 235 (1928).

O. K. Rice: /. Phys. Chem., 30, 1348 (1926).

Butler: Proc. Roy. Soc, A, 112, 129 (1926); 113, 594(1927).

A good summary of this work will be found in Chapter VII

of Newman's book and in an article contributed by Frumkin

to the Colloid Symposium Annual, Vol. VII, pp. 89-104.

On the other hand the unsatisfactory nature of the conclu-

sions deduced from Helmholtz's condenser-layer theory of the

distribution of the charge, and his lack of suggestions as to the

manner in which they would be kept apart, has given rise to

theories, based on statistical treatment, of "diffuse layers" of

double charge. The interested reader can consult the following

papers.

Goiiy: Ann. chim. phys., 29, 145 (1903); 8, 291 (1906); 9, 75 (1906).

Gouy: Ann. phys., 6, 5 (1916); 7, 129 (1917).

Chapman: Phil. Mag., 26, 475 (1913).

Herzfeld: Phijsik. Z., 21, 28, 61 (1920).

Frumkin: Phil. Mag., 40, 363 (1920).

Stern: Z. Elektrochem., 30, 508 (1924).

O. K. Rice: /. Phys. Chem., 30, 1501 (1926).

This development of theory has been occasioned by the

deviation of the ascertained facts from the simple conclusions

derived from the combination of Helmholtz's ideas with Lipp-

mann's result. We can only mention here one or two of the

most important of these deviations. (In the experimental work

the solution in contact with the mercury electrodes is generally

saturated with an appropriate mercury salt to ensure that the

%
ujILIIRARY
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anode surface is unpolarizable. Thus a potassium chloride

solution is saturated with mercurous chloride; a sulphate with

mercurous sulphate, and so on.) The simple parabolic graph

for 0- and E is very far from being the rule. Thus while curve I

(Fig. 13) shows that an iV/20 solution of KCl nearly fits a para-

bola, a similar solution of KI (Curve II) is too steep in its

ascending portion; its maximum is lower than that for KCl and

corresponds to a larger value of E; beyond the maximum it

gradually approaches and merges into the KCl graph. Accord-

ing to the simple Helmholtz view, the mercury in its natural

state ought to be higher in potential than the KCl solution by

an amount represented by OP, about 0.6 volt; but higher than

the KI solution by OQ, about 0.8 volt. Now if this were so

we would expect to find that a cell containing these two solu-

tions with a mercury electrode in each would give a P.D. of

0.2 volt; but it is known that the P.D. is much smaller than

this. If then we assume that because the curve is "normal"

for KCl there really is a P.D. of 0.6 volt between mercury and

KCl in the natural state, we must admit from the evidence of

the cell just mentioned that the mercury must also in the

natural state be above the KI solution by practically the same

amount. Hence, at the maximum state for the latter solution

(represented by Q), when according to Lippmann's result the
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mercury surface has no charge and according to Gibbs (even

apart from the fact that the charges in mercury and electrolyte

must compensate one another) the electrolyte layer has no

excess or defect of ions, it follows that the solution should be

higher than the mercury by about 0.2 volt. Of course we can-

not be sure that our assumption for the KCl is correct, which

only makes matters still more ambiguous; for it is clear that

the situation renders doubtful the whole basis of the various

methods hitherto employed to measure an absolute elec-

trode P.D.

An explanation for this behavior has been offered on thermo-

dynamic grounds as follows. We have seen that in the natural

state positive ions (cations), such as hydrogen ions, will be in

defect in the electrolyte layer of the discontinuous region, while

negative ions (anions) would preponderate. It is assumed

therefore that in this state there are present anions which are

capillary-active, in the sense defined in the earlier part of this

article; i.e., they tend to lower the surface tension and are

"specifically adsorbed" at the surface of the solution on that

account. Now, in so far as this has any meaning, it apparently

assumes that the negative charge of these adsorbed anions will

be to some extent neutralized by the positive charge on the

cations in the electrolyte layer. The corresponding positive

charge on the mercury will exert the usual depressing effect on

the surface tension represented in the Lippmann equation by
— q 8V. But in addition to this, these anions will exert a still

further depressing effect represented by an additional term of

the Gibbs type — TSix (not an equivalent term). Whether this

"combination" effect can be derived from a really theoretical

treatment we shall consider presently. Of course it is part of

the assumed state of affairs that the cations are capillary-

inactive and are therefore not "specifically" adsorbed, their

presence in the layer is determined by the external electrical

influence. Without the specific adsorption of the anions it is

assumed that we would have the "normal" parabolic curve;

with the adsorption we have an additional depression and the

curve begins lower down than the normal. As the E.M.F. rises

the electric field drives the active anions out of, and brings
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inactive cations into, the electrolyte layer, so that the depression
of 0- below the "normally" depressed value due to the charge
grows less ; the actual curve gets nearer to the ideal. Even when
the exact neutralization of charge is just attained there are still

some anions ui the layer, balanced as regards charge by cations

and, with no charge on the mercury surface, still exerting some
depressing effect. At the maximum, the specifically adsorbed
anions have nearly disappeared from the layer, so that there are

practically only inactive cations with a corresponding negative
charge on the mercury, producing a normal depressing effect

on the surface tension with a very small specific anionic effect;

presently all the anions will have left the layer of solution and
thereafter the effect is normal; the curve merges with the ideal

curve. It would appear that at the maximum the surface of the

mercury should not be uncharged but should have a small

negative charge and the electrolyte should be a little above the

mercury in potential.

Certain solutions exhibit an opposite effect, producing a

curve practically normal to begin with, but falling below the

ideal as E increases. This could obviously be accounted for by
a hypothesis of active cations with inactive anions. Also

there are solutions for which the curve rises like the normal
curve, then falls under it and later on merges into the ideal

curve once more on its descending branch.

Certain deductions from this view have been verified. Thus,
for a solution involving only inactive ions, the P.D. between
it and mercury in the natural state should equal the value of

Em', hence if a cell were constructed with mercury electrodes in

two such solutions, its E.M.F. should be the difference of the

observed values of each Em. This has been found to be so.

Also, if we were to make a cell with mercury electrodes and two
solutions each of which involves active anions, we should find

that its E.M.F. is equal to the difference between the values

of E for the same surface tension provided this value of the

tension falls on the normal parts of the graphs in their final

descending portions; for at such a stage the specific effect of

adsorbed ions has disappeared and only the "purely electric"

effect is remaining. This has also been found to be true.
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This hypothesis, as we have pointed out previously, involves a

combination of a Gibbs term and a Lippmann term in the

expression for da, which are not equivalent to one another, but

complementary. Thermodynamical deductions of this equa-

tion will be found in the references mentioned above. The
most complete theoretical treatment is given in Butler's papers

in the first list of these references. In the writer's opinion it

suffers somewhat by an unnecessary complication, the intro-

duction of a second "surface tension," denoted by 7 in the paper.

The writer will give a statement of the theory without introduc-

ing this additional conception, at the same time making a critical

reference to one feature of such proofs.

68. The Reason Why Gibbs' Derivation of His Electrocapillary

Equation [690] Exhibits It as Equivalent to

Lippmann's Equation

In the first place it may be well to point out once more
just exactly how Gibbs' deduction of [690] comes to be equiva-

lent to Lippmann's result, and not complementary to it like the

"Gibbs terms" in more recent formulae for da. It simply arises

from the fact that in Lippmann's proof "electricity" is a

"component" of the mercury whose "chemical potential"

corresponds to V, the electric potential. We can actually make
the proof of Lippmann's result correspond in every mathemati-

cal detail to the manner in which Gibbs derives his adsorption

equation. Calling e* the energy of the mercury surface we
write

S(S = fSjjs 4- 0-55 -{- V8Q

as the condition of equilibrium of this surface, V corresponding

to n^ and Q to m^, the potential and quantity of the component,

"electric charge." By the usual reasoning based on the fact

that an increase of s requires, for equilibrium conditions at the

same t, a, V, proportional increases in e^, s, and Q we see that

e^ = tri^ -\- as -{- VQ.

Hence

des = t dT]S + T)S dt -\- a ds + s da -{- VdQ + Q dV.
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Therefore

ri^dt + sda -Y QdV = Q

or

da = — r]s dt — q dV,

i.e., at constant temperature,

da-

i7 = - ^'

Gibbs' own proof just carries through the same steps for the

"surface" of the solution, the component being the hydrogen ion

whose quantity in the electrolyte is supposed just to neutralize

the charge on the mercury (the apparent difficulty about the

sign has already been explained) and the chemical potential of

the ion is supposed to alter by the amount /3 6F where 5F is the

alteration of the electric potential of the solution and /3 the

reciprocal of the electrochemical equivalent a. Let us turn our

attention for a moment to this latter assumption.

69. Ouggenheim's Electrochemical Potential of an Ion

If one conceives an ion to be transferred from one solution to

another (in both of which it is an actual component) across the

interface, we can easily prove in the same manner as that in

which Gibbs derives his equations [687], [688], that

V + om' = V" + afx",

where the electrochemical equivalent a is a positive quantity

for cations and negative for anions. We can write this in the

form

where /3 is the reciprocal of a, the "chemo-electrical" equivalent

as we might call it. Actually it is the quantity n + fiV which

is the physically important and significant "intensity factor" in

the expression for the energy transferred from one phase to the
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other by the passage of the mass 8m of an ion, viz. (^t + ^V)8m.

It appears that in the transfer the division of the energy into

two parts nSm and /375w(or V8e) is of no practical importance.

The writer need not discuss the point fully here, since the reader

can find in a paper by E. A. Guggenheim (Jour, of Phys. Chem.,

33, 842, (1929)) some very interesting remarks on it which

will repay careful consideration. We shall consequently

replace the expression /x + fiV by M, referring to it, as is

suggested by Guggenheim in his paper, by the name "electro-

chemical potential" of the ionic component. This quantity M
has equal values in equilibrium conditions for an ion on opposite

sides of an interface if the ion is an actual component of both

phases. It has of course the same value in the region of dis-

continuity if it is an actual component of this region. If it

exists at the interface and in one bulk phase only, the electro-

chemical potential has the same value in each, a value which

cannot be greater than the value in the bulk phase in which it

is only a possible component.

Now it appears on reading parts of the literature that some

authors take it for granted that if the electric potential of a

phase is altered by the amount 57, then the quantity ^ + /3F or

M must alter by the amount /3 8V. This is no doubt based on

an implicit assumption that /x does not change in the meanwhile;

but this view seems to the writer to be too narrow and based on

the artificial splitting of the real chemical potential of the ion,

its electrochemical potential as we call it, into a "purely

chemical" and a "purely electric" part, which can vary

independently of one another. Even on this physically non-

significant analysis, one cannot guarantee that a change in V
will not alter the concentration of the ion and therefore the n

of the ion. The truth is, that the only chemical potential of an

ion of which we have any direct cognizance is the quantity we

have denoted by M, and we actually would have preferred still

to use the symbol m for it, but for the possibility of confusion

with the terminology of other writers. In fact, the electric po-

tentials of the phases are now to be reckoned among the thermo-

dynamic variables of the system, and the electrochemical

potentials of the ions (although to be quite exact the term
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chemical potentials should still be used) are dependent on the

values of these as well as on the other variables. If a change

takes place in the electric potentials and a new state of equilib-

rium results, the M quantities change so as to preserve the same

equalities and inequalities as before. The real physical signifi-

cance of the equivalence of M and ju + j87 can be expressed by-

saying that, if all the electric potentials of the various phases of

a system in equilibrium are increased by the same amounts,

then the system still remains in equilibrium, no transference of

ions (or other components) takes place, and the electrochemical

potentials are all effectively unchanged and at their original

values. But if the changes of electric potential in the various

phases are not equal, no general statement about the changes

in the various phases can be made beyond the one concerned

with the preservation of equalities, etc., in the case of a varied

state of equilibrium.

70. Derivation by Means of the Postulate of ''Specific Adsorption"

of Ions of an Equation Combining Oibbs* Terms for

Ions with a Lippmann Term for Electrons

In accordance with this we write the elementary change of

energy in a homogeneous mass in the form

5e' = tdr]' - p8v' + Mi8mi + M^ bm^ + . . .

,

and in a surface in the form

5es = tbr)S J^ o-^g 4- M^bmi^ + M2 bm^^ + . .

.

As before, we prove that

da = - rjsdt - Ti dMi - T2 dMi - ...

Since in general each homogeneous mass is uncharged as a whole,

and also each surface of discontinuity, it is clear that

TiiSi + r2/32 + TsPs + . . . =0,

for this expression is the whole charge per unit area on the ions

in the region of discontinuity. Hence

da = — -qadt — Vx dni — Fa d^ —
. . .,
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which is, of course, the expression Gibbs uses just before [689].

But in reahty we can show just as readily that

d(T = - T]sdt - Vi dNi - Vi dNi - . .
.

,

where A^i, A^2, etc. , are any quantities differing from Mi, M^, etc.

,

by amounts proportional to the various chemo-electrical equiva-

lents. This is in fact one aspect of the statement made above

concerning a system which has the electric potentials of all

its phases raised or lowered by the same amount.

So far we have considered solutions. If a metal, such as

mercury, is one of the phases, then we regard it as a phase with

two components, electrons and mercury ions Now the present

theory of metals considers the electric charge of a piece ofmetal

to be measured by the excess of the electrons in it above the

positive metallic ions, or the deficiency under; and quite simply

the "chemical potential" of the electron is just fi^V, where /S^ is

the chemo-electrical equivalent of an electron, viz., the

negative quotient of the electron-charge number by the mass
of the electron, i.e., —1.77 X 10*. In consequence, if the elec-

trical potential of mercury changes by 5F the chemical potential

of an electron changes by /S^SF or BM^ = ^JV. The region of

discontinuity between the mercury and the electrolyte is now
treated in the usual way. We must, of course, define the

position of the ideal dividing surface in order to give a definite

meaning to surface excess of any component. Various defining

conditions have been employed by different authors. For our

purpose the one used by Butler seems to be the simplest; this

places the surface so that the excess of mercury ions on the

mercury side of the surface is zero, i.e., so that the excess or

deficiency of electrons in the mercury measures the electric

charge on it ; in other words, if T^ is the excess of electrons per

unit area, q, the electric charge per unit surface, is equal to

fiiTf* There may of course be an excess concentration of

mercury ions on the electrolyte side of the surface, measured, as

usual, by the amount of these ions in excess of the amount that

would be in the electrolyte if the concentration of them were the

Note that /3e is an essentially negative number.
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same right up to the surface as throughout the solution. We
will denote this excess per unit area by Ti. There will of course

be other ions present; positive ions such as those of other metals

and of hydrogen; negative ions such as sulphion, chlorion, etc.

The total charge on all these ions, positive and negative, must

be equal and opposite to the charge on the mercury side of the

surface, so that if there is a deficiency of electrons in the mercury

the negative ions must preponderate in the solution part

of the discontinuous region; i.e.,

Te/?, + TiiSi + r2i82 + . . . = 0,

where 2, .... refer to ions other than the mercury ions. We
now have the equation

d<T = - rjadt - Te dM^ - Ti dMi - Tg dMi - . . •

,

or, at constant temperature,

da = - ^,V, dV - Ti dMi - T2 dMi - ...

= - qdV - Ti dMi - Ta dikfg - • • .

This formula exhibits the Lippmann term —q dV(q is the charge

per unit area on the mercury) and Gibbs terms in addition for

the various ions present in excess or deficiency on the solution

side of the dividing surface. These are the specifically adsorbed

ions, cations or anions, whose influence causes the deviations

from the simple normal state of affairs covered by the Lippmann

term alone. Thus the simple criterion that at the condition

for maximum a the charge should be zero is not necessarily

true, since for that condition it is the expression

dMi dMi

which is zero. If we assume that 8M1, 8M2, etc., are all altered

by ^idV, jSa^F, etc., respectively, we would, on account of the

fact that Sr/3 = 0, obtain the result that da is always zero,

which is absurd. Or we might assume that some of the MrS
alter by ^rSV (say the Mi for the mercury ion because it is a
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component of the mercury, while assuming that the Mr's of the

other ions do not alter). This would require that when da is

zero q + ^iTi should be zero, and would imply that in this

condition the charge on the mercury is just balanced by the

electric charge on the excess mercury ions in the solution part

of the region of discontinuity, and that there are no anions in

this part, or if there are, their charge is neutralized by other

cations situated there also. The truth is, however, that such

assumptions are not a necessary feature of the analysis. In

simple electrostatic theory, a change of electric potential

involves a difference of "charge" on the surface of a metal.

We make the hypothesis that this is occasioned by excess or

defect of electrons. Such electrons are a component of the

mercury alone. The mercury ions may travel in or out of the

solution across the interface. Other ions do not leave the

solution. The change in the concentration of the mercury ions

in the solution occasions changes of concentrations in the other

ions in the solution, but it does not necessarily follow that these

changes produce a change in each Mr which is exactly

equal to /3r5F. Indeed, electrocapillary curves constitute the

experimental evidence which should enable us to trace the actual

changes in the MrS, had we sufficient knowledge of the distri-

bution of the various ions in the solution layer adjacent to

the electrode. It may seem peculiar that changes in the very

small region adjacent to the capillary cathode of the electro-

meter should be responsible for changes in the Mr throughout

the whole solution, for of course the M of any ion in the solution

must equal its M in the surface layer; but we must not overlook

the fact that the electrometer is only part of a complete circuit

containing a voltaic cell, and we must not forget the existence

of the large mercury anode. It is assumed that it is not

polarized, i.e., that its surface has on it the normal positive

charge; it is not electrically changed. Now this might be quite

consistent with a different distribution of ions in the layer of

solution adjacent to it; fewer cations and fewer anions in this

layer could still provide just the correct negative charge in this

layer to balance the unchanged positive charge on the mercury-

anode. On changing the external E.M.F. by 8E(=—8V)
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there is a flow of current for a moment. Electrons go round the

external part of the circuit towards the cathode to remove some
of the deficiency there; some mercury ions leave the layer ad-

jacent to the anode; some anions enter this layer and, together

with some of the anions already present there, are discharged

and supply electrons to the mercury anode to maintain the elec-

tron flow in the main circuit; for we have supposed that there

might be fewer anions as well as fewer cations in this layer and
yet the electrical conditions remain unchanged. Thus there

would be relatively quite considerable exchanges of ions between
this larger layer and the solution, which would occasion differ-

ences of concentration and electrochemical potentials in the

main body of the solution. This main body would, of course,

still be uncharged as a whole, but this again is quite consistent

with the existence of fewer cations and fewer anions in it. It

is not contended that the physical processes are just those pic-

tured, but the theory must somehow or other justify some
changes in the electrochemical potentials of the ions in the main
body of the solution if we assume changes in those in the layer

of electrolyte adjacent to the cathode, as we clearly do when
we assert the validity of an expression such as

da = -qdV - i:V dM.

One can hardly see how there are to be such changes in the Mr
of the ions in the solution if the concentrations are to remain

unchanged; and we have just seen that certain changes in con-

centrations are quite consistent with unchanged purely electric

conditions of the solution as a whole and of the anode surface.

71 . Some Brief Remarks on the Fundamental Electrical Equations

Used by Stern in His Treatment of the Distribution

of Ions in a Solution Close to the Cathode

of a Capillary Electrometer

It is clear that the electrocapillary curves are insufficient in

themselves to unravel the complexities of the situation, without

some theory of the distribution of the ions in the layer of solution

adjacent to the cathode. This question is dealt with in the

second list of references given above. The most exhaustive
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treatment will be found in the paper by Otto Stern. In the

space available the writer can only hope to try to throw some

light for the beginner on the fundamental equations used. Re-

garding the surface of the mercury as the origin from which

the distances z of parallel planes in the solution are measured,

we represent the electric potential at a plane distant z from the

cathode surface by \p(z), or briefly xp* The quantity \p changes

continuously, from the value xpo at the cathode, to zero well out

in the solution, i.e., practically at s = oo. If we denote the

concentration of a positive ion at z by Ci(z), and of a negative

by C2(z), then the concentrations in the solution are Ci(oo)

and Ci(x,). These are equal if we adopt as a simple view

that there are only two kinds of equi-valent ions, so that we write

Cl(oo) = C2(00) = C.

Statistical theory then shows that

C.(.)=Cexp[-^^}

Ciiz) = C exp + -^
J'

where F is the numerical value of the charge on a gram-equiva-

lent of ions, and R is the universal gas constant, t being the

absolute temperature. Hence the electric charge density p at

the position z in the solution is given by

p{z) = F[Ci{z) - C,{z)\

r r F^p{z)i vF^p{z)y
= FC

In addition to this there is a well-known theorem of Poisson

connecting the potential of a distribution of electric charge with

the density of this charge. It is

aV av 9V 47r ^ . ^

* It has been referred to as V hitherto in conformity with Gibbs'

notation. The alteration is made to conform to Stern's symbol.
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where ^{x, y, z) is the potential at the point x, y, z, and D is

the dielectric constant of the medium. In the present instance,

since
\l/
depends only on z, this simplifies to

dV 47r , ^

This result is introduced into the previous one and in this way
solutions for 4^(z) in terms of z can be found. For details the

reader is referred to the literature.

One or two results, however, can be indicated in a general

L M

Fig. 14

N

way by means of graphs. Thus suppose we have a graph of

ypiz) before us (Fig. 14), then wherever p{z) is positive, d}\{//dz'^

is negative, i.e., dip/dz is decreasing with increasing z, or the

slope of the graph is decreasing. (This means, decreasing in the

algebraic sense; so that if the slope is negative as in the region

OL in the figure, the numerical value of the slope is increasing;

in the region LM, the slope is increasing algebraically although

in the first portion of it the numerical value of the slope is

decreasing.) Thus in the figure p is positive in the region OL,

negative in the region LM and positive once more in the region
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MN, fading off to zero. P and Q are points of inflection in the

curve where the sign of (P4'/dz^ changes, that quantity being

zero at each of them, so that p is zero at the planes L and M.
Also, since

4:Trp{z) d^\p(z)

D dz"

it follows that

Jz = z, \dz /,\dz

\dz Jz = z,

where Ei is the intensity of electric force at the plane L, OL being

equal to Zi, and OM to 22. (It is well known that the electric

intensity is measured by the gradient of the potential, and has

the direction in which the potential is decreasing. We are
Zl

assuming the graph to start from zero slope.) Now / pdz

is the charge per unit area between the planes 2 = and 2 = 2i.

Hence this charge is DEi/iir. The charge between L and M
per unit area is negative and is equal to

/.

22

pdz,
Z\

which works out as D{Ei + E^l^ic numerically, where Ei is the

numerical value of the intensity of force at the planeM (directed

towards the plane at 0.) Finally the charge beyond the plane

M is positive and numerically equal to DE^/^tt. The theory

attributes the positive charge DEi/4:Tr to the mercury surface.

To do so we imagine that OL is very small and that the graph

turns down very suddenly and steeply at first, so that this

portion of the graph is really in the mercury. The changes in

the solution may be more gradual. The graph we have drawn

would suit a picture in which there is a layer of negative ions in

the region LM and a layer of (fewer) positive ions beyond it;
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this is a picture employed by some writers. The original

Helmholtz idea would be pictured by a graph such as that in

Fig. 15, curved extremely near the beginning and end of the

graph, and a straight steep portion between, sharp bends being

the rule at both ends. In the straight portion dif/dz does not

change, so that d'^^p/dz'^ is zero there and there is no charge; the

positive and negative charges are concentrated in extremely thin

layers resembling a condenser distribution. The previous

graph gives a picture of a practically plane distribution for the

positive charge on the mercury surface and a "diffuse layer" of

f Y (Jy^

M z
Fig. 16

charge in the solution, such as Goiiy first suggested. Sugges-

tions have also been made that there may be a diffuse layer

in the mercury also.

One last picture (Fig. 16) will show that we might conceive q

not to be zero, and yet there might exist no difference of poten-

tial between mercury and solution, as the graph has risen to

the same level as at the beginning.
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THE GENERAL PROPERTIES OF A PERFECT

ELECTROCHEMICAL APPARATUS. ELEC-
TROCHEMICAL THERMODYNAMICS

[Gibbs, I, pp. S88-S49; 406-^12]

H. S. HARNED

Introduction

The importance of the contribution of Gibbs to the thermo-

dynamics of galvanic cells resides in the exactness, completeness,

and simpHcity of his method of treatment. In less than three

printed pages, he has set down the complete thermodynamic

theory, and has pointed out the fundamental relations between

the electromotive force and those basic thermodynamic func-

tions which have proved to be of such immense value to subse-

quent physico-chemical investigations.

In the following discussion, the thermodynamics of galvanic

cells, so far as explicitly treated by Gibbs, will be developed,

both by the use of the general functions and by the method of

a reversible cycle. Secondly, the arguments of Gibbs regarding

the heat suppUed to or withdrawn from galvanic cells during

their charge or discharge at constant temperature will be pre-

sented. In a third section, further ramifications of the theory

of this subject not explicitly stated, but contained implicitly in

Gibbs' general thermodynamics, will be discussed. Finally,

the role of Gibbs' fundamental contributions in the subsequent

development of the theory of solutions will be briefly outlined.

I. The General Thermodynamics as Explicitly Developed

Certain combinations of two or more pairs of electrical con-

ducting surfaces in electrical contact constitute a galvanic cell.

Not all such cells, however, may be subjected to numerical

709
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treatment by the methods of thermodynamics, but only those

cells which fulfil the following conditions:

(1) No changes must take place without the passage of the

current.

(2) Every change which takes place during the passage of

the current may be reversed by reversing the direction

of the current.

These conditions define the "perfect electrochemical appa-

ratus," or the reversible galvanic cell.

The first condition excludes cells containing metal to fiquid

surfaces which react chemically, such as Volta's in which

alternate copper and zinc plates were separated by a fibrous

material moistened with sulphuric acid. The second condition

makes possible the measurement of the reversible electrical work

of the cell, and, concomitantly, the change in thermodynamic

potential, f, or the change of work content, i/', which accom-

panies the physical or chemical changes occurring in the cell.

Since this second condition is necessary for every direct

measurement of changes in f or \p, its more careful considera-

tion, particularly in reference to cell measurement, will help to

clarify further discussion. A reversible process is one in which

every successive state is a state of equilibrium. The maximum
or reversible work is that obtainable from this ideal reversible

process. Thus, the evaporation of a liquid against an external

pressure just equal to its vapor pressure is a reversible process,

and the work done by the vapor is the reversible work.

Let us consider a cell which has proved of considerable im-

portance in recent physical chemistry, and which has the char-

acteristics necessary for the present discussion, namely,

Pt 1
H2 (1 atm.)

1
HCl (m)

|
AgCl

1
Ag.

This consists of a hydrogen electrode, at one atmosphere pres-

sure, in contact with a hydrochloric acid solution at a concentra-

tion m, which is also in contact with a silver-silver chloride

electrode. All these substances will remain unchanged after

the solution has become saturated with the slightly soluble

silver chloride. If we connect the terminals, this cell will dis-

charge, positive current will flow from the hydrogen electrode
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to the silver-silver chloride electrode within the cell, and the

chemical changes corresponding to the passage of one faraday

of electricity F, when summed up will correspond to the

reaction

iH2 (1 atm.) + AgCl -> Ag + HCl (w),

which will take place from left to right. To measure the

reversible electromotive force, E, and the reversible electrical

work, NEF, corresponding to the equation of the reaction, the

electromotive force of the cell is exactly balanced against an

outside electromotive force just sufficient to prevent its dis-

charge and not sufficient to charge it. This is the electromotive

force of the cell when no current is passing through the cell, or

when the entire system is in equilibrium. If we imagine the

cell to discharge against this electromotive force until the quan-

tities specified in the equation have reacted, the cell process

will have taken place reversibly. The electrical work, NEF,
will then be the maximum, and will be denoted the reversible

electrical work.

We shall now follow Gibbs in determining the total energy

increase of the cell. Four kinds of changes are possible (Gibbs,

1,338):

"(1) The supply of electricity at one electrode and the

withdrawal of the same quantity at the other.

(2) The supply or withdrawal of a certain amount of heat.

(3) The action of gravity.

(4) The motion of the surfaces enclosing the apparatus, as

when the volume is increased in the liberation of

gases."

In the cell just described, there will be a contraction in volume

due to the disappearance of one-half mol of hydrogen at a con-

stant pressure of one atmosphere. These changes are neces-

sary and sufficient for the evaluation of the energy change

accompanying cell action. Indeed, the third is usually negli-

gible.

Since, according to the first law, the increase in energy is

equal to the algebraic sum of the work and heat effects received
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by the system, we obtain

de = (V - V")de + c?Q + dWa + dWp, (1) [691]

in which de is the increment in internal energy of the cell,

de is the quantity of electricity which passed through the

cell, and V and V" the electrical potentials of leads of the

same kind of metal attached to the electrodes. Therefore,

{V — V")de is the electrical work necessary to charge the cell

reversibly, dQ is the heat absorbed from external bodies,

dW a is the work done by gravity upon the cell, and dWp, the

work done upon the cell when the volume changes. Since no

current is flowing, {V" — V) equals the electromotive force,

±^, of the cell.*

Since all changes are to be reversible, dQ will be transferred

to or from the cell under conditions of thermal reversibility,

that is to say, the cell at every instant must be at the same tem-

perature as the external source from which it receives the heat

or by which the heat is withdrawn. This is the only source of

change of entropy, and since the above condition of reversibility

prevails, the increment in entropy at constant temperature

will be

dv = y •

(2) [692]

The first and second laws, therefore, lead to the equation for the

energy increment of the cell,

de = (F' - V")de + tdtf + dWo + dWp, (3) [693]

or the equation for the electromotive force,

, „ „ de td-q dWo dWp
, , , ,

* Two conventions regarding the sign of electromotive force are

in use. For a given direction of the current through the cell its elec-

tromotive force is V" — V or V — V" according to the convention

which we adopt. Since this is largely a matter of personal preference,

the adoption of one convention or the other will add nothing to the pres-

ent general development. Therefore, we shall write ±E for the electro-

motive force.
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If the cell actually discharges at a finite rate, the conditions

of reversibility no longer prevail, and the cell is no longer a

thermodynamically useful "perfect electrochemical apparatus."

On the other hand, if the cell is maintained at constant tem-

perature, we have, in general,

dO
dv^-J (5) [695]

and, therefore, for the electrical work done by the cell,

(7" - V')de ^ -de + tdr, + dWo + dWp. (6) [696]

Before proceeding to further discussion of these equations,

we shall consider the relation of the reversible electrical work

to the work content function \p and the thermodynamic poten-

tial f (Gibbs, I, 349). The definition of \p is given by the

equation

yP = e-tn, (7) [87]

and, therefore, at constant temperature,

dyp = de - tdr]. (8)

If this value of {de — tdr]) be substituted in equations (4) and

(6), we obtain

, „ ,s # dWo dWp
, , , ,

for the electromotive force of a reversible cell and

(V" - V')de ^- d^p + dWa + dWp (10) [698]

for the electrical work of any cell at constant temperature.

The value of the term due to gravity is extremely small, and

negligible in ordinary cells. Further, dWp is the reversible

work done on the cell corresponding to the volume contraction

or expansion against a pressure p, and is equal to — 'pdv.

Hence, for the reversible cell at constant temperature,

(J" - V')de = -d^p - pdv, (11)
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which, at constant volume and temperature, becomes simply

(7" - V')de = -#. (12)

Thus, if the cell is maintained at constant volume and tem-

perature, the reversible electrical work done by cell discharge

equals the decrease in work content.

In actual experimental studies, we are more likely to be con-

cerned with processes at constant pressure and temperature,

and for this reason Gibbs' thermodynamic potential f is of extra-

ordinary usefulness. This function is defined by

^ = e-tv + pv (13) [91]

and, consequently, at constant pressure and temperature, an

increment in ^ is given by

d^ = de - tdrj + pdv. (14)

Since equation (4) [694] may be written

— dt -\- tdrj — pdv ,^ .

Y" - y = ^^-^ ^
(15)

de

if we neglect dW a, we immediately obtain for the reversible cell,

(F" - Y')de dr, (16) [699]

and for any cell,

(7" - Y')de ^ -dr. (17) [700]

The reversible electrical work at constant pressure and tem-

perature is equal to the decrease in thermodynamic potential

due to the chemical reaction taking place in the cell. This

equation is of great importance since it affords a method of

evaluating directly the changes of thermodynamic potential

in many chemical reactions which otherwise could not readily

be obtained.

These few considerations, deductions, and equations represent

Gibbs' explicit contribution to the thermodynamic theory of

the galvanic cell as contained in the "Equilibrium of Hetero-
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geneous Substances." The directness and simplicity of his

method are strikingly manifest.

Let us consider for the moment equation (15), which, allow-

ing for an irreversible process, is

(7" - V')de ^ -de + tdr, - pdv. (15a)

If the cell is maintained at constant volume, the last term

vanishes, and if no heat is absorbed or evolved by the cell, the

term tdr] vanishes, and the electrical work is equal to or less

than the diminution of energy. Owing to the lack of very

accurate experimental results as well as a confusion regarding

the fundamental concepts involved, and to the fact that, in

some cases of familiar cells, the term td-q is small compared to de,

many investigators of the last century were of the opinion that

the electrical work is entirely accounted for by the diminu-

tion of energy. Since cells are measured at constant tem-

perature and not at constant entropy, there is no reason why
the term td-n should vanish. Gibbs, therefore, takes great

care in the subsequent discussion (Gibbs, I, 340-347) to place

this matter in the correct light.

We shall postpone the consideration of this matter and

consider the alternative deduction of the general law (equation

[6]) given in the second letter to the Secretary of the Electrolysis

Committee of the British Association for the Advancement of

Science (Gibbs, I, 408-112). Gibbs wrote this letter in order

to explain more fully his position, and its contents constitute

the only other explicit statement of his thermodynamics of

the galvanic cell.

Consider a reversible cycle in which a cell discharges at a

constant temperature t', producing electrical work, mechani-

cal work and possibly heat effects. Chemical changes will take

place. Then, by reversible processes which do not involve the

passage of electricity, bring the system back to its original state

by supplying or withdrawing the necessary work and heat.

Let W and Q equal the work done and the heat absorbed by

the system during the discharge of the cell, and [W] and [Q]

equal the corresponding work and heat changes during the

reversible processes employed to bring the cell back to its
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original state. Since by the first law of thermodynamics the

algebraic sum of the work and heat effects in a cycle is zero,

W + Q + [W] + [Q] = 0. (18) ([1] p. 408)

By the second law the algebraic sum of the entropy changes

throughout such a cycle is zero. Hence, we obtain

P + I 7
= 0, (19) ([2] p. 408)

where t' is the temperature at which the cell charges or dis-

charges. In the reverse process, the heat is supplied or with-

drawn throughout a range of temperatures.

If we neglect the term due to gravity, the reversible work

during cell discharge involving the passage of one unit of elec-

tricity is

W = (V - V") + Wp. (20) ([3] p. 409)

From equations (18), (19), and (20) we readily obtain

7" -v' = Wp+ [W] + [Q] - ^'

/ 7 • (21) ([4] p. 409)

[W] + [Q] is the increase in energy Ac, supplied in bringing the

cell back to its original condition, and this by the first law is

equal numerically, but opposite in sign to the decrease in

f dQ
. ^

energy, — Ae, during cell discharge. Further, / — is the

entropy change during the reverse process, and is equal, but

opposite in sign, to the entropy change At/ during discharge.

Therefore,

V" -V = -Ae + t'Ar, + Wp. (22) ([5] p. 409)

Since the variables of equation (15) are all extensive, it may be

integrated term by term to give equation (22).

Let us now define a temperature t", such that

[Q]

t'P =
J ^' (23) ([7] p. 410)
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which shows how, by means of a reversible process, the heat

[Q] absorbed at constant temperature t" may replace that ab-

sorbed at a series of temperatures denoted by i. The tempera-

ture ^" is the highest at which all the heat may be supplied to

f dQ
the system. Eliminating / — from equation (21) by means

of equation (23), we obtain

V" -r = ^—^ [Q] + [W] + Wp. (24) ([6] p. 410)

This equation can be derived from the usual form of reversible

cycle in which the cell is discharged isothermally at t', heated to

t", then the changes produced reversed isothermally at t"

without the flow of electricity, and finally cooled to t'. The
above equation would be true for such a process if the heat

absorbed during the heating from t' to t" cancelled that evolved

during the cooling from t" to t'. This may not be true for a

specific case, but if we define t" by equation (23), then equation

(24) is strictly valid. We shall find later that this definition

considerably simplifies theoretical discussion.

The remainder of the letter which we have been discussing is

devoted to showing that the equations developed are in accord

with those derived by Helmholtz. Gibbs proceeds to deduce

the equation of Helmholtz,

Yt
=

-~t
(25) ([11] p. 411)

by simple transformations of equation (22), and thus shows that

his methods lead to the same conclusions as those of this

investigator.

II. On the Question of the Absorption or Evolution of Heat

during Galvanic Cell Processes

As we have shown by consideration of equation (15), there is

every reason to beHeve that during charging or discharging of

a galvanic cell at constant temperature, heat may be absorbed

or evolved. Gibbs uses three lines of argument to show the
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error made in neglecting these heat changes. The first depends

upon the conception of a cell at constant volume, or "in a rigid

envelop," which, during charge or discharge, does not change

in intrinsic energy. In this case, the reversible electrical work

performed by the cell is equal to the heat absorbed. The
second argument depends on the theoretical conclusion that

unless a reaction can produce all its heat at an infinitely high

temperature the reversible electrical work cannot equal the

decrease in energy. The third argument is empirical. Gibbs

computes, from the best data obtainable at that time, the values

of the electrical work, change of energy, and heat absorbed,

and shows that the heat term tdrj always exists and is some-

times very considerable. We shall consider these arguments

in turn.

That it is possible to construct a cell such that

(V" - V')de ^ tdr, (26)

is easily shown. Consider two hydrogen electrodes in two

limbs of a U-tube. Let the pressure on a large constant volume

of hydrogen on the left side be two atmospheres and the pres-

sure on a large constant volume of hydrogen on the right side

be one atmosphere. This difference in pressure is compensated

for by the difference in heights between the columns of hydro-

chloric acid in the two limbs. If we neglect the small effect of

gravity, the net effect of the cell reaction will be

H2 (2 atm.) -> Ho (1 atm.)

at constant volume and temperature. Since there is no increase

or decrease in energy in the above process provided that hydro-

gen is a perfect gas, and since the term pdv vanishes, the

reversible electrical work will equal tdrj. This may be more

concisely stated by equation (12) whereby

(7" - V')de = -#]„,« = -de-}- tdrj = tdtj,

since there is no energy change.

Gibbs now proceeds to show that the absorption or evolution

of heat is a usual phenomenon accompanying galvanic cell
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action at constant temperature. He asks us to consider a

change in which two molecules, A and B, combine to form a

third, AB, with the evolution of heat Q. Now imagine them
to react in a galvanic cell at a temperature t', and then complete

a cycle by bringing the system back to its initial state by a series

of reversible processes which involve the supplying of heat, but

which for the sake of simplicity involve no work. This cycle

can be represented by

A+B-^AB-^W + Q (t = t')

A+B^AB + [Q] {t = t")

in which the intrinsic energy changes are Ae = [Q] at t", and
— Ae = W -\- QbXI', respectively. According to equation (19),

we have the well known relation

Q [Q]

p + ^ = 0, (27)

where t" is defined by equation (23), and equals the highest tem-

perature at which all the heat may be obtained. Obviously, if

[Q] exists and possesses a finite value at a finite temperature, Q
must exist at a temperature, t'. Since a change in a finite quan-

tity of substance will be accompanied by a finite change in internal

energy, [Q], the only condition which will cause Q to vanish will

be that under which all the heat may be obtained at an infinite

temperature. Gibbs does not deny this possibility, but simply

states that this certainly does not represent the usual case.

t'

Further, the magnitude of Q is given by -r, [Q], and the work

t" - t'

performed by the cell, W, is given by —-f,
— [Q]. These con-

siderations form the basis of the discussion on pp. 342-344 of

the "Equilibrium of Heterogeneous Substances," and in the

first letter (Gibbs, I, 406) to the Secretary of the British Asso-

ciation for the Advancement of Science.

The remainder of the discussion of this subject on pp. 344-348

of the "Equilibrium of Heterogeneous Substances" has simply
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to do with proving that the data which existed at the time of

writing, and which were obtained chiefly by Favre, substantiated

the existence of heat changes during cell action. Since a great

many accurate observations obtained in recent years completely

confirm the contentions of Gibbs, and since the illustrations

employed by him are far less accurate, it seems unnecessary to

discuss this matter further.

III. The Extension of the Theory of Galvanic Cells Not

Explicitly Developed, but Contained Implicitly

in the Thermodynamics of Gibbs

Equation (17) [700] has proved to be of the greatest impor-

tance to chemistry, and since the f function is peculiar to Gibbs

it is to this extent unique in the history of the subject. This

equation states that the reversible electrical work obtainable

from a cell at constant temperature and pressure is equal to the

decrease — d'f, in thermodynamic potential, corresponding to

the cell processes. Since it is far more convenient to measure

a cell at constant pressure and temperature than at constant

volume and temperature, d^ is more easily obtainable than d\j/.

If then a reversible cell can be constructed in such a way
that the net effect of all the changes in the cell during the flow

of current corresponds to a chemical reaction, the change in

thermodynamic potential may be computed. This affords a

very powerful experimental method for investigating the

increase or decrease of thermodynamic potential correspond-

ing to reactions which occur between solids, between solids and

liquids, or between solids, liquids, and gases. In fact, in recent

years cells have been constructed by means of which the changes

in thermodynamic potential of all types of chemical reactions

have been studied.*

Early in the "Equihbrium of Heterogeneous Substances,"

Gibbs has shown that the differential of the thermodynamic

* Recent surveys and discussion of this subject may be found in

Taylor, Treatise on Physical Chemistry, 2nd Ed., Vol. I, pp. 731-745,

D. Van Nostrand Company, New York (1924). See also International

Critical Tables, Vol. VI, pp. 312-340, McGraw-Hill Book Co. (1930).
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potential, rff, of a phase of variable composition is given by

d^ = — r]dt + vdp + nidni + H2dn2 . . . + Undun, (28)

an equation which is equivalent to equation [92] (Gibbs, I, 87)

if ni, n2, etc., are the numbers of mols of the components,

respectively, and m, ^2, etc., are the partial derivatives of ^

with respect to ni, n2, etc.

From this we immediately find that, at constant composition,

11 = - - (->

and

'^l
= .. (30)

dp

Further, from the fundamental equation relating f to Xt the

heat content function, we obtain

( = x-tv = x + tf\. (31)

From equation (17) we obtain for a reversible cell at constant

temperature and pressure the equation

d^ = ±Ede. (32)

As long as the various phases of the cell are sufficiently large so

that their compositions will not be appreciably altered by the

flow of a finite quantity of electricity e, then E will remain

independent of e, and equation (32) may be integrated. Let us

choose the path of integration to correspond with a chemical

equation involving a flow of N faradays. Let us denote the

faraday by F and employ the subscripts 1 and 2 to refer to the

states of the system before and after the process represented by

the given chemical equation. Further, let the symbol A denote

the increase in the value of a function during the given finite

process. We obtain

Ar = r2 - n = r ^f = ± j^^' Ede = ± nef (33)



722 EARNED ART. M

Therefore Af for the chemical reaction involving quantities of

reactants and resultants corresponding to the passage of 96,500

coulombs or any multiple thereof may be measured at constant

pressure and temperature. If E is expressed in volts, Af is in

joules. Substituting this value of A^ in equations (29), (30),

and (31), we obtain

where At; and Ay denote the finite changes of entropy and

volume respectively in the cell reaction, and

±iViJF = AX±(<*^)1. (36)

Thus, not only do we obtain the pressure and temperature

coefficients of electromotive force, but also the important

equations by means of which the changes of entropy and heat

content of chemical reactions can be obtained from measure-

ments of E. Equation (34) is equivalent to equation (25).

This method of measuring the entropy change in a reaction has

proved to be of great importance in obtaining the data necessary

for the verification of the so-called "third law of thermo-

dynamics."*

Let us now consider two cells which are to be measured at

constant pressure and temperature:

Pt
I
Ha (1 atm.)

|
HCl(wi)

1
AgCl

1
Ag; ±^i,

and

Pt
I
H2 (1 atm.)

I

HC1(W2)
|
AgCl

|
Ag; zt^2,

and their corresponding reactions,

^Ha (1 atm.) + AgCl -> Ag + HCl(w:),

* Lewis and Randall, Thermodynamics and the Free Energy of Chem-
ical Substances, Chapter XXXI, McGraw-Hill Book Co., New York
(1923).
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and

iHo (1 atm.) + AgCl ^ Ag + HCl(w2).

By combining these cells we obtain the very important con-

centration cell without liquid junction,

Ag
I

AgCl
1 HCIK) 1

H2
I

Pt
I

H2
I
HCl(wO 1

AgCl
|
Ag;

to which will correspond the cell process

HCIK) ->HCl(wi).

This means that the sum of all the changes occurring in this

cell during the passage of the current is the transfer of hydro-

chloric acid from a solution at a concentration wa to one at a

concentration rtii. In other words, the process may be regarded

as the reversible removal of one mol of hydrochloric acid from

an infinite quantity of solution at a concentration W2, and its

addition to an infinite quantity of solution at a concentration

mi. The reversible electrical work will be ±(£"1 — E2)F.

According to equation [104] (Gibbs, I, 89), the chemical po-

tentials of the components of a phase are

(37) [104]
ar 1 9f 1

'"I = IIT ' ^2 = -7—
,
etc.

OUi J p, «, nj, . . . Tin "'^2 Jp, t, ni, n„ ... nn

This formula refers to the change in f for an infinitesimal

change of composition in a finite phase. Correspondingly we

have for a finite change of composition in an infinite phase

iui=^l »M2 = ^^1 ,etc. (38),
ZiTilJp, t, nj, • • • n„ AW2Jp. t, n,, nj, • • • nn

where the operator A refers to the change in value of a function

or a variable in a finite process. Thus, if we add one gram of

component 1 to a very large quantity of the solution under

the conditions specified by the subscripts, mi will equal the in-

crease in f of the phase. If the unit of mass is the mol, ni will

equal the corresponding increase in total thermodynamic poten-

tial upon the addition of one mol.
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With this fundamental consideration in view, it immediately

becomes clear that the reversible electrical work of the cell

without liquid junction just described measures the change in

thermodynamic potential when one mol of hydrochloric acid

at a concentration m2 is removed from one solution and then

added to the solution at a concentration mi. Therefore, for the

transfer of one mol of acid, we obtain by (38)

/i/ - Ml" = Af = ±F(E, - E,). (39)

These considerations show that the measurements of electro-

motive forces of reversible cells containing various electrolytes

of the same or different valence types afford direct measurements

of the changes in chemical potentials of ionized components with

their concentrations. Further, by measurements of the tem-

perature coefficients of electromotive forces of cells of this type,

and by employing the fundamental equations (34) and (36),

the corresponding changes Ax of heat content, as well as of

entropy may be determined. Further, by equation [97] (Gibbs,

I, 88) the chemical potential of one component, the solvent for

example, may be computed from that of the solute, or vice versa.

Therefore, since we may measure the chemical potential of the

solute from cell measurements, we may compute that of the

solvent. In this way we may relate the electromotive force of

a cell with the lowering of the vapor pressure, the lowering of

the freezing point, and the osmotic pressure of the solution.

Since the development of both the experimental side and the

theory of the physical chemistry of solutions has depended to a

considerable extent upon the evaluation of the chemical poten-

tials, the value of this powerful and direct method of measure-

ment of these quantities cannot be overestimated.*

IV. Developments of Importance to the Theory of the Physical

Chemistry of Solutions since Gibbs

The general thermodynamics of Gibbs is complete and

affords a basis for the exact treatment of the problems

* A more detailed and systematic presentation of recent work on this

subject is given by Harned in Taylor's Treatise on Physical Chemistry,

Chap. XII.
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which have arisen. Consequently, any further advance must

rest upon some extra-thermodynamical discovery, for example,

some empirical law. We have found that by a suitable mech-

anism, we may obtain the change in chemical potential of an

ionizing component from the study of a process represented by

HCl(m2) -^HCl(wi).

If we let niz vary and keep mi constant, at unit value, or at an

arbitrary standard value, then we can measure the change in

the quantity, ni' — ni", with the concentration. If this is done,

we find that as m2 approaches zero, ni" changes with the con-

centration at constant temperature according to the law

m' - Ml" = 2Rt log —

'

m2

or, since both /xi' are 2 Rt log mi are fixed,

Ml" = 2Rt log W2 + /, (40)

where 7 is a function of t and p only. Since the electrical

process involves the transfer of both hydrogen and chloride ions,

the factor 2 occurs in the expression on the right. This is the

form of the expression derived from the perfect gas laws. It is,

therefore, the equivalent of van't Hoff's law for dilute electro-

lytes. This experimental discovery of van't Hoff, coupled with

the ionic theory of Arrhenius, marked the beginning of a very

extended experimental investigation of solutions of electrolytes.

As a result, it was soon found that, in the cases of solutions of

strong electrolytes, wide departures from this law occur.

Without any addition to the fundamental thermodynamic

theory, we may numerically overcome this difficulty by insert-

ing a term which serves to measure the deviation from van't

Hoff's law. Thus,

m" = 2Rt log Ui, -{ I = Rt log a^aci + I,

or

n" = 2Rt log ma + 2Rt log y + I, (41)
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where anaci is the activity product of the ions as defined by

Lewis,* and 7, or -^, is the activity coefficient. Hydrochloricm
acid is a uni-univalent electrolyte and, consequently, the reaction

of this cell represents the transfer of one gram ion of hydrogen
ion and one gram ion of chloride ion. The modifications

necessary for the general treatment of electrolytes of different

valence types can easily be made. Consider any strong electro-

lyte at a molal concentration, m, which dissociates according

to the scheme

C,+Ay_ = v+C + v-A,

and let

a2 = a+''+ aJ'-,

where a+ and a_ are the activities of the cation and anion,

respectively, and az, defined by the above equation, may be

regarded as the activity of the electrolyte, and

a± = (a+''+ aJ'-)'.

Then equation (41) may be written in general

n = Rt log a2 + I = vRt log a± + J, (42)

which serves to define the activity. 7 is a function of the pressure

and temperature, but not of the concentrations of the solute

epecies. Further, we define the activity coefficient of any elec-

trolyte by

'^ = 7~7^ Zv. ' (43)

and always measure it in reference to a value of unity when m
equals zero.

By means of cell measurements we obtain y. in reference to an

* Lewis, Troc. Am. Acad., 37, 45 (1901); 43, 259 (1907).
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arbitrary standard state, and, therefore, a^ may also be
obtained. Now 7 may be computed if we let m be the molal

concentration of the electrolyte. This is purely arbitrary since

the molal concentration of the electrolyte tells us nothing

regarding the real concentrations of the ions in the solution.

The activity coefficient 7, however, acquires an important

physical significance if the real ionic concentrations are known.
According to the classical theory of Arrhenius, 7 was thought

to measure the actual degree of dissociation of an electrolyte.

Later, it was called by Lewis "the thermodynamic degree of

dissociation". If this quantity measures the degree of disso-

ciation, then the law of mass action in its classic form should

be applicable to all classes of electrolytes. In the case of strong

electrolytes, this conclusion was found to be erroneous, and
therefore the first suppositions regarding 7 were entirely

incorrect. The difficulty resides in the failure of these early

theories to take into account the effects of the attractive and

repulsive forces between the ions, which for charged particles

vary inversely as the square of the distance. The careful con-

sideration of these effects constitutes the departure of the recent

developments of the theory of solutions from the classical

theory.

The most fruitful advance has come from the assumption

that, in moderate concentrations in a solvent of high dielectric

constant, the strongest electrolytes are completely dissociated

into ions. Thus m in the cases of hydrochloric acid solutions,

sodium chloride solutions, etc., is the true ionic concentration.

If this is true, 7 acquires a definite physical significance. Fur-

ther, if the assumption of complete dissociation is correct, then

7 must be calculable from fundamental considerations regarding

the forces of attraction and repulsion between the ions.

The various attempts to solve this problem have culminated

in the theory of Debye and Hiickel* By the skillful application

of Poisson's equation to a system of charged particles in

thermal motion, they have succeeded in proving that in moder-

ately dilute solutions 7 is a function of the electrostatic forces.

Debye and Huckel, Physik. Z., 24, 305 (1923).
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Since their calculation of 7 is numerically a very close approxi-

mation, it justifies their initial assumption of complete disso-

ciation of strong electrolytes. Even a conservative estimate of

this theory will convince us that by far the larger part of the

deviation factor, 7, is due to interionic forces in the case of

strong electrolytes in media of high dielectric constant, such as

water. It would be far beyond the purpose of the present dis-

cussion to develop this theory and its many ramifications, but

the knowledge that m is an ionic concentration or very nearly

so in the case of strong electrolytes permits us to develop the

possibilities of the study of reversible cells to a considerable

extent without any sacrifice in accuracy.

We shall now sketch briefly some developments which

illustrate the more recent means of obtaining valuable data

regarding strong electrolytes, weak electrolytes, and ampholytes

from reversible cell measurements. To assure exactness, we
shall omit measurements of all cells with liquid junctions since

these all involve an undefinable and physically meaningless

hquid junction potential.*

(1) The Activity Coefficients of Strong Electrolytes

We have already shown how the change in chemical potential

of hydrochloric acid in passing from a solution at one concen-

tration to a solution at another concentration may be measured

by a cell without Uquid junction. For the change

CA(m2) ^CA{mi),

we have, according to equation (42),

- Ar = (m' - m") = Rt log ^—^Tr (44)
etc dA

If we adopt the convention that a positive electromotive force

accompanies a decrease in thermodynamic potential, we obtain

from equation (39)

*Harned, J. Physical Chem., 30, 433 (1926). Taylor, /. Physical

Chem., 31, 1478 (1927). Guggenheim, /. Phtjsical Chem., 33, 842 (1929);

34, 1540 (1930).
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Further, we mention the cell,

H2
1
M0H(W2)

1
MxHg

I

MOH(wi) 1 Ha,

which measures the transfer corresponding to

M0H(w2) + H20(mi) -> MOH(wi) + HzOK),

whence the activity coefficients of alkali metal hydroxides may
be measured. By other cells of the same types, alkali metal

sulphates and alkaline earth chlorides have been studied. All

these data have an important bearing on the theory of electroly-

tic solutions.*

Not only may we obtain these changes in chemical potentials

for single electrolytes by these measurements, but also the

chemical potentials of one electrolyte in a solution containing

another electrolyte may be computed. From the cell,

Ag
I

AgX
1
HX{mO, MXim^)

\
H2

1
HX(m)

\
AgZ

1
Ag,

we may measure the change of thermodynamic potential of a

halide acid from the solution containing the chloride to the

pure acid solution, which we represent by

HX(mi) [MXim^)] -^ HX(m).

Thus, we may obtain the activity coefficient of the acid at a

concentration (wi) in a salt solution of a concentration (wz).

Suffice it to say that by similar cells we now know the value of

this important quantity for hydrochloric acid, sulphuric acid,

and hydrobromic acid in many salt solutions, f Further, cells of

the type,

H2
I

MOH(wi), MZ(m2)
|
MxHg

|
MOH(w)

|
H2,

permit the calculation of the activity coefficients of hydroxides

in salt solutions. I

* Knobel, /. Am. Chem. Soc, 45, 70 (1923). Harned, /. Am. Chem.

Soc, 47, 676 (1925). Harned and Swindells, J. Am. Chem. Soc, 48, 126

(1926).

t Harned, /. Am. Chem. Soc, 38, 1986 (1916); 42, 1808 (1920). Harned
and Akerlof, Physik. Z., 27, 411 (1926).

t Harned, /. Am. Chem. Soc, 47, 684 (1925).
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(2) The Activity Coefficients of Weak Electrolytes in Salt Solutions

(a) The Ionic Activity Coefficient of Water in Salt Solutions.

We have described a cell by means of which the activity coeffi-

cient of hydrochloric acid may be obtained in a chloride solution.

Suppose we maintain (mi + ^22) constant and measure 7 in the

solutions of varying acid and salt concentration. It is found

that 7 varies with the acid concentration according to the law*

log 7 = ami + log 70. (48)

Thus at constant total molality 7 extrapolates to 70 at zero con-

centration of acid, whence we know 7hTci in the salt solution

which is free from acid. In a similar manner from measure-

ments of the cells containing sodium hydroxide in the sodium

chloride solutions, we may obtain ^^ ^^
in the hydroxide-free

salt solution. Also, from measurements of the cells containing

sodium chloride, we know 7Na7ci ^-t the concentration (wi + nh).

Therefore, if we multiply 7h7ci by
'^^^^^^

and divide by

TNa7ci> we obtain the ionic activity coefficient product of water,

ThToh^
at this concentration of salt. Obviously, by this method,

may be obtained at other salt concentrations.

flHiO

7hToh
ajiiO

The primary dissociation of water is represented by

H2O ;=± H+ -f OH-

and the thermodynamic dissociation constant, K, is given

exactly by

^ ^ OhOoh ^ 7H70H ^^^^^ (49)
OHjO CLRiO

Since we may determine in the salt solutions, the classical
CtHiO

• Earned, /. Am. Chem. Soc, 48, 326 (1926). Guntelberg, Z. physik.

Chem., 123, 199 (1926).
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dissociation product, mnWoH) may be determined if we know K,

and in this way we may study the effects of electrolytes on the

dissociation of the solvent.*

We have still to determine K from the electromotive forces

of cells without liquid junction. Consider the cell,

H2
1
MOB.{mi), MC1(W2)

|
AgCl

| Ag.f

Its electromotive force at 25° is given by

E = Eq - 0.05915 logio mnwci - 0.05915 logio ThTci, (50)

where Eq may be obtained from the cell containing hydrochloric

acid. If we substitute the value of m^ obtained from equation

(49), we obtain

E = Eo- 0.05915 logio
^^^^'^^^ - 0.05915 logio thTci
ThTohWoh

= Eo- 0.05915 logioK - 0.05915 logio

'^^^^^^^'"

7H70H

-0.05915 logio ^^. (51)
moB.

Eo is known. In dilute solutions the third term on the right is

very close to unity since it contains the ratio of activity coeffi-

cient products. Therefore,

E + 0.05915 logio
^^^

moH

in very dilute solutions has very nearly a constant value. Thus,

the extrapolation of this quantity to zero ionic concentration is a

simple matter, and its value at infinite dilution is equal to

[£'0 — 0.05915 logio K]. We have, therefore, an independent

measure of K.

(b) The Ionic Activity Coefficients and Dissociation of Weak

Acids and Bases in Salt Solutions. By the application of the

* Harned, /. Am. Chem. Soc, 47, 930 (1925).

t Roberts, J. Am. Chem. Soc, 62, 3877 (1930).
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principles just discussed, very important information concern-

ing weak acids and bases in solvents containing salt solutions

may be obtained. We shall consider the acid case only, since

the bases may be investigated in exactly the same manner.

Let us construct the cell,

Ag
I

AgCl
I
HCl(wi), MCl(m2)

|
H2

|
HAc(m), MC\{mz)

\

AgCl
I

Ag,

in which HAc is a weak acid, mi is 0.01 molal or less, and the

concentrations are such that the total ionic concentration

on the two sides is the same or very nearly so, so that

Wi 4- W2 = Wh + W3, where m^ is the hydrogen ion concen-

tration in the solution of the weak acid. The electromotive

force of this cell at 25° is given by

E = 0.05915 logic
^^5!^^' + 0.05915 logio ^^^^^

, (52)

where the double accent refers to the hydrochloric acid solution

and the single accent to the weak acid solution. Since Wi, W2,

and ms are known mn may be evaluated if the first term on the

right of this equation is known. Two secondary effects influ-

ence this term, which can be completely taken into account if

sufficient care is exercised. The first and most important is

the effect of the presence of the undissociated molecule of the

weak acid which causes th'tci' to differ from its value in pure

water even though the concentrations of the ions in the two

cell compartments are the same. The second effect is much
simpler and merely requires a knowledge of the activity co-

efficient of hydrochloric acid in the salt solution. This

situation has been investigated very thoroughly by Harned and

Robinson, and Harned and Owen, who show that both 7h"tci"

and th'tci' as well as mn can be determined without the intro-

duction of any inexact considerations.

The dissociation of the acid is represented by

HAc ^ H+ + Ac-,
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and the ionization constant by

K = ''-^^^ "^'^^^ = y.' ^^^ = 7x^ K., (53)
THAc whac w — mn

where m is the original concentration of the weak acid, and 7^ its

activity coefficient in the salt solution. Since we determine

/wh, Kc becomes known at various salt concentrations. We
have yet to find its value at infinite dilution or when 7^ equals

unity. This can be done very simply by the use of a function

which gives the variation of 7 with the total ionic concentration,

li, in dilute solutions; namely,

logio 7^^ = - Vm + a/^, (54)

where a is an empirical constant. If we take the logarithm of

equation (53) , we obtain

logio K = logio Kc + logio 7x^ (55)

Substituting for logio 7x^ and rearranging terms, we find that

logio Kc — \/ n = logio K — an. (56)

Therefore, if we plot [logic Kc — \/ m]) which has been determined

against /j., we obtain a straight line in dilute solutions, and the

value of the function on the left is equal to logio K when /x equals

zero. By this means we have an independent measure of the

dissociation constant, the ionic activity coefficient, and dissocia-

tion of a weak acid in a salt solution. The same or very similar

methods will also afford very valuable evidence concerning

similar properties of weak bases, and ampholytes.*

These considerations, although very brief, serve to show the

extent and power of the method of cell measurements when
applied to the study of all kinds of electrolytes. It would be

far beyond the scope of this discussion to treat the various

* A thorough discussion of this subject is to be found in the contribu-

tions of: Harned and Robinson, /. Am. Chem. Soc, 50, 3157 (1928);

Harned and Owen, ibid., 52, 5079 (1930); 52, 5091 (1930); Owen, ibid.,

64, 1758 (1932); Harned and Ehlers, ibid., 54, 1350 (1932).
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ramifications which would develop upon considerations of the

variations of these quantities with temperature and pressure.

Suffice it to say that everything comes back to the experimental

evaluation of the chemical potentials of electrolytes, which

would have been impossible without the fundamental contribu-

tion of Gibbs.

Retrospect and Prospect

We have emphasized the completeness and exactness of

Gibbs' treatment of the perfect electrochemical apparatus. If

we work in the spirit of the original method, then we must

eliminate uncertainties inherent in the use of cells such as those

containing liquid junction potentials. The invention and use

of the concentration cell without liquid junction is an excellent

illustration of an exact method of study. However, the power

of this experimental method only becomes apparent when we
introduce the chemical potentials and develop the general

thermodynamics of Gibbs in its relation to such cells. But

even this has not been enough. Extra-thermodynamical con-

siderations which must be experimentally verified and finally

proved by fundamental electrostatic theory have been required,

and will continue to be necessary before the intricate subject of

the nature of the ionic state in solutions will be unravelled and

explained. But there will be nothing in these modifications to

detract from the value of the contribution of the first master of

this subject.
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